Information
This documentation supports releases of BMC Helix Continuous Optimization up to December 31, 2021. To view the latest version, select the version from the Product version menu.

Time forecasting model algorithms for detecting trends in monotonic data


This topic lists and describes time forecasting model algorithms that are suitable for detecting trends in monotonic data:

Linear

An example of a time forecasting model using the Linear algorithm

PR_RUN_3980_4-LINEAR.png

Robust Linear

An example of a time forecasting model using the Robust Linear algorithm

PR_RUN_4794_35-ROBUST-LINEAR.png

Robust Linear - Last Ramp

An example of a time forecasting model using the Robust Linear - Last Ramp algorithm

PR_RUN_4795_1-ROBUST LINEAR LAST RAMP.png

Robust Linear - Smoothed Last Ramp

An example of a time forecasting model using the Robust Linear - Smoothed Last Ramp algorithm

PR_RUN_4942_6-ROBUST-LINEAR-SMOOTHED-LAST-RAMP-2.png

Quadratic

An example of a time forecasting model using the Quadratic algorithm

PR_RUN_4801_25-QUADRATIC-5.png

Cubic

An example of a time forecasting model using the Cubic algorithm

PR_RUN_4802_21-CUBIC-3.png

 

Exponential - Multiplicative Trend

An example of a time forecasting model using the Exponential - Multiplicative Trend algorithm

PR_RUN_4823_8-EXPONENTIAL-3.png

Robust Exponential Damping

An example of a time forecasting model using the Robust Exponential Damping algorithm

expdampingmodel1.png

Robust Exponential Damping - Last Ramp

An example of a time forecasting model using the Robust Exponential Damping - Last Ramp algorithm

lastramp_expdampingmodel.png

Related topics

Time-forecasting-model-algorithms-for-detecting-trends-in-seasonal-time-series

Time-forecasting-model-algorithms-for-detecting-trends-and-seasonal-components-in-data

 

Tip: For faster searching, add an asterisk to the end of your partial query. Example: cert*

BMC Helix Continuous Optimization 21.3