Time forecasting model algorithms for detecting trends in monotonic data


This topic lists and describes time forecasting model algorithms that are suitable for detecting trends in monotonic data:

Linear

An example of a time forecasting model using the Linear algorithm

PR_RUN_3980_4-LINEAR.png

Robust Linear

An example of a time forecasting model using the Robust Linear algorithm

PR_RUN_4794_35-ROBUST-LINEAR.png

Robust Linear - Last Ramp

An example of a time forecasting model using the Robust Linear - Last Ramp algorithm

PR_RUN_4795_1-ROBUST LINEAR LAST RAMP.png

Robust Linear - Smoothed Last Ramp

An example of a time forecasting model using the Robust Linear - Smoothed Last Ramp algorithm

PR_RUN_4942_6-ROBUST-LINEAR-SMOOTHED-LAST-RAMP-2.png

Quadratic

An example of a time forecasting model using the Quadratic algorithm

PR_RUN_4801_25-QUADRATIC-5.png

Cubic

An example of a time forecasting model using the Cubic algorithm

PR_RUN_4802_21-CUBIC-3.png

 

Exponential - Multiplicative Trend

An example of a time forecasting model using the Exponential - Multiplicative Trend algorithm

PR_RUN_4823_8-EXPONENTIAL-3.png

Robust Exponential Damping

An example of a time forecasting model using the Robust Exponential Damping algorithm

expdampingmodel1.png

Robust Exponential Damping - Last Ramp

An example of a time forecasting model using the Robust Exponential Damping - Last Ramp algorithm

lastramp_expdampingmodel.png

Related topics

Time-forecasting-model-algorithms-for-detecting-trends-in-seasonal-time-series

Time-forecasting-model-algorithms-for-detecting-trends-and-seasonal-components-in-data

 

Tip: For faster searching, add an asterisk to the end of your partial query. Example: cert*

BMC Helix Capacity Optimization 20.02