MainView AutoOPERATOR
Customization Guide

Supporting products

Version 7.4 of MainView AutoOPERATOR

May 2015
Contacting BMC Software

Several methods are available for contacting BMC Software.

You can access the BMC Software website at http://www.bmc.com. From this website, you can obtain information about the company, its products, corporate offices, special events, and career opportunities.

United States and Canada

Address
BMC SOFTWARE INC
2101 CITYWEST BLVD
HOUSTON TX 77042-2827 USA

Telephone
1 713 918 8800
or
1 800 841 2031

Fax
1 713 918 8000

Outside United States and Canada

Telephone
+01 713 918 8800

Fax
+01 713 918 8000

© Copyright 2006 - 2015 BMC Software, Inc.

BMC, BMC Software, and the BMC Software logo are the exclusive properties of BMC Software, Inc., are registered with the U.S. Patent and Trademark Office, and may be registered or pending registration in other countries. All other BMC trademarks, service marks, and logos may be registered or pending registration in the U.S. or in other countries. All other trademarks or registered trademarks are the property of their respective owners.

Explorer is a trademark or registered trademark of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

CICS, DB2, IBM, IBM z, IMS, MQSeries, MVS, NetView, OS/390, RACF, RETAIN, System z, Tivoli, VTAM, WebSphere, z/OS, z/VM, and z9 are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

Linux is the registered trademark of Linus Torvalds.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

UNIX is the registered trademark of The Open Group in the US and other countries.

The information included in this documentation is the proprietary and confidential information of BMC Software, Inc., its affiliates, or licensors. Your use of this information is subject to the terms and conditions of the applicable End User License agreement for the product and to the proprietary and restricted rights notices included in the product documentation.

Restricted rights legend

U.S. Government Restricted Rights to Computer Software. UNPUBLISHED—RIGHTS RESERVED UNDER THE COPYRIGHT LAWS OF THE UNITED STATES. Use, duplication, or disclosure of any data and computer software by the U.S. Government is subject to restrictions, as applicable, set forth in FAR Section 52.227-14, DFARS 252.227-7013, DFARS 252.227-7014, DFARS 252.227-7015, and DFARS 252.227-7025, as amended from time to time. Contractor/Manufacturer is BMC SOFTWARE INC, 2101 CITYWEST BLVD, HOUSTON TX 77042-2827, USA. Any contract notices should be sent to this address.
Customer support

Support website
You can obtain technical support from BMC 24 hours a day, 7 days a week at http://www.bmc.com/support. From this website, you can:

■ Read overviews about support services and programs that BMC offers
■ Find the most current information about BMC products
■ Search a database for problems similar to yours and possible solutions
■ Order or download product documentation
■ Download products and maintenance
■ Report a problem or ask a question
■ Subscribe to receive proactive e-mail alerts
■ Find worldwide BMC support center locations and contact information, including e-mail addresses, fax numbers, and telephone numbers

Support by telephone or e-mail
In the United States and Canada, if you need technical support and do not have access to the web, call 1 800 537 1813 or send an e-mail message to customer_support@bmc.com. (In the subject line, enter SupID:yourSupportContractID, such as SupID:12345). Outside the United States and Canada, contact your local support center for assistance.

Before contacting BMC
Have the following information available so that Customer Support can begin working on your issue immediately:

■ Product information
 — Product name
 — Product version (release number)
 — License number and password (trial or permanent)
■ Operating system and environment information
 — Machine type
 — Operating system type, version, and service pack or other maintenance level such as PUT or PTF
 — System hardware configuration
 — Serial numbers
 — Related software (database, application, and communication) including type, version, and service pack or maintenance level
■ Sequence of events leading to the problem
■ Commands and options that you used
■ Messages received (and the time and date that you received them)
 — Product error messages
 — Messages from the operating system
 — Messages from related software
License key and password information

If you have questions about your license key or password, contact Customer Support through one of the following methods:

- Send an e-mail message to customer_support@bmc.com. (In the Subject line, enter SupID:yourSupportContractID, such as SupID:12345.)
- In the United States and Canada, call 1 800 537 1813. Outside the United States and Canada, contact your local support center for assistance.
Contents

About this book ... 15
Related publications .. 15
Conventions .. 16

Chapter 1 Migrating from MainView AutoOPERATOR version 7.3.xx to version 7.4 17
What you need to know .. 17
 Migrating Rules, EXECs, solutions, and parameters to the new release 18
General information about the new release 18
 What has changed about Rules .. 19
 What has changed about EXECs ... 20
 What are the changes made to variables 22
 What DDNAMEs have changed .. 23
 What parameter members have changed 23
 What commands have changed .. 25
 What views or panels have changed .. 26
 What messages have changed .. 26
 Migrating MainView Total Object Manager (MVTOM) 26
 What else has changed ... 27
Other changes .. 28
 Documentation name changes .. 29
 What PTFs should I apply .. 29
 How to secure MainView AutoOPERATOR 30
 How much CPU does this release use .. 30
 Does this version of MainView AutoOPERATOR use common or private
 storage differently ... 30
 Does this version communicate with earlier versions 30
 Does version 7.3.xx communicate with version 7.4 31
What other BMC Software products run with this version of MainView
 AutoOPERATOR .. 31
Which IBM software does this version of MainView AutoOPERATOR
 require .. 31
 What functions will not be supported in future versions 31
 Installation considerations for MainView AutoOPERATOR 7.4 32

Chapter 2 Migrating from MainView AutoOPERATOR version 7.2 to version 7.3 35
What you need to know .. 35
Stopping MainView AutoOPERATOR when ARM is enabled .. 121

Chapter 10 Implementing support for MPF .. 123
Overview .. 123
Implementation considerations .. 124
Setting the MPFFILTR parameter .. 124

Chapter 11 Implementing the REXX/370 Alternate Library 127
Activating the REXX/370 Alternate Library .. 127
SMP/E messages .. 128

Chapter 12 Supporting IMFEXEC CMD TYPE(Z_LINUX) and TYPE(VM) 129
Prerequisites ... 129
Install MainView for Linux — Servers ... 129
Configure BBPARM member BBISSP00 ... 129
Security considerations ... 130
Identifying zLinux systems .. 130

Chapter 13 Implementing support for sysplex variables ... 133
What sysplex variables are ... 133
Enabling support for sysplex variables .. 133
Activating support for sysplex variables ... 134
Specifying the default sysplex variable prefix (optional) .. 134
Specifying the name of the coupling facility ... 135
Additional considerations ... 136
Using the coupling facility ... 136
Coupling facility hardware requirements ... 137
Rebuilding the coupling facility .. 137
Coupling facility structure sizing .. 138
Coupling facility structure definition ... 139
Modifying the coupling facility structure ... 139
Coupling facility structure connections .. 140
Coupling facility structure persistence ... 141

Chapter 14 Defining OSPI virtual terminals .. 143
Overview .. 143
Using the OSPI ACB pool ... 143
Naming conventions ... 144
Defining the ACB pool .. 144
Defining the ACB pool to MainView AutoOPERATOR .. 145
OSPI application definitions ... 145
Chapter 15 Considerations for OMVS and TCP/IP
147

Chapter 16 Implementing BBI-SS PAS to CICS communication
149

Overview ..149
Implementation considerations .. 150
Site-specific security ... 150
 Temporary Storage Table (TST) compatibility .. 150
Specifying resources to CICS .. 151
 Making MainView AutoOPERATOR transactions and programs available to CICS and CTS .. 151
 Modifying the Program List Table (PLT) ... 151
Using auto maintenance .. 153
 TERM requests ... 153
 INIT requests .. 154
 ON requests .. 154
 OFF requests ... 155
 Before you begin: auto maintenance checklist .. 155
 Initiating auto maintenance .. 155
Modifying CICS startup JCL ... 160
Restarting CICS target regions .. 160
MainView AutoOPERATOR for CICS functions (with BBI-SS PAS-to-CICS communication) ... 161
MainView AutoOPERATOR for CICS functions (without BBI-SS PAS-to-CICS communication) ... 162

Chapter 17 MainView AutoOPERATOR for CICS optional tailoring
165

Overview ..165
Customizing terminal types eligible for broadcast messages (CAOTTAB) 165
Limiting CICS transient data queues eligible for Rule processing (CAODTAB) ... 167
Using the CAODTAB macro ...167
 Describing CAODTAB macro parameters ... 168

Chapter 18 Implementing MainView products in IMS
171

Deleting modules from a prior release ...171
Setting up BBPARM data sets .. 172
Customizing BBPARM members for an IMS system .. 174
Activating MainView AutoOPERATOR for IMS .. 175
 Enabling product initialization ... 175
 Enabling product authorization .. 175
<table>
<thead>
<tr>
<th>Chapter 19</th>
<th>Implementing MainView AutoOPERATOR Access NV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>187</td>
</tr>
<tr>
<td>Allocating SYSUDUMP data sets</td>
<td>188</td>
</tr>
<tr>
<td>Modifying NetView JCL</td>
<td>189</td>
</tr>
<tr>
<td>Creating DSIPARM member NAIOPT00</td>
<td>189</td>
</tr>
<tr>
<td>Modifying DSIPARM member DSICMDU</td>
<td>190</td>
</tr>
<tr>
<td>Modifying DSIPARM member DSIDMNU</td>
<td>191</td>
</tr>
<tr>
<td>Modifying DSIPARM member CNMSTYLE</td>
<td>191</td>
</tr>
<tr>
<td>Copying BBSAMP members to the NetView DSICLD data set</td>
<td>192</td>
</tr>
<tr>
<td>Modifying DSIPARM member DSIOPFU</td>
<td>192</td>
</tr>
<tr>
<td>Verifying operator profiles</td>
<td>193</td>
</tr>
<tr>
<td>Reviewing NetView security for Access NV operator IDs</td>
<td>193</td>
</tr>
<tr>
<td>Reviewing the use of NetView exit DSIEX02A</td>
<td>194</td>
</tr>
<tr>
<td>Reviewing the use of NetView exit DSIEX03</td>
<td>195</td>
</tr>
<tr>
<td>Reviewing the use of NetView exit DSIEX14</td>
<td>195</td>
</tr>
<tr>
<td>Reviewing the use of NetView exit DSIEX16</td>
<td>196</td>
</tr>
<tr>
<td>Modifying BBPARM member BBISSP00</td>
<td>197</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 20</th>
<th>Implementing BMC Event Manager to work with BMC products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of bidirectional communications</td>
<td>199</td>
</tr>
<tr>
<td>Establishing a connection to a BMC Event Manager</td>
<td>200</td>
</tr>
<tr>
<td>Example of AAOGMExx settings</td>
<td>205</td>
</tr>
<tr>
<td>Configuring BBPARM member BBISSP00 to allow rules to send events to BMC Event Manager</td>
<td>205</td>
</tr>
<tr>
<td>Establishing a connection to other BMC products</td>
<td>206</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 21</th>
<th>Using the MainView AutoOPERATOR interface to Control-O and CMEM</th>
</tr>
</thead>
</table>

Modifying the IMS control region JCL .. 176
Allocating a BBPARM data set .. 176
Giving IMS access to MainView AutoOPERATOR for IMS 176
Enabling AO exit routines ... 177
 - Flow of control .. 178
 - Enhancement to the IMS DFSAOE00 interface ... 179
 - MainView AutoOPERATOR for IMS considerations 179
 - Debug EXEC IAODEBUG .. 180
Stopping message queuing to the IMS master terminal 180
Dynamic installation and uninstallation ... 181
 - Dynamic install JCL ... 182
 - Dynamic uninstall JCL ... 184

Chapter 19 Implementing MainView AutoOPERATOR Access NV 187

Overview .. 187
Allocating SYSUDUMP data sets ... 188
Modifying NetView JCL .. 189
Creating DSIPARM member NAIOPT00 .. 189
Modifying DSIPARM member DSICMDU ... 190
Modifying DSIPARM member DSIDMNU ... 191
Modifying DSIPARM member CNMSTYLE .. 191
Copying BBSAMP members to the NetView DSICLD data set 192
Modifying DSIPARM member DSIOPFU .. 192
Verifying operator profiles .. 193
Reviewing NetView security for Access NV operator IDs 193
Reviewing the use of NetView exit DSIEX02A .. 194
Reviewing the use of NetView exit DSIEX03 .. 195
Reviewing the use of NetView exit DSIEX14 .. 195
Reviewing the use of NetView exit DSIEX16 .. 196
Modifying BBPARM member BBISSP00 ... 197

Chapter 20 Implementing BMC Event Manager to work with BMC products 199

Overview of bidirectional communications ... 199
Establishing a connection to a BMC Event Manager 200
 - Example of AAOGMExx settings .. 205
Configuring BBPARM member BBISSP00 to allow rules to send events to BMC Event Manager .. 205
Establishing a connection to other BMC products 206

Chapter 21 Using the MainView AutoOPERATOR interface to Control-O and CMEM 209

MainView AutoOPERATOR Customization Guide
Implementing the MainView AutoOPERATOR interface to Control-O and CMEM .. 210

Chapter 22 Implementing advanced JES support .. 213
Specifying JESFLTR parameter values .. 213
 Implementing the JESFLTR parameter ... 214
 Removing the JESFLTR setting .. 214
 Determining the status of the JESFLTR setting ... 215
 Additional implementation considerations ... 215

Chapter 23 Implementing Continuous State Manager .. 217
Performance considerations .. 217
 Initiating CSM .. 217
 Overriding the default group when CSM is initiated ... 217
 End-of-Memory initiated CSM EXEC (CSMEOM) ... 218
 Required security resources ... 219
 Accessing CSM for the first time ... 219
 Migrating from a previous version of MainView AutoOPERATOR .. 221
 Creating a shared repository data set for CSM ... 222
 Migrating a CSM database from a previous release ... 225
 Resolving object-definition conflicts after converting ... 229
Using the AATWAIT program for testing Continuous State Manager or the MainView Total Object Manager .. 231

Chapter 24 Specific MainView AutoOPERATOR parameters and JCL .. 237
Enabling REXX support for EXECs ... 237
Detecting EXEC loops .. 237
Prioritizing and threading of EXECs .. 238
Defining the message counter table ... 239
Displaying MVS JES2 job numbers in address space application ... 240
Starting BBI-SS PAS before JES ... 240
 Restrictions .. 241
IMFJNUM option and seven-digit JES job numbers (z/OS version 1.2 and later) .. 241

Chapter 25 Accessing advanced SYSPROG services ... 245
Executing AEWS in the MainView AutoOPERATOR address space .. 246

Chapter 26 Authorization for special MainView AutoOPERATOR functions 247
Command authorization .. 247
 For all MainView AutoOPERATOR options .. 247
Chapter 27 Implementing MainView AutoOPERATOR for CICS function security 249
CMRSECU TYPE=INITIAL statement (required) 250
CMRSECU TYPE=ENTRY statement by operator ID 255
CMRSECU TYPE=FINAL statement (required) 256
Chapter 28 Authorizing EXECs scheduled by an operator or the Rule Processor 257
Appendix A Issuing commands from terminal sessions 259
Issuing z/OS commands .. 259
 Using consoles to issue z/OS commands 259
Issuing BBI commands ... 260
Issuing IMS commands .. 260
Issuing DBCTL commands .. 261
Appendix B Changing the use of CICS recoverable temporary storage 263
Appendix C CICS transaction and program names 265
Transaction entries for MainView for CICS and MainView AutoOPERATOR for
CICS ... 265
Program entries for MainView for CICS and MainView AutoOPERATOR for
CICS ... 268
 Release-independent programs .. 268
 Release-dependent programs .. 269
Appendix D Manual activation of BBI-SS to CICS communication 271
Manual activation from a CICS terminal 271
Manual activation from a z/OS console that is defined to CICS 272
Appendix E BBPARM data set members for MainView AutoOPERATOR 273
System variables substitution in parameter library members 275
BBPARM member AAOALS00 parameters 277
BBPARM member AAOARP00 parameters 281
BBPARM member AAOEXP00 parameters 283
BBPARM member AAOGME00 parameters 287
BBPARM member AAOMQL00 parameters 292
BBPARM member AAOONCD00 parameters 294
BBPARM member AAOPRM00 parameters 295
BBPARM members AAORUL00 parameters 313
About this book

This book contains detailed product information and is intended for system administrators and database administrators (DBAs).

Like most BMC documentation, this book is available in printed and online formats. To request printed books or to view online books and notices (such as release notes and technical bulletins), see the support website at http://www.bmc.com/support.

Note

Online books are formatted as PDF or HTML files. To view, print, or copy PDF books, use the free Adobe Reader from Adobe Systems. If your product installation does not install the reader, you can obtain the reader at http://www.adobe.com.

The software also offers online Help. To access Help, press **F1** within any product or click the **Help** button in graphical user interfaces (GUIs).

Related publications

From the BMC Support Central website, you can use the following methods to access related publications that support your product or solution:

- Link to the BMC Documentation Center (https://webapps.bmc.com/infocenter/index.jsp) to browse documentation sets.

- View Quick Course videos (short overviews of selected product concepts, tasks, or features), which are available from the following locations:

 — Documentation Center

 — Support Central (at http://www.bmc.com/support/mainframe-demonstrations)

 — BMC Mainframe YouTube channel (https://www.youtube.com/user/BMCSoftwareMainframe)
■ View individual product documents (books and notices) within the “A – Z Supported Product List.”

You can order hardcopy documentation from your BMC sales representative or from the support site. You can also subscribe to proactive alerts to receive e-mail messages when notices are issued.

Tip
You can access the BMC Support Central site at http://www.bmc.com/support.

Conventions

This document uses the following special conventions:

■ All syntax, operating system terms, and literal examples are presented in this typeface.

■ Variable text in path names, system messages, or syntax is displayed in italic text: testsys/instance/fileName

■ Menu sequences use a symbol to convey the sequence. For example, Actions => Create Test instructs you to choose the Create Test command from the Actions menu.
Migrating from MainView AutoOPERATOR version 7.3.xx to version 7.4

You should read this chapter in conjunction with the MainView AutoOPERATOR version 7.4 Release Notes.

Tip

In addition to reviewing the MainView AutoOPERATOR version 7.4 Release Notes, you should also review the following publications:

- the latest MainView AutoOPERATOR BMC Impact Integration for z/OS Release Notes
- the latest MainView SYSPROG Release Notes
 Refer also to Compatibility with MainView SYSPROG Services version 3.8 on page 27 for migration and compatibility information.

For information about migrating MVTOM, see “Migrating MainView AutoOPERATOR and MainView Total Object Manager” on page 44.

What you need to know

The following sections include important discussions such as

- what you must do to migrate from MainView AutoOPERATOR 7.3.xx to MainView AutoOPERATOR 7.4
- what changes have been made to existing parameters, Rules, and EXECs
- what else has changed with the MainView AutoOPERATOR 7.4 release
Migrating Rules, EXECs, solutions, and parameters to the new release

You can run your current Rules, EXECs and solution automation without any manual modifications by copying the existing MainView AutoOPERATOR 7.3.xx Rules, EXECs, and solutions to the new MainView AutoOPERATOR 7.4 PAS. You can also copy your parameter members from the MainView AutoOPERATOR 7.3.xx BBI-SS PAS and use them for the MainView AutoOPERATOR 7.4 PAS.

However, MainView AutoOPERATOR Rules, EXECs, solutions, and BBPARM members might have been updated in the new version of MainView AutoOPERATOR. If you customized the MainView AutoOPERATOR Rules, EXECs, solutions, or BBPARM members in an earlier release, you should be prepared to migrate those changes to the new release.

You can do this process either by recustomizing the Rules, EXECs, solutions, and BBPARM members in the new release, or by reviewing the new members shipped by MainView AutoOPERATOR to see what changes are made in the new release that you can use in your user-modified version.

You can activate any new parameters or parameter values either by editing the BBPARM member, changing the value, and restarting the BBI-SS PAS, or by using the Dynamic Parameter Manager application, which does not require a BBI-SS PAS restart.

See “What parameter members have changed” on page 23 for information about new parameters that were added or changed for this release and see “Continuous operation with the Dynamic Parameter Manager” on page 55 for information about using the Dynamic Parameter Manager application.

Some compatibility limitations exist between MainView AutoOPERATOR 7.4 Rules and Rules from earlier releases. See “What has changed about Rules” on page 19 for information about enhancements that were made to Rules and the compatibility limitations and see “What has changed about EXECs” on page 20 for information about changes that were made to EXECs.

General information about the new release

The following sections contain general information about MainView AutoOPERATOR 7.4.
What has changed about Rules

The following table describes changes made to Rules for this release.

<table>
<thead>
<tr>
<th>Changes made to Rules and the Rule Processor</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Rule Processor supports the following new event types:</td>
<td>the following chapters in the MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules:</td>
</tr>
<tr>
<td>IMP: specifies the IMS type-2 (IMSplex) commands event type</td>
<td>■ Chapter 3, "Describing events"</td>
</tr>
<tr>
<td>The Rule Processor supports the new Selection Criteria fields, Client, Route list, and UserId for the IMP event type.</td>
<td>■ Appendix A, "Field descriptions for the Rule Processor"</td>
</tr>
<tr>
<td>The Rule Processor supports the new Action Specification fields, Audit reject, Reject Command, and Reword CMD for the IMP event type.</td>
<td></td>
</tr>
<tr>
<td>The Select Command Type panel in the Rule Processor is updated in the following ways:</td>
<td></td>
</tr>
<tr>
<td>■ The Cmd (Type BBI) supports specifying a 1 to 8-character target name where the BBI command will execute.</td>
<td></td>
</tr>
<tr>
<td>■ A new command type field, Cmd (Type TOM), where you can specify up to 5 TOM operator commands that the Rule sends to the TOM PAS.</td>
<td></td>
</tr>
</tbody>
</table>

Additional compatibility issues for Rules from earlier releases

If you are using a terminal session (TS) from MainView AutoOPERATOR version 7.4 and you change the target in the TGT field to connect to a MainView AutoOPERATOR version 7.3.xx (or earlier) BBI-SS PAS, you can view and edit the MainView AutoOPERATOR 7.3.xx Rules and Rule Sets.

If you are using a TS from MainView AutoOPERATOR version 7.3.xx (or earlier) and you change the target in the TGT field to connect to a MainView AutoOPERATOR version 7.4 (or later) BBI-SS PAS, on the Automation Control panel you can view and edit the MainView AutoOPERATOR version 7.4 (or later) Rules and Rule Sets but you cannot see or use any of the newly added options.

BMC recommends that you always use the same level of TS to update Rules and Rule Sets. Features added to newer releases are not supported by the earlier releases.
What has changed about EXECs

MainView AutoOPERATOR 7.4 has added or modified the following EXEC commands; for information, see the referenced chapters of the MainView AutoOPERATOR Advanced Automation Guide.

- The IMFEXEC CICS ALTER command includes support for the following new parameters:
 - DOCTEMPLATE: alters the Document Template attributes the EXEC CICS SET DOCTEMPLATE command
 - IPCONN: alters the attributes of a Document Template using the EXEC CICS SET IPCONN command.
 - WEBSERVICE: alters the status of an installed WEBSERVICE
 - LIBRARY: alters the attributes of a library resource
 - TEMPSTORAGE: alters the amount of storage that is available for temporary storage queues
 - MQCONN: alters the attributes of the connection between CICS and MQ
 - AUTOINSTALL: alters AutoInstall values
 - DELETESHIPPED: Alters the values that control the deletion of shipped terminals.
 - DISPATCHER: alters the dispatcher system information
 - ENQMODEL: alters the status of an ENQMODEL definition
 - EVENTPROCESS: alters the status of event processing
 - IRC: alters the status of interrogation communications
 - MONITOR: alters the CICS monitoring options
 - STATISTICS: alters the statistics recording settings of CICS
 - DB2CONN: alters the attributes of the CICS DB2 connection
 - DB2ENTRY: alters the attributes of a specific DB2ENTRY
 - DB2TRAN: alters the attributes of a specific DB2TRAN associated with a DB2ENTRY
 - UOW: commits, backs out, or forces a shunted unit of work
—UOWLINK: deletes the link to a unit of work that was created by a connection that has since been discarded

■ The IMFEXEC CICS PERFORM command includes support for a new parameter, STATISTICS

■ The IMFEXEC VGET and VGETL commands support using wildcard characters with the VAR parameter.

■ This release includes support for a new AOEXEC command, AOEXEC CMD Type(MVS) with response, which enables AOAnywhere EXECs to issue MVS commands without requiring that the EXEC executes in a MainView AutoOPERATOR PAS.

■ The AOEXEC VGET and VGETL commands support using wildcard characters with the VAR parameter.

■ The AOEXEC WTO command supports a new parameter, AREAID.

This parameter does not function when the AOEXEC WTO is started in a version 7.4 MainView AutoOPERATOR PAS that targets an earlier version MainView AutoOPERATOR PAS. In this case, the EXEC writes out the WTO but the earlier version MainView AutoOPERATOR PAS ignores the AREAID parameter.

■ The IDSTAMP parameter of the AOEXEC WTO command is enhanced to return in the resolved SSID (without including wildcard characters).

The AOEXEC WTO IDSTAMP parameter returns different values depending on what value you specify with the IDSTAMP parameter and what version MainView AutoOPERATOR PAS process the EXEC.

If you specify IDSTAMP(YES) with the AOEXEC WTO SS() | SSID() parameter, the ID stamp value in the WTO message is processed the same, regardless of whether the EXEC executes in a version 7.4 MainView AutoOPERATOR PAS or an earlier version. The ID stamp value in the WTO message is the literal value that is specified in the AOEXEC WTO SS() | SSID() parameter.

If you specify IDSTAMP(SS) with AOEXEC WTO SS() | SSID() and the (ssid) keyword contains wildcard characters, a MainView AutoOPERATOR PAS 7.3.xx (and earlier) process the IDSTAMP value differently. The IDSTAMP value from MainView AutoOPERATOR PAS version 7.4 resolves to the SSID of the PAS instead of the literal value that is specified by the SS() keyword.

You should evaluate the EXECs that use the AOEXEC WTO SS() | SSID() parameter and modify the EXECs with the correct IDSTAMP value based on your automation needs.

Examples:

"AOEXEC WTO TEXT('DABERG2 THIS IS A TEST') SS(GB3*) IDSTAMP(YES)"
DABERG2 THIS IS A TEST GB3* <- All releases

"AOEXEC WTO TEXT('DABERG3 THIS IS A TEST') SS(GB3*) IDSTAMP(SS)"
DABERG3 THIS IS A TEST GB3* <-AO V7.3 and earlier
DABERG3 THIS IS A TEST GB3A <- AO V7.4 and later
The IMFEXEC SUBMIT command is no longer documented in the MainView AutoOPERATOR documentation and MainView AutoOPERATOR version 7.4 has dropped support of this command.

You must replace occurrences of SUBMIT with the IMFEXEC JESSUBM command. You should review all data sets members that are allocated to the SYSPROC ddname of the MainView AutoOPERATOR PAS JCL, and locate any EXEC that includes the SUBMIT command. This includes using the IMFEXEC SUBMIT or SUBMIT commands.

You must also rewrite these EXECs to use the IMFEXEC JESSUBM command. For more information about the IMFEXEC JESSUBM command, see the MainView AutoOPERATOR Advanced Automation Guide.

What are the changes made to variables

The following table lists new variables added or updated for this release. These variables are documented in Chapter 4 of the MainView AutoOPERATOR Advanced Automation Guide and also in Chapter 7 of the MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules:

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMFJBCOR</td>
<td>contains the JES Job Correlation value</td>
</tr>
<tr>
<td>IMFMSGID</td>
<td>contains the first word of the message (up to 16 characters) with the leading plus sign (+) stripped if present</td>
</tr>
<tr>
<td>IMFOMCLT</td>
<td>contains the name of the client (IMSplex member) where IMS Type-2 command originated. Valid only for IMP events.</td>
</tr>
<tr>
<td>IMFOMRTE</td>
<td>contains up to 30 characters of the ROUTE list of the IMS Type-2 command. Valid only for IMP events. The ROUTE list is a list of client names separated by commas. The ROUTE list can contain a single asterisk as a client name, which routes to all clients.</td>
</tr>
<tr>
<td>IMFOMUSR</td>
<td>contains user ID of application where the IMS Type-2 command originated. Valid only for IMP events.</td>
</tr>
</tbody>
</table>

The documentation in MainView AutoOPERATOR for WebSphere MQ product is updated with new variables that support IBM WebSphere MQ Version 8.
What DDNAMEs have changed

No changes were made to existing DDNAMEs in this release.

What parameter members have changed

The following table lists the new parameters, (including the default setting, and a brief description) that are included in MainView AutoOPERATOR version 7.4. You can locate the complete definition and additional usage documentation in this manual for each of the parameters in either of the following chapters:

- “Continuous operation with the Dynamic Parameter Manager” on page 55
 You can modify the parameter settings from the Dynamic Parameter Manager application and for most of the parameter changes, you can dynamically implement the changes.

- “BBParm data set members for MainView AutoOPERATOR” on page 273
 You can manually edit the parameter settings in the BBParm member.
Table 2: Added parameters for MainView AutoOPERATOR version 7.4

<table>
<thead>
<tr>
<th>BBPARM member name</th>
<th>Parameter</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAOPRM00</td>
<td>DBCTLORG=[NO</td>
<td>YES]</td>
</tr>
<tr>
<td></td>
<td>IMSAUTH=[NONE</td>
<td>USER]</td>
</tr>
<tr>
<td></td>
<td>IMSPLAUD=[NO</td>
<td>YES]</td>
</tr>
<tr>
<td></td>
<td>IMSOMEX=[NO</td>
<td>YES]</td>
</tr>
<tr>
<td></td>
<td>MVIMSDB=[MSG</td>
<td>CMD]</td>
</tr>
<tr>
<td></td>
<td>OR=[Y</td>
<td>N]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If this parameter is not specified in the BBPARM member AAOPRMxx of the MainView AutoOPERATOR PAS, and you want to use the Operator Requests application, you must edit the member and specify OR=Y. You can also use the Dynamic Parameter Manager application to modify this parameter.</td>
</tr>
<tr>
<td>BBISSP00</td>
<td>IMAGJOB=[jobName]</td>
<td>specifies a job name for the proc named in the IMAGSTC parameter.</td>
</tr>
<tr>
<td></td>
<td>SSID=ssid</td>
<td>If not specified, the job name defaults to the name of the proc.</td>
</tr>
<tr>
<td></td>
<td>APPENDSSID(prfx)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JRNLJOB=[jobName]</td>
<td>specifies a job name for the proc named in the JRNLSCTC parameter.</td>
</tr>
<tr>
<td></td>
<td>SSID=ssid</td>
<td>If no value is specified, the job name defaults to the name of the proc.</td>
</tr>
<tr>
<td></td>
<td>APPENDSSID(prfx)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QSMFIDV=[NO</td>
<td>YES]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If YES is specified, trailing blanks are removed. QSMFID has a variable length between 1 and 4 characters.</td>
</tr>
</tbody>
</table>
What commands have changed

The following sections describes new or changed BBI control commands. See the documentation for BBI control commands in the MainView Customization Reference for more information.

.CANCEL

The BBI control command .CANCEL supports a new parameter, Q, that allows you to cancel queued EXECs. The syntax is as follows:

- .C E eid where eid is the EXEC identifier and cancels either a running or queued EXEC
- .C E ename where ename is the EXEC name and cancels either a running or queued EXEC
- .C E ename Q where ename is the EXEC name and cancels only a queued EXEC
- .C E ename ALL where ename is the EXEC name and cancels all EXECs identified by ename, both running and queued
- .C E ename ALL Q where ename is the EXEC name and cancels only queued EXECs identified by ename
- .C E ALL where ename is the EXEC name and cancels all queued and running EXECs identified by ename
- .C E ALL Q where ename is the EXEC name and cancels only queued EXECs identified by ename

Note

Use caution when specifying the ALL keyword because this command affects all of the EXECs that are running or queued at that point in time and they will all be canceled.

.DISPLAY AR

The BBI control command .DISPLAY supports a new keyword: AR and allows you to display in the BBI-SS Journal all of the Automation Reporter options that are currently active in the BBI-SS PAS.
What views or panels have changed

The following sections describe changes to views or panels made in this version.

- EXEC Manager panel: this view includes a new column **TTLQ**. This column shows the running total number of times the EXEC had to wait to be executed due to a lack of threads.

- AREXECs view: the **Queued Count** and **Max Queued** fields are re-located to the far right of the view. In their place, the view includes a new column, **TTLQ**. This field shows the number of times the during the interval that an EXEC waited on a queue for available execution threads.

Review any automation you might have from an earlier version that uses the IMFEXEC MV or IMFEXEC MVX commands for these views and review reports that might use these fields.

- All of the MainView AutoOPERATOR views that display log messages are updated to hybrid views.

 This change makes it easier for you to search and find log messages.

- New view, ARHEALTH: shows information and metrics using historical data about the PAS.

 This view allows you to track the trends of important PAS metrics, which can help you avoid outages.

These views and panels will be included in a later release of the documentation.

What messages have changed

No messages from were changed in this release.

Migrating MainView Total Object Manager (MVTOM)

Review the section, "Migrating from an earlier version of MainView TOM to version 2.3" in the *MainView Total Object Manager User Guide* for information about migrating a definition base from an earlier version to verison 2.3.

Earlier versions of the TOMEXEC START command started objects without verifying the object's schedules or dependency relationships. In this version, the TOMEXEC START command checks the object's schedule and dependencies when attempting to start the object. The command also does not change an object's control mode (for example, SUSPEND). The TOMEXEC START can affect the objects whose status is UNLOCK, UNBLOCK, or RESET.
To retain the behavior of the TOMEXEC START command from earlier versions of MVTOM, you can specify START_FORCE=YES in BBPARM member MAMINIxx.

Earlier versions of the TOMEXEC STOP command stopped objects in top-to-bottom order (also called dependency order). In this version, the TOMEXEC STOP command stops objects in a bottom-to-top order. The default setting of the STOP_ORDER parameter in BBPARM member MAMINIxx is also changed from TOPTOBOTTOM to BOTTOMTOTOP or DEPENDENCY.

To retain the behavior of the TOMEXEC STOP command from earlier versions of MVTOM, you can specify STOP_ORDER=TOPTOBOTTOM in BBPARM member MAMINIxx.

What else has changed

The following sections describe other changes that are part of the MainView AutoOPERATOR 7.4 release.

Compatibility with MainView SYSPROG Services version 3.8

MainView AutoOPERATOR ships a set of utility EXECs that are tested and certified to work with the new release of MainView SYSPROG Services.

BMC recommends that you review these EXECs and migrate your automation to use these EXECs because they will protect your automation from changes made in the MainView SYSPROG Services component.

For more information about the utility EXECs, see the MainView AutoOPERATOR Advanced Automation Guide.

Run MainView AutoOPERATOR BBI-SS PAS in KEY4

BMC recommends specifying the IBM default ALLOWUSERKEYCSA(NO) in the SYS1.PARMLIB(DIAGxx) member for the LPAR where MainView AutoOPERATOR runs. This setting enables the BBI-SS PAS to use KEY4 as the default TCB key and storage key for increased protection from unauthorized programs.

To start the BBI-SS PAS in KEY4

1. Stop the BBI-SS PAS.

2. Start the BBI-SS PAS using SSLOAD as the EXECuted program with the START=FREE option specified.
The BBI-SS PAS will start, free any used storage, and stop again.

3 Change the BBI-SS PAS start JCL to execute SSLOAD4 (instead of SSLOAD):
 a Locate the EXEC statement in the JCL where PGM=SSLOAD is specified.
 b Modify the PGM name from SSLOAD to SSLOAD4.

4 Re-start the BBI-SS PAS.

Figure 1 on page 28 shows an example of the edited JCL.

Figure 1: Example of BBI-SS PAS start JCL with SSLOAD4

```
//SSJCL  JOB   <==== CHANGE - JOBCARD
//SSJCL  PROC PREFIX='XXXXX',  <==== CHANGE - PREFIX
//     START='WARM',       <==== REVIEW - WARM/COLD START OPTION
//     SS='SSA1',          <==== REVIEW - B&B SUBSYSTEM ID
//     VPOOL='NORESET',    <==== REVIEW - SHARED POOL OPTION
//     CSMALTDB='NO'       <==== REVIEW - CSM ALTERNATE DB
//*
//*----------------------------------------------------------------*
//*          USE OF PARAMETERS IN THIS JCL                            *
//*----------------------------------------------------------------*
//SSJCL  EXEC PGM=SSLOAD4,REGION=512M,DPRTY=(15,0),TIME=1440,
//         PARM='&SS,&START,&VPOOL,&CSMALTDB'
//*
```

This change also can be made at an IPL by changing the program executed in the BBI-SS PAS JCL from SSLOAD to SSLOAD4 before you re-IPL.

Other changes

The following table describes some other changes that are part of MainView AutoOPERATOR version 7.4.

Table 3: Additional changes made in MainView AutoOPERATOR version 7.4

<table>
<thead>
<tr>
<th>Additional changes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBPARM member AAOARP00 includes a new parameter, AROPTS</td>
<td>Allows you to specify one or more Automation Reporter collectors to be activated. For more information about how to use the parameter, refer to the comments in BBPARM member AAOARP00. A future release of the MainView AutoOPERATOR documentation will include information about this parameter.</td>
</tr>
</tbody>
</table>
Additional changes

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BBPARM member AAOTRN00 includes a new parameter, USERID</td>
<td></td>
</tr>
<tr>
<td>Allows you to submit IMS transactions with the SAF user ID associated with</td>
<td></td>
</tr>
<tr>
<td>the MainView AutoOPERATOR PAS. For more information about how to use the</td>
<td></td>
</tr>
<tr>
<td>parameter, refer to the comments in BBPARM member AAOTRN00. A future</td>
<td></td>
</tr>
<tr>
<td>release of the MainView AutoOPERATOR documentation will include information</td>
<td></td>
</tr>
<tr>
<td>about this parameter.</td>
<td></td>
</tr>
<tr>
<td>The EXEC Management panel supports the RESET primary command that builds</td>
<td></td>
</tr>
<tr>
<td>a new list of EXECs.</td>
<td></td>
</tr>
<tr>
<td>For more information about how to use the command, refer to the online</td>
<td></td>
</tr>
<tr>
<td>help for the EXEC Management panel. A future release of the MainView</td>
<td></td>
</tr>
<tr>
<td>AutoOPERATOR documentation will include information about this parameter.</td>
<td></td>
</tr>
<tr>
<td>Security resource names</td>
<td></td>
</tr>
<tr>
<td>The MainView Security Reference Guide contains updates for new security</td>
<td></td>
</tr>
<tr>
<td>resource names for this version.</td>
<td></td>
</tr>
<tr>
<td>Security update for invoking IMS and IMSplex commands</td>
<td></td>
</tr>
<tr>
<td>The MainView Security Reference Guide contains an update for preventing</td>
<td></td>
</tr>
<tr>
<td>IMS generic commands from failing when the default RACF class is defined</td>
<td></td>
</tr>
<tr>
<td>with UACC(NONE).</td>
<td></td>
</tr>
<tr>
<td>Two new enhanced security features:</td>
<td></td>
</tr>
<tr>
<td>FEATURE=CONSCMD and FEATURE=BBIDISP.</td>
<td></td>
</tr>
<tr>
<td>FEATURE=CONSCMD allows you to secure user access to issuing BBI commands at</td>
<td></td>
</tr>
<tr>
<td>the console.</td>
<td></td>
</tr>
<tr>
<td>FEATURE=BBIDISP allows you to secure access to BBI action commands, but</td>
<td></td>
</tr>
<tr>
<td>allow users to issue BBI display commands. See the *MainView Security</td>
<td></td>
</tr>
<tr>
<td>Reference Guide for information about these security features.</td>
<td></td>
</tr>
</tbody>
</table>

Documentation name changes

There are no documentation name changes in this release.

What PTFs should I apply

If you install MainView AutoOPERATOR 7.4 in the same environment where earlier versions of MainView AutoOPERATOR are running, you might need to apply additional PTFs to the earlier MainView AutoOPERATOR BBI-SS PASs.

Refer to the MainView AutoOPERATOR version 7.4 Release Notes for a complete list of any PTFs that you need to apply.
How to secure MainView AutoOPERATOR

Just as with previous versions of MainView AutoOPERATOR, you can implement security for the 7.4 version through an External Security Manager (ESM). While you can continue to use BMC Software proprietary security, you might want to control security of MainView AutoOPERATOR through your ESM.

The MainView Security Guide and the MainView Security Reference manuals contain documentation for new security items and resource names for the enhancements and revisions made in MainView AutoOPERATOR 7.4.

How much CPU does this release use

This release does not use a significantly higher amount of CPU than the previous release.

Does this version of MainView AutoOPERATOR use common or private storage differently

This version of MainView AutoOPERATOR does not use common or private storage differently than earlier versions.

Does this version communicate with earlier versions

Any BBI-SS PAS with an activated MainView AutoOPERATOR 7.3.xx product can schedule an ALERT or EXEC to any MainView AutoOPERATOR 7.4 BBI-SS PAS. In addition, a MainView AutoOPERATOR 7.3.xx terminal session can access MainView AutoOPERATOR 7.4 panels.

However, MainView AutoOPERATOR commands (or Rules) that schedule EXECs or create ALERTs that target a version 7.3.xx BBI-SS PAS from an version 7.4 BBI-SS PAS cannot contain any of the new keywords or features that are introduced in MainView AutoOPERATOR 7.4. MainView AutoOPERATOR rejects those commands before the commands are sent. When this situation occurs, depending on how the command is initiated, MainView AutoOPERATOR might issue a message.

A good approach is to install the new version of MainView AutoOPERATOR onto a test system and use it to review the new features and functions. Then you can
migrate the new version of MainView AutoOPERATOR to your other systems as your time and schedules permit.

Does version 7.3.xx communicate with version 7.4

ALERTs, EXECs, and Rules can be sent from a MainView AutoOPERATOR 7.3.xx BBI-SS PAS to a MainView AutoOPERATOR 7.4 BBI-SS PAS.

What other BMC Software products run with this version of MainView AutoOPERATOR

MainView AutoOPERATOR version 7.4 works with other currently supported versions of MainView products.

Which IBM software does this version of MainView AutoOPERATOR require

This version of MainView AutoOPERATOR works with supported IBM software versions; the minimum levels are

- z/OS version 1.13
- CICS Transaction Server version 3.2
- IMS version 12
- Tivoli NetView for z/OS version 5.3
- WebSphere MQ for z/OS version 7.0.1

What functions will not be supported in future versions

BMC has identified the following MainView AutoOPERATOR solutions from the MainView AutoOPERATOR for WebSphere MQ option as items for which support will be discontinued in a future version:

- The Automation Power Line solution (QMQPOWER)
- The Basic Intercommunication Solution
Installation considerations for MainView AutoOPERATOR 7.4

This section contains technique-specific installation considerations for migrating from previous versions of MainView AutoOPERATOR to MainView AutoOPERATOR version 7.4.

Getting new passwords

MainView AutoOPERATOR version 7.4 uses BMC Software Product Authorization passwords. For a description of the Product Authorization utility and information about obtaining and applying passwords, see the Installation System User Guide.

WARNING

BBKEYS are no longer supported for MainView AutoOPERATOR version 6.4 and later.

If you do not receive a letter that contains the BMC V3 Passwords for MainView AutoOPERATOR 7.4 with your product package, see the Licensing and Passwords information on the BMC Customer Support web site.

After the new passwords are available, refer to the Installation System User Guide for information about how to install and activate the passwords.

Table 4 on page 32 shows how the product component name (AOOPTION) for earlier MainView AutoOPERATOR versions correlates to the new password codes.

<table>
<thead>
<tr>
<th>MainView AutoOPERATOR product component name</th>
<th>MainView AutoOPERATOR AOOPTION</th>
<th>MainView AutoOPERATOR password product code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MainView AutoOPERATOR Access NV</td>
<td>ANV</td>
<td>BKG</td>
</tr>
<tr>
<td>MainView AutoOPERATOR TapeShare</td>
<td>TSH</td>
<td>BCG</td>
</tr>
<tr>
<td>MainView AutoOPERATOR for CICS</td>
<td>CAO</td>
<td>BCC</td>
</tr>
<tr>
<td>MainView AutoOPERATOR for IMS</td>
<td>IAO</td>
<td>BCD</td>
</tr>
<tr>
<td>MainView AutoOPERATOR for WebSphere MQ</td>
<td>QAO</td>
<td>BCI</td>
</tr>
<tr>
<td>MainView AutoOPERATOR for z/OS</td>
<td>MAO</td>
<td>BCE</td>
</tr>
</tbody>
</table>
Even if you are migrating from an earlier version of MainView AutoOPERATOR or changing from one CPU to another CPU, you must acquire new BMC Software Product Authorization passwords to use any version MainView AutoOPERATOR version 6.4 or later.

If you want to use these passwords in multiple PASs, but you want only certain product options to be active within a specific PAS, you can install the individual MainView AutoOPERATOR component passwords into separate password library data sets or use the AOOPTION parameter in BBPARM member AAOPRMxx to limit the components that are activated in the PAS.

After this process is complete, concatenate together the password library data sets for the specific product options that you want active for the PAS. For example, your concatenation might look like the following example where the two product components that are activated for this PAS are:

- MainView AutoOPERATOR for CICS (CAO)
- MainView AutoOPERATOR for z/OS (MAO)

```sql
//BMCPSWD  DD DISP=SHR,DSN=AAO.BMCPSWD.CAO   (CAO ONLY)
//         DD DISP=SHR,DSN=AAO.BMCPSWD.MAO   (MAO ONLY)
```

In the following example, the first line of the concatenation shows that all of the MainView AutoOPERATOR product components, with the exception of TapeSHARE, are included. This exception is because you can run TapeSHARE in only one PAS per LPAR (the first one that is started with that password). Therefore, you should include the TapeSHARE password in the JCL of only one BBI-SS PAS.

Figure 2: Example of specifying passwords for all MainView AutoOPERATOR product components

```sql
//BMCPSWD  DD DISP=SHR,DSN=AAO.BMCPSWD       (ALL AAO No/TapeSHARE)
//         DD DISP=SHR,DSN=AAO.BMCPSWD.ALL   (ALL AAO)
//         DD DISP=SHR,DSN=AAO.BMCPSWD.ANV   (ANV ONLY)
//         DD DISP=SHR,DSN=AAO.BMCPSWD.CAO   (CAO ONLY)
//         DD DISP=SHR,DSN=AAO.BMCPSWD.IAO   (IAO ONLY)
//         DD DISP=SHR,DSN=AAO.BMCPSWD.MAO   (MAO ONLY)
//         DD DISP=SHR,DSN=AAO.BMCPSWD.MQS   (MQS ONLY)
//         DD DISP=SHR,DSN=AAO.BMCPSWD.SHA   (SHA ONLY)
//         DD DISP=SHR,DSN=AAO.BMCPSWD.TSH   (TSH ONLY)
```

To create a universal JCL, you can use symbolics with the &SSID within the data set name. Parameters that are passed to the PROC statement allow you to select one set of passwords to use; see Figure 3 on page 33:

Figure 3: Example of using symbolics for passwords for MainView AutoOPERATOR product components

```sql
//BMCPSWD  DD DISP=SHR,DSN=AAO.&SS..BMCPSWD (Set for this PAS)
```
When the SS PAS JCL passes the parameter SS=SYSA to the PROC, Figure 3 on page 33 shows that AA0.&SS..BMCPSWD resolves to AAO.SYSA.BMCPSWD, which is the data set that contains the passwords to use for PAS.

Re-implement JES2MAO exit

If you are migrating by a using Standard installation with the BMC Installation System and you are replacing any MainView AutoOPERATOR version, and all of the following statements are true, you must implement the JES2MAO exit again:

- Your site is licensed for the MainView AutoOPERATOR for z/OS option.
- You elected to implement the JES2MAO exit.
- The JES2MAO exit is linked to the existing system’s BBLINK library.

Refer to “Displaying MVS JES2 job numbers in address space application” on page 240, for additional information about the JES2MAO exit.

Installing MainView AutoOPERATOR into an existing zone that includes other BMC products

Ensure all of the other BMC products in the target zone are currently supported versions before installing MainView AutoOPERATOR into the same zone. MainView AutoOPERATOR does not support coexistence with earlier, unsupported versions of BMC products.

MainView AutoOPERATOR also requires that all products running within the same BBI-SS PAS are installed into the same zone and executed out of the same libraries. MainView AutoOPERATOR does not support concatenation of product libraries in BBLOAD or STEPLIB.

When MainView AutoOPERATOR is installed into a zone with other products, it is important to note that MainView AutoOPERATOR shares the use of some FMIDs with other products. Therefore, installing a new version of one product can impact other products. For example, when installing a new version of MainView AutoOPERATOR into a zone where both MainView AutoOPERATOR for CICS and MainView for CICS are running, the new version MainView AutoOPERATOR version might impact MainView for CICS.
Migrating from MainView AutoOPERATOR version 7.2 to version 7.3

You should read this chapter in conjunction with the MainView AutoOPERATOR version 7.3 Release Notes.

Tip
In addition to reviewing the MainView AutoOPERATOR version 7.3 Release Notes, you should also review the following publications:

- the latest MainView Total Object Manager Release Notes

Refer also to “Migrating MainView AutoOPERATOR and MainView Total Object Manager” on page 44 for information about migrating MVTOM.

- the latest MainView AutoOPERATOR BMC Impact Integration for z/OS Release Notes

- that latest MainView SYSPROG Release Notes
 Refer also to “Compatibility with MainView SYSPROG Services version 3.7” on page 43 for migration and compatibility information.

What you need to know

The following sections include important discussions such as

- what you must do to migrate from MainView AutoOPERATOR 7.2.xx to MainView AutoOPERATOR 7.3

- what changes have been made to existing parameters, Rules, and EXECs

- what else has changed with the MainView AutoOPERATOR 7.3 release
Migrating existing Rules, EXECs, solutions, and parameters to the new release

You can run your current Rules, EXECs and solution automation without any manual modifications by copying the existing MainView AutoOPERATOR 7.2 Rules, EXECs, and solutions to the new MainView AutoOPERATOR 7.3 PAS. You can also copy your parameter members from the MainView AutoOPERATOR 7.2 BBI-SS PAS and use them for the MainView AutoOPERATOR 7.3 PAS.

However, MainView AutoOPERATOR Rules, EXECs, solutions, and BBPARM members might have been updated in the new version of MainView AutoOPERATOR. If you customized the MainView AutoOPERATOR Rules, EXECs, solutions, or BBPARM members in an earlier release, you should be prepared to migrate those changes to the new release.

You can do this process either by recustomizing the Rules, EXECs, solutions, and BBPARM members in the new release, or by reviewing the new members shipped by MainView AutoOPERATOR to see what changes are made in the new release that you can use in your user-modified version.

You can activate any new parameters or parameter values either by editing the BBPARM member, changing the value, and restarting the BBI-SS PAS, or by using the Dynamic Parameter Manager application, which does not require a BBI-SS PAS restart.

See “What parameter members have changed” on page 40 for information about new parameters that were added or changed for this release and see “Continuous operation with the Dynamic Parameter Manager” on page 55 for information about using the Dynamic Parameter Manager application.

Some compatibility limitations exist between MainView AutoOPERATOR 7.3 Rules and Rules from earlier releases. See “What has changed about Rules” on page 37 for information about enhancements that were made to Rules and the compatibility limitations and see “What has changed about EXECs” on page 38 for information about changes that were made to EXECs.

General information about the new release

The following sections contain general information about MainView AutoOPERATOR 7.3.
What has changed about Rules

The following table describes changes made to Rules for this release.

<table>
<thead>
<tr>
<th>Changes made to Rules and the Rule Processor</th>
<th>See</th>
</tr>
</thead>
</table>
| The Rule Processor supports the following new event types: **CICa**: subset event type of the CICS event type | the following chapters in the *MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules*:
| |
| ■ Chapter 3, "Describing events" |
| ■ Chapter 7, "Creating More Powerful Rules" for examples of creating Rules for the CICa event type |
| ■ Appendix A, "Field descriptions for the Rule Processor" |
| The Rule Processor supports a new Action Specification value: **Aux Log**, which specifies that the event message is captured and displayed in the AuxLog logspace in the MainView Logger. | updates made throughout the *MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules* |
| New built-in function: **INRGRPL**: allows you to test whether the user ID, associated with the issuer of the Rule event, belongs to an IBM RACF group that is referenced by the ACEEFCGP table | the following chapters in the *MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules*:
| |
| ■ Chapter 7, "Creating more powerful Rules" |
| The Automation Control panel supports a new primary command: **Expand**. The **Expand** command allows you to toggle between different areas of the panel, allowing you to see more information about Rule Set descriptions. | the following chapters in the *MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules*:
| |
| ■ Chapter 8, "Managing Rules and automation using the Automation Control panel" |
| The Rule Set Overview panel supports a new line command, **GO**, that allows you to restart an ATSTART Rule that has been suspended | the following chapter in the *MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules*:
| |
| ■ Chapter 9, "Using the Rule Set Overview panel to manage Rules in Rule Sets" |
Changes made to Rules and the Rule Processor

The panels Action: Set Variables -- event and Action: Advanced Set Variables -- event have a new field named Target. The Target field allows you to specify the name of a PAS where the variable should be set.

See

this feature will be documented in a future version of the MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules in the following chapters:

- Chapter 5, "Creating Rules"
- Appendix A, "Field descriptions for the Rule Processor"

Additional compatibility issues for Rules from earlier releases

If you are using a terminal session (TS) from MainView AutoOPERATOR version 7.3 and you change the target in the TGT field to connect to a MainView AutoOPERATOR version 7.2.xx (or earlier) BBI-SS PAS, you can view and edit the MainView AutoOPERATOR 7.2.xx Rules and Rule Sets but you cannot see or edit any of the new fields that were added to the panels in MainView AutoOPERATOR version 7.3.

If you are using a TS from MainView AutoOPERATOR version 7.2.xx (or earlier) and you change the target in the TGT field to connect to a MainView AutoOPERATOR version 7.3 (or later) BBI-SS PAS, on the Automation Control panel you can see the Rules of a selected Rule Set but if you attempt to select a Rule to view or modify, you will receive the short error message:

INCOMPAT VERSN/RLSE

BMC recommends that you use only MainView AutoOPERATOR 7.3 terminal sessions with other MainView AutoOPERATOR 7.3 targets.

What has changed about EXECs

MainView AutoOPERATOR 7.3 has added or modified the following EXEC commands; for information, see the referenced chapters of the MainView AutoOPERATOR Advanced Automation Guide.

- This release includes support for a new set of IMFEXEC API commands, IMFEXEC MVX, that enable the MainView AutoOPERATOR EXECs to access data from any MainView product view from any accessible MainView product PAS.
The IMFEXEC EXIT command supports a new keyword, MSG, that causes AOSUBX to write a multi-line WTO in the joblog of the AOSUBX job.

Two new EXEC scheduling priorities, SINGLE and XSINGLE, allow for better management of concurrent executions of a single EXEC.

The IMFEXEC JESALLOC command supports a new keyword, DEST. The DEST keyword supports the same values that are supported and documented for DEST in the IBM publication MVS JCL.

AOAnywhere XCF communications is improved to return a larger quantity of results from remote target PASes. In addition:

— the AOEXEC ALERT FUNC(ListQ) command is enhanced to return up to 3000 queue names (previously 500).

— the AOEXEC VLST and VLSTL commands are enhanced to return a larger number of names than earlier releases, although as previously, the actual number depends on the total length of all the names.

The improvement occurs only when both the local and target PASes are running MainView AutoOPERATOR version 7.3 or later.

What are the changes made to variables

The following table lists new variables added or updated for this release. These variables are documented in Chapter 4 of the MainView AutoOPERATOR Advanced Automation Guide and also in Chapter 7 of the MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules:

Table 5: Variables added or updated for the MainView AutoOPERATOR 7.3 release

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMFCURIN</td>
<td>new variable that contains current interval number when the AMEVENT variable value is ESC or FINAL</td>
</tr>
<tr>
<td>AMFEVENT</td>
<td>updated variable contains the type of ALERT event; for example: DELETEQ</td>
</tr>
<tr>
<td>New SHARED variables for the MainView AutoOPERATOR for WebSphere MQ product</td>
<td></td>
</tr>
<tr>
<td>QLVL.xxxx</td>
<td>contains the version number of the queue manager</td>
</tr>
</tbody>
</table>
What DDNAMEs have changed

No changes were made to existing DDNAMEs in this release.

What parameter members have changed

The following table lists the new parameters, (including the default setting, and a brief description) that are included in MainView AutoOPERATOR version 7.3. You can locate the complete definition and additional usage documentation in this manual for each of the parameters in either of the following chapters:

- “Continuous operation with the Dynamic Parameter Manager” on page 55
 You can modify the parameter settings from the Dynamic Parameter Manager application and for most of the parameter changes, you can dynamically implement the changes.

- “BBPARM data set members for MainView AutoOPERATOR” on page 273
 You can manually edit the parameter settings in the BBPARM member.

Table 6: Added parameters for MainView AutoOPERATOR version 7.3

<table>
<thead>
<tr>
<th>BBPARM member name</th>
<th>Parameter</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAOEXP00</td>
<td>AUDITRES</td>
<td>specifies whether BBI Journal message EM0715I is written to the log when an EXEC issues IMFEXEC RES commands. This option makes it easier for customers with MainView AutoOPERATOR for z/OS to audit which EXECs use MainView SYSPROG Services. This is important when determining which EXECs might be impacted by changes or security settings for MainView SYSPROG Services. Refer also to “Compatibility with MainView SYSPROG Services version 3.7” on page 43 for migration and compatibility information.</td>
</tr>
<tr>
<td>BBPARM member name</td>
<td>Parameter</td>
<td>Brief description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>AAOPRM00</td>
<td>DBCTLCMD</td>
<td>specifies that DBCTL commands (issued from the Command line or from EXECs or Rules) are processed as IMS commands and you do not need to specify a target.</td>
</tr>
<tr>
<td></td>
<td>IMSAUTH</td>
<td>specifies whether the user ID should be passed to IMS along with all IMS commands issued from MainView AutoOPERATOR.</td>
</tr>
<tr>
<td></td>
<td>IMSCMDCN</td>
<td>specifies whether a confirmation panel is displayed when an IMS action command is manually entered from MainView AutoOPERATOR views or from the Journal.</td>
</tr>
<tr>
<td></td>
<td>RULEPROT</td>
<td>protects a Rule from being updated at the same time by multiple users in the same PAS.</td>
</tr>
<tr>
<td></td>
<td>RULESAVE</td>
<td>specifies what happens when a Rule Set is saved.</td>
</tr>
</tbody>
</table>

What commands have changed

The following sections describes new or changed BBI control commands. See the documentation for BBI control commands in the *MainView Customization Reference* for more information.

.DISPLAY TIMER

The BBI control command .DISPLAY supports a new keyword: TIMER and allows you to display the status of one or more time-initiated EXECs or TIME Rules that are current running. The syntax of the command is:

```
.DISP[lay]|D TIMER [ALL, anyname] [EXEC, execName] [RULE, ruleName] [MON, monitorName]
```

.DISPLAY EXEC

The BBI control command .DISPLAY supports a new keyword: CMD and allows you to display the currently active or most recently used IMFEXEC or TSO command. The syntax of the command is:

```
.DISP[lay]|D EXEC CMD
```
.RESET

The BBI control command .RESET supports a new parameter: BBINOD00 and allows you to refresh the VTAM nodes specified in BBPARM member BBINOD00. The syntax of the command is:

```
.RESET|E parameter BBINOD00
```

.DELETE

The new BBI control command .DELETE V allows you to delete a SHARED variable with a BBI command. For example, a Rule can issue this command to delete a SHARED variable instead of using an EXEC. The syntax of the command is:

```
.DELETE|DEL [V, sharedVariableName]
```

.SET

The BBI control command .SET supports a new parameter: RFSH and allows you to refresh Rules without causing interruption to automation by TIME-initiated Rules.

The .SET command has no effect on TIME-initiated Rules in the Rule Set whose specifications are have not changed. The Rules continue to fire and ATSTART Rules are not disabled.

The syntax of the command is:

```
.SET RULESET,RFSH,rulSetName
```

What views have changed

The following sections describe changes to views made in this release.

The EZAO menu is updated to support new hyperlinks to the AUTOEVNT view and the AUXLOG view.

See the *MainView AutoOPERATOR Basic Automation Guide, Volume 2* for more information about the new windows-mode performance applications.

What messages have changed

No messages from were changed in this release.
What else has changed

The following sections describe other changes that are part of the MainView AutoOPERATOR 7.3 release.

Compatibility with MainView SYSPROG Services version 3.7

If you are migrating from a release earlier than MainView AutoOPERATOR version 7.2.02, you should review the Release Notes for MainView AutoOPERATOR version 7.2.02.

MainView AutoOPERATOR ships a set of utility EXECs that are tested and certified to work with the new release of MainView SYSPROG Services. BMC recommends that you review these EXECs and migrate your automation to use these EXECs because they will protect your automation from changes made in the MainView SYSPROG Services component.

For more information about the utility EXECs, see the MainView AutoOPERATOR Advanced Automation Guide.

Run MainView AutoOPERATOR BBI-SS PAS in KEY4

BMC recommends specifying the IBM default ALLOWUSERKEYCSA(NO) in the SYS1.PARMLIB(DIAGxx) member for the LPAR where MainView AutoOPERATOR runs. This setting enables the BBI-SS PAS to use KEY4 as the default TCB key and storage key for increased protection from unauthorized programs.

To start the BBI-SS PAS in KEY4

1. Stop the BBI-SS PAS.
2. Start the BBI-SS PAS using SSLOAD as the EXECuted program with the START=FREE option specified.

 The BBI-SS PAS will start, free any used storage, and stop again.
3. Change the BBI-SS PAS start JCL to execute SSLOAD4 (instead of SSLOAD):
 a. Locate the EXEC statement in the JCL where PGM=SSLOAD is specified.
 b. Modify the PGM name from SSLOAD to SSLOAD4.
4. Re-start the BBI-SS PAS.
Figure 1 on page 28 shows an example of the edited JCL.

Figure 4: Example of BBI-SS PAS start JCL with SSLOAD4

```
//SSJCL    JOB                     <=== CHANGE - JOB CARD
//SSJCL    PROC PREFIX='XXXXX',    <=== CHANGE - PREFIX
  //                      START='WARM',       <=== REVIEW - WARM/COLD START OPTION
  //                      SS='SSA1',          <=== REVIEW - B&B SUBSYSTEM ID
  //                      VPOOL='NORESET',    <=== REVIEW - SHARED POOL OPTION
  //                      CSMALTDB='NO'       <=== REVIEW - CSM ALTERNATE DB
  */
  */----------------------------------------------------------------*
  */          USE OF PARAMETERS IN THIS JCL                            *
  */SSJCL    EXEC PGM=SSLOAD4,REGION=512M,DPRTY=(15,0),TIME=1440,
  //                      PARM='&SS,&START,&VPOOL,&CSMALTDB'
  /*
```

This change also can be made at an IPL by changing the program executed in the BBI-SS PAS JCL from SSLOAD to SSLOAD4 before you re-IPL.

Migrating MainView AutoOPERATOR and MainView Total Object Manager

Note

If you have already applied PTF BQO0891 and followed instructions in Technical Bulletin (dated September 27, 2012) to migrate to NFM mode, you can skip these migration steps.

Complete the steps in this section for each TOM PAS if you are migrating from one of the following configurations:

- **MainView Total Object Manager version 1.3.xx or 2.1.xx**
 Review the migration considerations information in the *MainView Total Object Manager User Guide*, and complete the steps in this section.

- **MainView AutoOPERATOR version 7.2.xx and MainView Total Object Manger version 2.2.xx**
 If you have only a single TOM in a TOMPLEX and the following configuration, complete the steps in the section “Applying the resolution PTFs to a single TOM PAS” on page 45:

 - **MainView AutoOPERATOR version 7.2.xx**
 - **MainView Total Object Manger version 2.2.xx**

To migrate MainView AutoOPERATOR and MainView Total Object Manager

1. Use the MAMEXPRT EXEC to export all of your Registry Definition Bases.

2. Use the **REGISTRY DUMP** console command to back up your Registry data.
Backing up the registry is a required step to ensure that TOM data is preserved in the event that you need to roll-back to the earlier version of the data. For information about how to use these utilities, refer to the *MainView Total Object Manager User Guide*.

3. Edit the parameter value STATUSVERSION=COMPAT in BBPARM member MAMTOM.xx.

Table 7 on page 45 lists valid values for this parameter.

Table 7: BBPARM member MAMTOM.xx parameter STATUSVERSION

<table>
<thead>
<tr>
<th>Parameter setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUSVERSION=COMPAT</td>
<td>specifies that the TOM PAS, when migrated to MainView AutoOPERATOR version 7.3, runs in Compatibility Mode and allows this TOM PAS to be compatible with TOM PASs that have not yet been migrated. COMPAT is the default value.</td>
</tr>
<tr>
<td>STATUSVERSION=NFM</td>
<td>specifies that the TOM PAS, after migrated to MainView AutoOPERATOR version 7.3, runs in New Function Mode (NFM). A TOM PAS does not actually run in NFM mode until the first TOM PAS in the TOMPLEX with NFM specified is restarted.</td>
</tr>
</tbody>
</table>

Tip

BMC recommends that you specify STATUSVERSION=COMPAT (which is the default if the parameter is not specified) until you can migrate all the TOM PASs within the TOMPLEX.

This setting allows TOM PASs that are not yet migrated to MainView AutoOPERATOR version 7.3 to continue to work with TOM PASs that are not yet migrated.

It also prevents a situation where a TOM PAS with STATUSVERSION=NFM specified is accidentally restarted before you have saved the registry for all the TOM PASs in the TOMPLEX.

4. After all of the TOM PASs within the TOMPLEX are migrated, modify the STATUSVERSION parameter in each PAS to STATUSVERSION=NFM.

5. Stop all the TOM PASs in the TOMPLEX, and after they have stopped, restart the TOM PASs.

Applying the resolution PTFs to a single TOM PAS

If you are performing a new installation of TOM, skip to Step 3 in this section.

1. Use the MAMEXPRT EXEC to export all of your Registry Definition Bases.
2. Use the REGISTRY DUMP console command to back up your Registry data.

Backing up the registry is a required step to ensure that TOM data is preserved in the event that you need to roll-back to the earlier version of the data. For information about how to use these utilities, refer to the MainView Total Object Manager User Guide.

3. Edit the parameter value STATUSVERSION=NFM in BBPARM member MAMTOMxx.

Table 7 on page 45 lists valid values for this parameter.

4. Stop and restart the TOM PAS.

Other changes

The following table describes some other changes that are part of MainView AutoOPERATOR version 7.3.

Table 8: Additional changes made in MainView AutoOPERATOR version 7.3

<table>
<thead>
<tr>
<th>Additional changes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ability to export the contents of Rules and Rule Sets</td>
<td>The MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules includes information about how to export the contents of Rules and Rule Sets from a BBPARM member to a flat file.</td>
</tr>
<tr>
<td>support added for issuing multiple IMS commands with generic resource names</td>
<td>This is supported for IMS commands issued from the MainView AutoOPERATOR Journal, Rules, and EXECs.</td>
</tr>
<tr>
<td>the IMS Operator Workstation contains a new option to transfer to the MainView for IMS product</td>
<td>The IMS Operator Workstation panel in the MainView AutoOPERATOR Options User Guide is updated to show this option.</td>
</tr>
<tr>
<td>BBPARM member BBIVARxx supports using the comma for multiple lines</td>
<td>In earlier releases, the comma in BBPARM member BBIVARxx would create syntax errors and in this release, this is corrected and the comma is recognized as a continuation character.</td>
</tr>
<tr>
<td>Updated and corrected condition codes for IMFEXEF CMD TYP(IMP)</td>
<td>The MainView AutoOPERATOR Advanced Automation Guide is updated with the correct condition codes.</td>
</tr>
</tbody>
</table>
Documentation name changes

There are no documentation name changes in this release.

What PTFs should I apply

If you install MainView AutoOPERATOR 7.3 in the same environment where earlier versions of MainView AutoOPERATOR are running, you might need to apply additional PTFs to your MainView AutoOPERATOR 7.1.xx or MainView AutoOPERATOR 7.2.xx BBI-SS PAS.

Refer to the MainView AutoOPERATOR version 7.3 Release Notes for a complete list of any PTFs that you need to apply.

How to secure MainView AutoOPERATOR

Just as with previous versions of MainView AutoOPERATOR, you can implement security for the 7.3 version through an External Security Manager (ESM). While you can continue to use BMC Software proprietary security, you might want to control security of MainView AutoOPERATOR through your ESM.

The MainView Security Guide and the MainView Security Reference manuals contain documentation for new security items and resource names for the enhancements and revision made in MainView AutoOPERATOR 7.3.

How much CPU does this release use

This release does not use a significantly higher amount of CPU than the previous release.

Does this version of MainView AutoOPERATOR use common or private storage differently

This release of MainView AutoOPERATOR does not use common or private storage differently than earlier versions.
Does this version communicate with earlier versions

Any BBI-SS PAS with an activated MainView AutoOPERATOR 7.3 product can schedule an ALERT or EXEC to any MainView AutoOPERATOR 7.2.xx BBI-SS PAS. In addition, a MainView AutoOPERATOR 7.2 terminal session can access MainView AutoOPERATOR 7.2.xx panels.

However, MainView AutoOPERATOR 7.3 commands (or Rules) that schedule EXECs or create ALERTs that are targeted to a version 7.2.xx BBI-SS PAS from an version 7.3 BBI-SS PAS cannot contain any of the new keywords or features that are introduced in MainView AutoOPERATOR 7.3. MainView AutoOPERATOR will reject those commands before the commands are sent. When this situation occurs, depending on how the command is initiated, MainView AutoOPERATOR might issue a message.

A good approach is to install MainView AutoOPERATOR 7.3 onto a test system and use it to review the new features and functions. Then you can migrate MainView AutoOPERATOR 7.3 to your other systems as your time and schedules permit.

Note

Be sure to review compatibility restrictions in “What has changed about Rules” on page 37.

Does version 7.2.xx communicate with version 7.3

ALERTs, EXECs, and Rules can be sent from a MainView AutoOPERATOR 7.2.xx BBI-SS PAS to a MainView AutoOPERATOR 7.3 BBI-SS PAS.

What other BMC Software products run with this version of MainView AutoOPERATOR

MainView AutoOPERATOR version 7.3 works with other currently supported versions of MainView products.

Which IBM software does this version of MainView AutoOPERATOR require

This release of MainView AutoOPERATOR works with supported IBM software versions; the minimum levels are
What functions will not be supported in future releases

At this time, BMC Software has not identified any functions that will not be supported in future releases of MainView AutoOPERATOR.

Installation considerations for MainView AutoOPERATOR 7.3

This section contains technique-specific installation considerations for migrating from previous releases of MainView AutoOPERATOR to MainView AutoOPERATOR version 7.3.

Getting new passwords

MainView AutoOPERATOR version 7.3 uses BMC Software Product Authorization passwords.

For a description of the Product Authorization utility and information about obtaining and applying passwords, see the Installation System User Guide.

WARNING

BBKEYS are no longer supported for MainView AutoOPERATOR release 6.4 and later.

If you do not receive a letter that contains the BMC V3 Passwords for MainView AutoOPERATOR 7.3 with your product package, see the Licensing and Passwords information on the BMC Customer Support web site.

After the new passwords are available, refer to the Installation System User Guide for information about how to install and activate the passwords.
Table 4 on page 32 shows how the product component name (AOOPTION) for earlier MainView AutoOPERATOR releases correlates to the new password codes.

Table 9: List of MainView AutoOPERATOR password product codes

<table>
<thead>
<tr>
<th>MainView AutoOPERATOR product component name</th>
<th>MainView AutoOPERATOR AOOPTION</th>
<th>MainView AutoOPERATOR password product code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MainView AutoOPERATOR Access NV</td>
<td>ANV</td>
<td>BKG</td>
</tr>
<tr>
<td>MainView AutoOPERATOR TapeShare</td>
<td>TSH</td>
<td>BCG</td>
</tr>
<tr>
<td>MainView AutoOPERATOR for CICS</td>
<td>CAO</td>
<td>BCC</td>
</tr>
<tr>
<td>MainView AutoOPERATOR for IMS</td>
<td>IAO</td>
<td>BCD</td>
</tr>
<tr>
<td>MainView AutoOPERATOR for WebSphere MQ</td>
<td>QAO</td>
<td>BCI</td>
</tr>
<tr>
<td>MainView AutoOPERATOR for z/OS</td>
<td>MAO</td>
<td>BCE</td>
</tr>
</tbody>
</table>

Even if you are migrating from an earlier version of MainView AutoOPERATOR or changing from one CPU to another CPU, you must acquire new BMC Software Product Authorization passwords to use any version MainView AutoOPERATOR version 6.4 or later.

If you want to use these passwords in multiple PASs, but you want only certain product options to be active within a specific PAS, you can install the individual MainView AutoOPERATOR component passwords into separate password library data sets or use the new AOOPTION parameter in BBPARM member AAOPRMxx to limit the components that are activated in the PAS.

After this process is complete, concatenate together the password library data sets for the specific product options that you want active for the PAS. For example, your concatenation might look like Figure 5 on page 50.

Figure 5: Example of combining passwords for two product MainView AutoOPERATOR components

```bash
//BMCPWD DD DISP=SHR,DSN=AAO.BMCPWD.CAO (CAO ONLY)
// BMCPWD DD DISP=SHR,DSN=AAO.BMCPWD.MAO (MAO ONLY)
```

In Figure 5 on page 50, the two product components that are activated for this PAS are:

- MainView AutoOPERATOR for CICS (CAO)
- MainView AutoOPERATOR for z/OS (MAO)

In Figure 2 on page 33, the first line of the concatenation shows that all of the MainView AutoOPERATOR product components, with the exception of TapeSHARE, are included. This exception is because you can run TapeSHARE in
only one PAS per LPAR (the first one that is started with that password). Therefore, you should include the TapeSHARE password in the JCL of only one BBI-SS PAS.

Figure 6: Example of specifying passwords for all MainView AutoOPERATOR product components

```plaintext
//BMCPSWD DD DISP=SHR,DSN=AAO.BMCPSWD       (ALL AAO No/TapeSHARE)
//*     DD DISP=SHR,DSN=AAO.BMCPSWD.ALL   (ALL AAO)
//*     DD DISP=SHR,DSN=AAO.BMCPSWD.ANV   (ANV ONLY)
//*     DD DISP=SHR,DSN=AAO.BMCPSWD.CAO   (CAO ONLY)
//*     DD DISP=SHR,DSN=AAO.BMCPSWD.IAO   (IAO ONLY)
//*     DD DISP=SHR,DSN=AAO.BMCPSWD.MAO   (MAO ONLY)
//*     DD DISP=SHR,DSN=AAO.BMCPSWD.MQS   (MQS ONLY)
//*     DD DISP=SHR,DSN=AAO.BMCPSWD.SHA   (SHA ONLY)
//*     DD DISP=SHR,DSN=AAO.BMCPSWD.TSH   (TSH ONLY)
```

To create a universal JCL, you can use symbolics with the &SSID within the data set name. Parameters that are passed to the PROC statement allow you to select one set of passwords to use; see Figure 3 on page 33:

Figure 7: Example of using symbolics for passwords for MainView AutoOPERATOR product components

```plaintext
//BMCPSWD DD DISP=SHR,DSN=AAO.&SS..BMCPSWD (Set for this PAS)
```

When the SS PAS JCL passes the parameter SS=SYSA to the PROC, Figure 3 on page 33 shows that AA0.&SS..BMCPSWD resolves to AAO.SYSA.BMCPSWD, which is the data set that contains the passwords to use for PAS.

Re-implement JES2MAO exit

If you are migrating by a using Standard installation with the BMC Installation System and you are replacing any MainView AutoOPERATOR release, and all of the following statements are true, you must implement the JES2MAO exit again:

- Your site is licensed for the MainView AutoOPERATOR for z/OS option.
- You elected to implement the JES2MAO exit.
- The JES2MAO exit is linked to the existing system’s BBLINK library.

Refer to “Displaying MVS JES2 job numbers in address space application” on page 240, for additional information about the JES2MAO exit.
Installing MainView AutoOPERATOR into an existing zone that includes other BMC products

Ensure all of the other BMC products in the target zone are currently supported releases before installing MainView AutoOPERATOR into the same zone. MainView AutoOPERATOR does not support coexistence with earlier, unsupported releases of BMC products.

MainView AutoOPERATOR also requires that all products running within the same BBI-SS PAS are installed into the same zone and executed out of the same libraries. MainView AutoOPERATOR does not support concatenation of product libraries in BBILOAD or STEPLIB.

When MainView AutoOPERATOR is installed into a zone with other products, it is important to note that MainView AutoOPERATOR shares the use of some FMIDs with other products. Therefore, installing a new release of one product can impact other products. For example, when installing a new version of MainView AutoOPERATOR into a zone where both MainView AutoOPERATOR for CICS and MainView for CICS are running, the new version MainView AutoOPERATOR release might impact MainView for CICS.
Implementing support for EOS and TLM events

MainView AutoOPERATOR Rules Processing provides support for end-of-step (EOS) and Time Limit (TLM) events.

The End-of-Step (EOS) event occurs whenever an address space changes steps. An additional EOS event occurs when the address space ends; for example, at the EOJ (End of Job) event.

A Time Limit (TLM) event occurs when one of the following time limits expire:

- Job processor time limit from the JOB statement.
- Step processor time limit from the EXEC statement of the default from JES.
- Continuous wait time for a job from the JWT parameter in SMFPRMXX.

Wait time is defined as the time waiting while the application program is in control. For example, the time that it takes for a data set to be recalled does not count as wait time unless the recall is by way of dynamic allocation written in a user’s program.

You must implement support for the EOS and TLM event types by specifying system exits in the SMFPRMxx member of SYS1.PARMLIB.

Specifying the IEFACTRT exit provides support for the EOS event type and the IEFUTL exit provides support for the TLM event type. If you do not specify both exits, you might receive unexpected messages during BBI-SS PAS startup.

See Figure 8 on page 53 for an example of the SMFPRMxx parameter member with the required exits shown in bold. You should also ensure that the required exits are listed in the EXITS() parameter and verify that the SMF type 30 records are being generated. Without the type 30 records, the EOS event will not function correctly.

Figure 8: Example of the SYS1.PARMLIB member SMFPRMxx

```plaintext
SYS(NOTYPE(43,45,47:49,52:58,92(10:11),99),
    EXITS(IEFU83,IEFU84,IEFU85,IEFACTRT,IEFUJV,
          IEFUSI,IEFUJI,IEFUTL,IEFU29),
    INTERVAL(SMF,SYNC),NODetail)
```
SUBSYS(STC,NOTYPE(43,45,47,49,52,58,92,10,11,99),
EXITS(IEFU29,IEFU83,IEFU84,IEFU85,IEFACTRT,IEFUJV,
IEFUSI,IEFUJI,IEFUTL),INTERVAL(SMF,SYNC),DETAIL)
Continuous operation with the Dynamic Parameter Manager

The Dynamic Parameter Manager (DPM) is a panel-driven application where you can view or modify parameters in BBPARM members from a TS session. The BBPARM members currently supported by DPM are as follows:

<table>
<thead>
<tr>
<th>BBPARM member name</th>
<th>Contains parameters to set</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAOALSxx</td>
<td>MainView AutoOPERATOR ALERT thresholds</td>
</tr>
<tr>
<td>AAOARPxx</td>
<td>MainView AutoOPERATOR Automation Reporter parameters</td>
</tr>
<tr>
<td>AAOEXPxx</td>
<td>MainView AutoOPERATOR EXEC parameters</td>
</tr>
<tr>
<td>AAOPRMxx</td>
<td>MainView AutoOPERATOR general function parameters</td>
</tr>
<tr>
<td>AAOTSPxx</td>
<td>TapeSHARE for MainView AutoOPERATOR parameters</td>
</tr>
</tbody>
</table>

Additionally, the DPM application has an Activate command that can be used to dynamically change the BBPARM members that a BBI-SS PAS currently uses without restarting the BBI-SS PAS.

Using the Dynamic Parameter Manager: overview

With the Dynamic Parameter Manager, you can

- control virtual storage consumption

 Use DPM to dynamically adjust the virtual storage throttles in AAOEXPxx and AAOALSxx (where xx is a user-defined suffix).

- control CPU & I/O usage

 Use DPM to adjust the CPU & I/O throttles dynamically in AAOEXPxx.
implement previously defined AAOALSxx, AAOARPxx, AAOEXPxx, AAOPRMxx, and AAOTSPxx members dynamically

By implementing previously defined members dynamically, different resource thresholds can be defined in response to anticipated environmental requirements without restarting the BBI-SS PAS.

activate and control the data collection time intervals for the Automation Reporter application

The Automation Reporter collects data for specific automation items and the AAOARPxx member controls how often data is collected and offloaded into the database.

The Automation Reporter application (and how to activate it with the Dynamic Parameter Manager) is described in the *MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules.*

customize the way the TapeSHARE for MainView AutoOPERATOR component performs tape device sharing automation among your z/OS images

With MainView AutoOPERATOR TapeSHARE, you can automate the sharing of tape devices between z/OS images. For more information about installing TapeSHARE, refer to "Implementing TapeSHARE" on page 115; for more information about using TapeSHARE, refer to the *MainView AutoOPERATOR Options User Guide.*

Accessing the Dynamic Parameter Manager

Choose Option 9, Dynamic Parameter Manager, from the PRIMARY OPTION MENU (shown in the following figure) to see a list of the AAOALSxx, AAOARPxx, AAOEXPxx, AAOPRMxx, and AAOTSPxx members in BBPARM.

Figure 9: MainView AutoOPERATOR PRIMARY OPTION MENU

<table>
<thead>
<tr>
<th>OPTION</th>
<th>MainView AutoOPERATOR</th>
<th>DATE</th>
<th>TIME</th>
<th>USERID</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BAOMXY1</td>
<td>ISPF 6.0</td>
</tr>
<tr>
<td>Operator Workstations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ALERTS</td>
<td>ALERT Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 MVS</td>
<td>OS/390 or z/OS Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 CICS</td>
<td>CICS Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 IMS</td>
<td>IMS Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 NETVIEW</td>
<td>NetView Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 TAPESHARE</td>
<td>Tape Drive Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 MO</td>
<td>WebSphere MQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 AUTOMATION</td>
<td>Basic and Advanced Automation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 PARMS</td>
<td>Dynamic Parameter Manager</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C CYCLE</td>
<td>Service Refresh Cycle Setup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J JOURNAL</td>
<td>Journal Log</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G LOGJRNL</td>
<td>Journal Log (Windows Mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M MESSAGES</td>
<td>Messages and Codes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P PERFORMANCE</td>
<td>Performance and History (Windows Mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
When you select Option 9, the Dynamic Parameter Manager panel is shown (Figure 10 on page 57).

Figure 10: Dynamic Parameter Manager—example 1

<table>
<thead>
<tr>
<th>BMC Software</th>
<th>Dynamic Parameter Manager</th>
<th>AutoOPERATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND ==></td>
<td>Add</td>
<td>TGT ==> BBSYSA</td>
</tr>
<tr>
<td>Primary command:</td>
<td>Add</td>
<td>DATE --- YY/MM/DD</td>
</tr>
<tr>
<td>TIME ---</td>
<td>12:45:48</td>
<td></td>
</tr>
<tr>
<td>LC CMDS --- (S)elect, (B)rowse w/o Symbolic Substitution</td>
<td>(A)ctivate, B(r)owse w/ Symbolic Substitution</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Member</th>
<th>Actv Lib YY.MM</th>
<th>Created</th>
<th>Changed</th>
<th>Size</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAALS01</td>
<td>1</td>
<td>01.17</td>
<td>04/09/21</td>
<td>08/07/01</td>
<td>07:02</td>
<td>7</td>
</tr>
<tr>
<td>AAAALS00</td>
<td>YES</td>
<td>1</td>
<td>01.76</td>
<td>93/06/08</td>
<td>08/06/04</td>
<td>10:38</td>
</tr>
<tr>
<td>AAAALS51</td>
<td>1</td>
<td>00.03</td>
<td>08/05/21</td>
<td>08/05/22</td>
<td>08:59</td>
<td>6</td>
</tr>
<tr>
<td>AAAARP01</td>
<td>1</td>
<td>01.01</td>
<td>04/09/21</td>
<td>08/03/18</td>
<td>10:23</td>
<td>31</td>
</tr>
<tr>
<td>AAAARP00</td>
<td>YES</td>
<td>1</td>
<td>01.55</td>
<td>03/03/26</td>
<td>07/12/03</td>
<td>10:35</td>
</tr>
<tr>
<td>AAAARP02</td>
<td>1</td>
<td>01.05</td>
<td>06/01/20</td>
<td>07/12/05</td>
<td>06:58</td>
<td>36</td>
</tr>
<tr>
<td>AAAEXP01</td>
<td>1</td>
<td>01.02</td>
<td>08/05/20</td>
<td>08/05/20</td>
<td>13:48</td>
<td>38</td>
</tr>
<tr>
<td>AAAEXP00</td>
<td>YES</td>
<td>1</td>
<td>03.08</td>
<td>87/05/12</td>
<td>07/12/11</td>
<td>07:14</td>
</tr>
<tr>
<td>AAAEXP98</td>
<td>1</td>
<td>00.01</td>
<td>08/05/21</td>
<td>08/05/21</td>
<td>12:24</td>
<td>26</td>
</tr>
<tr>
<td>AAOPRM01</td>
<td>3</td>
<td>01.00</td>
<td>04/09/01</td>
<td>04/09/01</td>
<td>06:52</td>
<td>15</td>
</tr>
<tr>
<td>AAOPRM05</td>
<td>1</td>
<td>01.07</td>
<td>07/05/14</td>
<td>08/05/22</td>
<td>06:52</td>
<td>63</td>
</tr>
<tr>
<td>AAOPRM00</td>
<td>YES</td>
<td>1</td>
<td>02.95</td>
<td>93/03/29</td>
<td>08/08/06</td>
<td>06:17</td>
</tr>
<tr>
<td>AAOPRM02</td>
<td>1</td>
<td>01.11</td>
<td>06/01/20</td>
<td>07/12/11</td>
<td>06:23</td>
<td>55</td>
</tr>
<tr>
<td>AAOPRM03</td>
<td>1</td>
<td>01.05</td>
<td>07/05/21</td>
<td>08/04/01</td>
<td>06:47</td>
<td>64</td>
</tr>
</tbody>
</table>

Use this panel to see a list of all the AAOALS xx, AAOARPxx, AAOEXPxx, and AAOTSPxx members in BBPARM where the

- AAOALSxx members contain parameters that determine how much extended storage MainView AutoOPERATOR ALERTs use on your system
- AAOARPxx members contain parameters that control how the Automation Reporter application operates
- AAOEXPxx members contain parameters and thresholds that determine how efficiently MainView AutoOPERATOR EXECs execute on your system
- AAOPRMxx members contain parameters that determine how certain features of MainView AutoOPERATOR operate
- The AAOTSPxx members contain parameters that control how TapeSHARE operates

From this panel, you can

- use the line command Select in the **Cmd** column to select a member to view and modify the parameters, if you choose

Refer to “Describing the line commands” on page 58 for more information about the line commands.

For more information about selecting
an AAOALSxx member, refer to “Modifying ALERT thresholds in AAOALSxx” on page 60.

selecting an AAOARPxx member, refer to “Modifying Automation Reporter application parameters in AAOARPxx” on page 65.

an AAOEXPxx member, refer to “Modifying EXEC parameters in AAOEXPxx” on page 68.

an AAOPRMxx member, refer to “Modifying MainView AutoOPERATOR parameters in AAOPRMxx” on page 79.

an AAOTSPxx member, refer to “Modifying TapeSHARE parameters in AAOTSPxx” on page 97.

use the primary command ADD to add a new AAOALSxx, AAOARPxx, AAOEXPxx, AAOPRMxx, or AAOTSPxx member. To add new members, type one of the following commands:

ADD AAOALSxx
ADD AAOARPxx
ADD AAOEXPxx
ADD AAOPRMxx
ADD AAOTSPxx

on the COMMAND line, where xx is a new suffix for a new member. For example, to add a new member named AAOEXP02, type

ADD AAOEXP02

Describing the line commands

The following table describes the line commands.

Table 10: Describing line commands for the Dynamic Parameter Manager

<table>
<thead>
<tr>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)elect</td>
<td>selects a member to view and modify the parameters</td>
</tr>
</tbody>
</table>
Line command | Description
--- | ---
(A)ctivate | use the line command Activate with the member to either
- dynamically change the BBPARM member that your system is currently using
- implement any changes you might have made to a member

The Activate command displays the Confirm Parameter Activation panel. This function allows you to verify that you want to dynamically change an AAOALSxx, AAOARPxx, AAOEXPxx, AAOPRMxx or AAOTSPxx member. For more information about activating your changes, refer to “Dynamically implementing new settings with the Activate command” on page 103.

(B)rowse without symbolic substitution | allows you to browse the member without viewing the symbolic substitution
B(r)owse with symbolic substitution | allows you to browse the ember with any symbolic parameters substituted with the current value displayed

Describing the fields

The fields for the Dynamic Parameter Manager panel are as follows:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmd</td>
<td>enables you to enter the Select or Activating line command</td>
</tr>
</tbody>
</table>
| Member | is the list of members that can be
- AAOALSxx for ALERTs thresholds
- AAOARPxx for Automation Reporter operation
- AAOEXPxx for EXEC thresholds
- AAOPRMxx for certain MainView AutoOPERATOR features
- AAOTSPxx for TapeSHARE operation |
| Actv | indicates which members are currently active in the target BBI-SS PAS
YES indicates that the parameter is active for the BBI-SS PAS. |
| Lib | is the library volume number |
| VV.MM | indicates the version level (VV) and modification level (MM) |
| Created | is the date the member was created |
Filtering the display of data

You can qualify (or filter) the members shown on the panel by entering a prefix or string of characters in the input field located under the column heading Member. For example, to see all the member names of AAOEXP.xx, enter the characters AAOEXP in the input field:

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Member</th>
<th>Lib</th>
<th>VV.MM</th>
<th>Created</th>
<th>Changed</th>
<th>Size</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAOEXP</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The output shows only those members with the prefix AAOEXP.

Modifying ALERT thresholds in AAOALS.xx

BBPARM member AAOALS.xx contain the parameters that determine how much storage MainView AutoOPERATOR ALERTs can use on your system.

To modify an AAOALSxx member, type **S** in the **Cmd** field of the Dynamic Parameter Manager panel. Figure 11 on page 60 shows an example of the panel.

Figure 11: Dynamic Parameter Manager panel—example 2

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Member</th>
<th>Lib</th>
<th>VV.MM</th>
<th>Created</th>
<th>Changed</th>
<th>Size</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>AAOALS00</td>
<td>1</td>
<td>01.11</td>
<td>YY/MM/DD</td>
<td>YY/MM/DD</td>
<td>20:12</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>AAOALS01</td>
<td>1</td>
<td>00.01</td>
<td>YY/MM/DD</td>
<td>YY/MM/DD</td>
<td>13:30</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AAOARP01</td>
<td>1</td>
<td>00.01</td>
<td>YY/MM/DD</td>
<td>YY/MM/DD</td>
<td>13:30</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AAOEXP00</td>
<td>1</td>
<td>02.26</td>
<td>YY/MM/DD</td>
<td>YY/MM/DD</td>
<td>20:12</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>AAOPRM00</td>
<td>1</td>
<td>02.26</td>
<td>YY/MM/DD</td>
<td>YY/MM/DD</td>
<td>20:12</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>AAOTSP00</td>
<td>1</td>
<td>02.01</td>
<td>YY/MM/DD</td>
<td>YY/MM/DD</td>
<td>20:12</td>
<td>12</td>
</tr>
</tbody>
</table>

Use this panel to see a list of all the AAOALSxx, AAOARPxx, AAOEXP.xx, AAOPRM.xx, and AAOTSP.xx members in BBPARM.
From this panel, you can

- use the line commands; refer to “Describing the line commands” on page 58 for more information
- use the primary command ADD to add a new members

To add a new member or members, type the following command on the COMMAND line, where xx is a new suffix for a new member:

ADD AAOALSxx

Setting ALERTs storage thresholds

Use the Alerts Storage Thresholds panel to see and modify thresholds that control how much storage ALERTs can use on your system.

Figure 12 on page 61 shows an example of this panel.

Figure 12: ALERTs Storage Thresholds panel

<table>
<thead>
<tr>
<th>Member</th>
<th>Current</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXSTOR</td>
<td>0</td>
<td>Maximum storage (ext private) in K bytes</td>
</tr>
<tr>
<td>WARNLVL1</td>
<td>60</td>
<td>Initial threshold (percent)</td>
</tr>
<tr>
<td>WARNLVL2</td>
<td>75</td>
<td>Secondary threshold (percent)</td>
</tr>
<tr>
<td>ALERTNV</td>
<td>NO</td>
<td>Default RETAIN setting for Alerts which have no explicit RETAIN setting.</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>Requires a Warm Start for change to be effective.</td>
</tr>
<tr>
<td>Publish</td>
<td>NO</td>
<td>Default PUBLISH setting for Alerts. Used for Alerts which have no explicit PUBLISH setting.</td>
</tr>
<tr>
<td>AUDIT</td>
<td></td>
<td>Alert life-cycle audit options. (Enter ? for current options)</td>
</tr>
<tr>
<td>ALERTLOG</td>
<td>YES</td>
<td>Log Alert activity to MV Logger(YES/NO)</td>
</tr>
</tbody>
</table>

Press END to save changes, CANCEL to cancel changes

This panel provides two columns of data:

- on the left, the value of the parameters in the AAOALS xx member for the target BBI-SS PAS

 You can enter your modifications on this side of the panel.

- on the right, the value of the parameters that are currently in effect for the target BBI-SS PAS; these values cannot be edited

Describing the fields

Descriptions of the fields on this panel follow:
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **MAXSTOR** | maximum amount of BBI-SS PAS extended private virtual storage to be allocated to ALERTs
Specify the storage amount in kilobytes and thousandths of megabytes. The default is zero, which means *no checking is done.* |
| **WARNLVL1** | first warning threshold level for queued ALERTs
The default is 60%, which means that if MAXSTOR=1K, a warning message is issued when the amount of virtual storage allocated to queued ALERTs reaches .6K.
The following is an example of a warning message:
AU6100W ALERT STORAGE USAGE 60% OVER 1ST LEVEL (60%) |
| **WARNLVL2** | second warning threshold level for queued ALERTs
When alert storage usage is divided by the value that is specified with the MAXSTOR parameter, warning message AU6100W is issued when the result is greater than or equal to the percent that is specified by WARNLVL2. If you specify 0 or a percentage lower than WARNLVL1, this warning level is ignored.
The default is 75%, which means that if MAXSTOR=1K, a warning message is issued when the amount of virtual storage allocated to queued ALERTs reaches .75K. The message looks like the following message:
AU6100W ALERT STORAGE USAGE 75% OVER 2ND LEVEL (75%) |

When the maximum amount of storage is used (as set by MAXSTOR), two additional messages are produced. The first message is
EM0022E ERROR PROCESSING .. DEMOAL22 .. ALERT NOT ADDED QUEUE IS FULL
where DEMOAL22 is the name of the ALERT that was not added to the ALERT queue because the maximum storage limit has been reached.
The second message is
EM0020E - IMFEXEC ALERT DASD5.11:57:28 'RESERVE IN PROGRESS...'
where the text of the message is the text of the IMFEXEC ALERT command that attempted to store the ALERT.
To solve this problem, use a Rule to interrogate the information fields in the message and delete less important ALERTs.
No more ALERTs are queued until the amount of storage used by queued ALERTs drops below MAXSTOR. When the shortage condition is alleviated, the following message is issued:
AU6200I ALERT STORAGE USAGE 58%, NO LONGER OVER THRESHOLD |
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALERTNV</td>
<td>ALERTNV is the default setting for the RETAIN keyword for MainView AutoOPERATOR ALERTs. ALERTs that are retained are written and saved to disk and therefore, exist across BBI-SS PAS restarts and system z/OS IPLs. When you are creating ALERTs (using the IMFEXEC ALERT statement, the Rules Processor ALERT panels, the AOEXEC ALERT statement, and so on) and you do not explicitly specify a setting for the RETAIN keyword, the ALERTNV parameter allows you to specify whether the default setting should be RETAIN(NO) or RETAIN(YES). For example, for ALERTs that do not specify the RETAIN keyword:</td>
</tr>
<tr>
<td></td>
<td>■ when the ALERTNV parameter is not specified or is specified as NO, RETAIN(NO) is used as the default.</td>
</tr>
<tr>
<td></td>
<td>■ when ALERTNV=YES is specified, RETAIN(YES) is used as the default.</td>
</tr>
<tr>
<td></td>
<td>Regardless of which setting you specify for the ALERTNV parameter, you can override the setting when you create a specific ALERT, where the RETAIN=YES or RETAIN=NO keyword is explicitly set. When you override this setting, only that ALERT is retained across BBI-SS PAS restarts and z/OS IPLs.</td>
</tr>
<tr>
<td></td>
<td>Note: When an ALERT is targeted to a different BBI-SS PAS, by default, the ALERT retains the ALERTNV setting of the target BBI-SS PAS.</td>
</tr>
<tr>
<td></td>
<td>Changing the ALERTNV setting takes effect only after a BBI-SS PAS warm or cold start.</td>
</tr>
<tr>
<td></td>
<td>The default is NO.</td>
</tr>
<tr>
<td>Field name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| PUBLISH | whether MainView AutoOPERATOR should (by default) publish events and ALERTs to BMC Impact Manager cells that are configured to receive input from MainView AutoOPERATOR through the General Message Exchange (GME). Settings for GME are defined in BBPARM member AAOGME00. For more information about how to configure BBPARM member AAOGME00 to send events and ALERTs to BMC Impact Manager cells, refer to “Implementing BMC Event Manager to work with BMC products” on page 199. Valid values are as follows:
 ■ ADD: publish, but do not replace a previously published ALERT; does not apply to ADAPTOR connections
 ■ REPLACE: publish, but delete a previously published ALERT before adding the new one; does not apply to ADAPTOR connections
 ■ NO: do not publish ALERTs
The default is ADD. |
| AUDIT | specifies options for auditing the life-cycle of an ALERT
The default is NONE. Valid values are as follows:
 ■ ALL: all stages of an ALERT’s life cycle will be audited
 ■ NONE: no auditing will be performed
 ■ ADD: generate an audit message when an ALERT is created with the ADD keyword
 ■ ESCAL: generate an audit message when an ALERT’s priority escalates
 ■ DELETE - generate an audit message when an ALERT is deleted with the DELETE keyword
Audit messages are generated into the BBI Journal. Enter a "?" next to the keyword to display a panel of the current options that you can edit. |
| ALERTLOG | specifies whether MainView AutoOPERATOR logs all ALERT activity to the MainView Logger
When ALERTLOG is set to YES, the ALRTLOG view is available in windows-mode for viewing the ALERT log. |
Modifying Automation Reporter application parameters in AAOARPxx

BBPARM members AAOARPxx contain the parameters that activate and control the data collection and offloading functions of the Automation Reporter application.

To modify an AAOARPxx member, type S in the Cmd field of the Dynamic Parameter Manager panel. Figure 13 on page 65 shows an example of the panel.

Figure 13: Dynamic Parameter Manager panel—example 3

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Member</th>
<th>Lib</th>
<th>YY.MM</th>
<th>Created</th>
<th>Changed</th>
<th>Size</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>_</td>
<td>AAOALS00</td>
<td>1</td>
<td>01.11</td>
<td>YY/MM/DD</td>
<td>YY/MM/DD</td>
<td>20:12</td>
<td>JDB1</td>
</tr>
<tr>
<td>_</td>
<td>AAOALS01</td>
<td>1</td>
<td>00.01</td>
<td>YY/MM/DD</td>
<td>YY/MM/DD</td>
<td>13:30</td>
<td>JDB1</td>
</tr>
<tr>
<td>S</td>
<td>AAOARP01</td>
<td>1</td>
<td>00.01</td>
<td>YY/MM/DD</td>
<td>YY/MM/DD</td>
<td>13:30</td>
<td>JDB1</td>
</tr>
<tr>
<td>_</td>
<td>AAOEXP00</td>
<td>1</td>
<td>02.26</td>
<td>YY/MM/DD</td>
<td>YY/MM/DD</td>
<td>20:12</td>
<td>JDB1</td>
</tr>
<tr>
<td>_</td>
<td>AAOPRM00</td>
<td>1</td>
<td>02.26</td>
<td>YY/MM/DD</td>
<td>YY/MM/DD</td>
<td>20:12</td>
<td>JDB1</td>
</tr>
<tr>
<td>_</td>
<td>AAOTSP00</td>
<td>1</td>
<td>02.01</td>
<td>YY/MM/DD</td>
<td>YY/MM/DD</td>
<td>20:12</td>
<td>JDB1</td>
</tr>
</tbody>
</table>

Use this panel to see a list of all the AAOALSxx, AAOARPxx, AAOEXPxx, AAOPRMxx, and AAOTSPxx members in BBPARM.

From this panel, you can

- use the line commands; refer to Table 10 on page 58 for more information
- use the primary command ADD to add a new members

 To add a new member or members, type the following command on the COMMAND line, where xx is a new suffix for a new member:

  ```
  ADD AAOARPxx
  ```

Setting Automation Reporter parameters

Use the Automation Reporter Parms panel to

- see and modify parameters for the Automation Reporter application
- control how often data is collected
- name a data set to hold the data
- indicate when the collected data is offloaded to the data set
Figure 14 on page 66 shows an example of this panel.

Figure 14: Automation Reporter Parms panel

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New DSN</td>
<td>specify the name of the sequential data set that you have preallocated. The user-defined data set should be a fixed-block, sequential data set with a maximum record length of 580 bytes. This data set must be preallocated before the Automation Reporter can be activated.</td>
</tr>
</tbody>
</table>

This panel provides two columns of data:

- on the left, the value of the parameters in the AAOARP xx member for the target BBI-SS PAS

 You can enter your modifications on this side of the panel.

- on the right, the value of the parameters that are currently in effect for the target BBI-SS PAS; these values cannot be edited

The first time you bring up the Automation Reporter, no current data set values are available. Therefore, the Current ====> field and all the values on the right side of the panel are blank.

After you have used the Automation Reporter once, the next time you access this panel, the Current ====> field and all the display fields show the values you previously entered.

The left side of the panel displays the default values in BBPARM member AAOARPxx, as shown in this panel.

Describing the fields

Descriptions of the fields on this panel follow:
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Disp | specify the disposition of the user-defined sequential data set
Valid disposition values are:

- SHR (share): causes the Automation Reporter to overwrite existing data
- MOD (modify): causes the Automation Reporter to append data to the end of the data set from each offload cycle
MOD is the default value. |
| Interval | specify the collection interval (in minutes) for the Automation Reporter to collect data
For example, if you specify 60, the Automation Reporter records the data in the subsystem for the resources and activities every 60 minutes.
Specifying any value greater than zero means that the Automation Reporter will collect data.
Valid collection intervals range from 10 minutes to 1440 minutes. The default is 10 minutes. |
| Off Int | specify the offload interval (in minutes) for the Automation Reporter to offload the data it has collected to the data set
For example, if you specify 120, the Automation Reporter writes the data it has collected to the sequential data set every 2 hours.
Valid offloading intervals are 60 minutes to 1440 minutes. The default is 1440 (or once a day). |
| Alert Queue| specify the name of an ALERT queue to which any ALERTs created by the Automation Reporter is queued
For example, if you specify ARALRT, ALERTs are queued to a queue named ARALRT.
Any valid ALERT queue name can be entered in this field (default queue name is MAIN). You do not have to enter the name of a pre-existing ALERT queue. You can enter the name of a new queue and it is created for you when the Automation Reporter is activated and ALERTs are generated. |
### Field name	Description
IRHIST | specifies whether the windows mode Automation Reporter will collect interval data that allows you to perform short term and long term analysis of automation processes and performance. This parameter also enables the windows mode Automation Reporter views that show real-time data collected by interval and allows for local or SSI summarization of the automation information. For more information about the windows mode version of the Automation Reporter, refer to the *MainView AutoOPERATOR Basic Automation Guide, Volume 2.*

Note: BMC recommends that you migrate your automation data collection processes to use the windows-mode Automation Reporter applications available with MainView AutoOPERATOR version 7.1 and later instead of using the Automation Reporter that is available with MainView AutoOPERATOR version 6.5.xx and earlier. In a future release, BMC Software plans to discontinue supporting the MainView AutoOPERATOR version 6.5.xx (and earlier) version of the Automation Reporter application. The default is NO; valid values are YES or NO.

AR Options | specifies one or more Automation Reporter collectors that will actively collect data. Default value is ALL; valid values are ALL (all collectors will be active), ACT, ALT, AUS, CPU, EXE, EXC, EVT, HTH, RES, RST, RUL, TSL, and TSP. Enter a question mark (?) next to this keyword to display a list of the current values.

Modifying EXEC parameters in AAOEXP.xx

BBPARM member AAOEXP.xx contains parameters that determine the resource throttle settings and the environment for MainView AutoOPERATOR EXECs.

To modify an AAOEXP.xx member, type S in the **Cmd** field next to a member on the Dynamic Parameter Manager panel (refer to Figure 10 on page 57).
Figure 15 on page 69 shows an example of the panel that is displayed when you select an AAOEXPxx member called AAOEXP00.

Figure 15: Dynamic Parameter Manager Member panel

<table>
<thead>
<tr>
<th>BMC Software</th>
<th>Dynamic Parameter Manager Member</th>
<th>AutoOPERATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND ====></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGT --- BBSYSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date --- YY/MM/DD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time --- 11:41:44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member Name: AAOEXP00 - AutoOPERATOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC CMD S --- (S)elect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmd</td>
<td>Panel Description</td>
<td></td>
</tr>
<tr>
<td>_</td>
<td>EXEC Thresholds</td>
<td></td>
</tr>
<tr>
<td>_</td>
<td>EXEC Parameters</td>
<td></td>
</tr>
<tr>
<td>_</td>
<td>EXEC Parameters 2</td>
<td></td>
</tr>
</tbody>
</table>

Use this panel to select additional panels that allow you to see and modify either

- EXEC Thresholds — set limits for how all your EXECs execute on your system; for example:
 - the maximum number of EXECs that can run in the Normal or High priority queue
 - the maximum number of EXECs that are allowed to abend before the EXEC Manager is terminated
 For more information about selecting EXEC thresholds, refer to “Setting EXEC Thresholds” on page 69.

- EXEC Parameters --specify parameters for your EXECs themselves; for example:
 - whether EXEC parameters are translated to uppercase
 - what the maximum number of OSPI ACBs are
 For more information about selecting EXEC parameters, refer to “Setting EXEC Parameters” on page 74.

- EXEC Parameters 2 —specify whether MainView AutoOPERATOR sends messages from EXECs to the EMLOG or enable the IMFEXEC HMC command to work in EXECs
 See “Additional EXEC parameters” on page 78 for more information.
 See the MainView AutoOPERATOR Advanced Automation Guide for more information about the IMFEXEC HMC command.

Setting EXEC Thresholds

Use the EXEC Thresholds panel to view or modify values that determine how many EXECs can run in your system in the Normal or high-priority queues, how many EXEC abends that you want to be able to support, and so on.
Figure 16 on page 70 shows an example of the EXEC Thresholds panel.

Figure 16: EXEC Thresholds panel

<table>
<thead>
<tr>
<th>Member</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXABCNT</td>
<td>3</td>
</tr>
<tr>
<td>MAXNORM</td>
<td>5</td>
</tr>
<tr>
<td>MAXHIGH</td>
<td>3</td>
</tr>
<tr>
<td>MAXNORMQ</td>
<td>5</td>
</tr>
<tr>
<td>MAXHIGHQ</td>
<td>3</td>
</tr>
<tr>
<td>MAXHOTQ</td>
<td>10</td>
</tr>
<tr>
<td>WARNLVL1</td>
<td>65</td>
</tr>
<tr>
<td>WARNLVL2</td>
<td>80</td>
</tr>
<tr>
<td>SETLIM</td>
<td>10</td>
</tr>
<tr>
<td>MAXTPUT</td>
<td>0</td>
</tr>
</tbody>
</table>

Press END to save changes, CANCEL to cancel changes

This panel provides two columns of data:

- on the left, the value of the parameters in the AAOEXP.xx member for the target BBI-SS PAS

 You can enter your modifications on this side of the panel.

- on the right, the value of the parameters that are currently in effect for the target BBI-SS PAS; these values cannot be edited

Scheduling EXECs

With the EXEC Thresholds panel, you can specify the number of EXECs that can be scheduled to the High and Normal priority queues by using MAXNORM and MAXHIGH parameters. When the number of scheduled EXECs matches the values set in these parameters, *all scheduling stops* until the number of EXECs drops below the thresholds.

You can also specify two thresholds for the High and Normal queues that, when reached, issue warning messages telling you that the threshold has been reached. These thresholds are WARNLVL1 and WARNLVL2 and the values represent percentages of MAXNORMQ and MAXHIGHQ.

Examples

For example, you can specify

MAXNORMQ ===> 150

MAXHIGHQ ===> 100

and
WARNLVL1 ===> 50

WARNLVL2 ===> 75

For the Normal queue, warning messages are sent when 75 EXECs are scheduled and again when 112 EXECs are scheduled.

WARNLVL1 50% OF 150 = 75

WARNLVL2 75% OF 150 = 112

For the High queue, warning messages are sent when 50 EXECs are scheduled and again when 75 EXECs are scheduled.

WARNLVL1 50% OF 100 = 50

WARNLVL2 75% OF 100 = 75

Scheduling of EXECs stops when the maximum values are reached. EXEC scheduling automatically resumes when the number of EXECs drops below the maximum. Refer to the descriptions of the MAXNORMQ, MAXHIGHQ, WARNLVL1, and WARNLVLV2 fields in “Describing the fields” on page 71 for more information.

Describing the fields

A description of the fields on this panel follows.

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member</td>
<td>specifies the values for the new AAOEXPxx member</td>
</tr>
</tbody>
</table>
| Current | specifies the values in the AAOEXPxx member that the BBI-SS PAS is currently using
These values are stored in CSA.
The member that the BBI-SS PAS is currently using is one of the following choices:
- the AAOEXPxx member that was used during the most recent BBI-SS PAS initialization
- the most recently applied AAOEXPxx member |
| EXABCNT | is the maximum number of abends that a single EXEC can sustain before it is disabled
Valid values range from 1 to 99 and the default is 5. For example, if you specify EXABCNT=10 and an EXEC abends 10 times, the EXEC is disabled after the tenth abend. |
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **MAXNORM** | is the maximum number of EXECs that can execute concurrently on Normal priority threads
Valid values range from 1 to 99 and the default is 1. |
| **MAXHIGH** | is the maximum number of EXECs that can execute concurrently on high-priority threads
Valid values range from 1 to 99 and the default is 5. |
| **MAXNORMQ** | is the maximum number of Normal priority EXECs that may be queued for execution
Valid values range from 0 to 999 and the default is 0. A value of 0 means that no checking is done.
When the maximum number is reached, no more EXECs are scheduled to the Normal priority queue and a warning message is issued:
EM6100W MAXNORMQ EXEC 19/ 20, OVER LAST LEVEL (95%)
EXEC scheduling resumes when the queue size drops below the maximum. An informational message is issued to inform you that scheduling has resumed:
EM62001 MAXNORMQ EXEC 9/ 20, NO LONGER OVER THRESHOLD
Note: EXECs scheduled with WAIT=YES are never queued. They are executed on the thread of the EXEC that selected it. |
| **MAXHIGHQ** | is the maximum number of High priority EXECs that may be queued for execution
Valid values range from 0 to 999 and the default is 0. A value of 0 means that no checking is done.
When the maximum number is reached, no more EXECs are scheduled to the high priority queue and a warning message is issued:
EM6100W MAXHIGHQ EXEC 19/ 20, OVER LAST LEVEL (95%)
EXEC scheduling resumes when the queue size drops below the maximum. An informational message is issued to inform you that scheduling has resumed:
EM62001 MAXHIGHQ EXEC 9/ 20, NO LONGER OVER THRESHOLD
Note: EXECs scheduled with the IMFEXEC command WAIT=YES are never queued. They are executed on the thread of the EXEC that selected it. |
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXHOTQ</td>
<td>is the maximum number of First or Hot priority EXECs that can be queued. Valid values range from 0 to 999 and the default is 0. A value of 0 means that no checking is done and all Hot or First priority EXECs are queued. When the maximum is reached, no more EXECs with First or Hot priority specified are scheduled until the queue level drops below the maximum level set and a warning message is issued: EM6100W MAXHOTQ EXEC 19/ 20, OVER LAST LEVEL (95%) EXEC scheduling resumes when the queue size drops below the maximum. An informational message is issued to inform you that scheduling has resumed: EM6200I MAXHOTQ EXEC 9/ 20, NO LONGER OVER THRESHOLD</td>
</tr>
<tr>
<td>WARNLVL1</td>
<td>specifies a preliminary percentage of EXECs in a queue that, when met, generates a warning message. Valid values range from 0% to 99% and the default is 60%. Use this threshold to set the first percentage that triggers a warning message to be sent. For example, if you set MAXHIGHQ=100, and WARNLVL1=60, a warning message is issued when 60 EXECs are queued to the High- priority queue. The message looks like the following example: EM6100W MAXHIGHQ EXEC 60/ 100, OVER 1ST LEVEL (60%) This threshold is applicable to the High and Normal priority queues.</td>
</tr>
<tr>
<td>WARNLVL2</td>
<td>specifies a secondary percentage of EXECs in a queue that, when met, generates a warning message. Valid values range from 0% to 99% and the default is 75%. Use this threshold to set a second percentage that triggers a warning message to be sent. For example, if you set MAXHIGHQ=100 and WARNLVL2=75, a warning message is issued when 75 EXECs are queued to the high-priority queue. The message looks like the following example: EM6100W MAXHIGHQ EXEC 75/ 100, OVER 2ND LEVEL(75%) In addition, a second message is issued that identifies the first EXEC that was not scheduled because of this queuing condition: EM6150W EXEC-COLORS NOT QUEUED, OVER LAST LEVEL THRESHOLD In this example, Colors is the name of an EXEC that was not scheduled. Additionally, no more EXECs are scheduled to the high-priority queue until the usage percentage of the queue is less than the value set for MAXHIGHQ. This threshold is applicable to the High and Normal priority queues.</td>
</tr>
</tbody>
</table>
Field name Description

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELLIM</td>
<td>is the maximum number of active EXECs on a single thread. Valid values range from 0 to 99 and the default is 0. This parameter is designed to control recursive calls (where EXECA schedules EXECB, and EXECB schedules EXECCC, and so on) that run out of control, and can potentially fill up the private storage in the BBI-SS PAS and cause automation to stop. An example of recursive calls is EXECA schedules EXECB with the WAIT=YES parameter and EXECB in turn, calls EXECA.</td>
</tr>
<tr>
<td>MAXTPUT</td>
<td>is the maximum number of TSO TPUTs that is allowed for each execution of an EXEC. Valid values range from 0 to 999 and the default is 0. TPUTs for EXECs scheduled with the WAIT=YES parameter are counted separately from the scheduling EXEC. If the maximum is exceeded, the following message is issued: EM0026W TPUT JOURNALING SUSPENDED, BACKLOG HAS EXCEEDED MAXIMUM and subsequent TPUTs are ignored until the EXEC terminates.</td>
</tr>
</tbody>
</table>

Setting EXEC Parameters

Use the EXEC Parameters panel to view or modify values that determine how individual EXECs execute in your system.

Figure 17 on page 74 shows an example of the panel.

Figure 17: EXEC Parameters panel

<table>
<thead>
<tr>
<th>Member</th>
<th>Current</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMELX</td>
<td>1</td>
<td>Maximum CPU time limit for an EXEC</td>
</tr>
<tr>
<td>PEREXLIM</td>
<td>1</td>
<td>Maximum CPU percentage usage for an EXEC</td>
</tr>
<tr>
<td>TSOTIME</td>
<td>1</td>
<td>Timeout value for attached TSO commands</td>
</tr>
<tr>
<td>ELAPSLIM</td>
<td>0</td>
<td>Maximum elapsed time limit for an EXEC</td>
</tr>
<tr>
<td>UCPARMS</td>
<td>YES</td>
<td>Translate EXEC parms to UPPERCASE</td>
</tr>
<tr>
<td>AUDITMS</td>
<td>YES</td>
<td>Write JRNL msg for BLDL and submit EXEC</td>
</tr>
<tr>
<td>AUDITEXE</td>
<td>NO</td>
<td>Write JRNL msg for EXEC Start and End</td>
</tr>
<tr>
<td>OSPINUM</td>
<td>0</td>
<td>Maximum # of OSPI ACBs</td>
</tr>
<tr>
<td>OSPIPFX</td>
<td>OSPI</td>
<td>4 character OSPI ACB prefix</td>
</tr>
<tr>
<td>UNITNAME</td>
<td>SYSALLDA</td>
<td>UNITNAME used for allocating a dataset</td>
</tr>
<tr>
<td>PREFIX</td>
<td>J071</td>
<td>Prefix used for allocation a dataset</td>
</tr>
<tr>
<td>SUBXAUTH</td>
<td>DEFER</td>
<td>DEFER - IMFSUBEX security</td>
</tr>
<tr>
<td>APIAUTH</td>
<td>RACF</td>
<td>RACF - Userid for MVAPI Execs</td>
</tr>
<tr>
<td>CICSECID</td>
<td>ORIGIN</td>
<td>ORIGIN/RACF - Userid for CICS Commands</td>
</tr>
<tr>
<td>RESAUTH</td>
<td>ORIGIN</td>
<td>ORIGIN/RACF - Userid for Sysprog Cmds</td>
</tr>
<tr>
<td>EXEC</td>
<td>(Enter ? to see high priority EXECs)</td>
<td></td>
</tr>
</tbody>
</table>

Press END to save changes, CANCEL to cancel changes.

Use this panel to continue setting parameters for how single EXECs execute on the system. As on the EXEC Thresholds panel, this panel provides two columns of data:
on the left, the value of the parameters in the AAOEXP.xx member for the target BBI-SS PAS
You can enter your modifications on this side of the panel.

on the right, the value of the parameters that are currently in effect for the target BBI-SS PAS; these values cannot be edited

From this panel, you can specify a question mark (?) in the EXEC ==> field to display another panel where you can specify the names of EXECs that will always execute on High priority threads.

Refer to “Setting high-priority EXECs” on page 77 for more information about specifying EXEC names for high-priority queuing.

Describing the fields

Descriptions of the fields on this panel follow:

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMEXLIM</td>
<td>is the maximum CPU time limit allowed for an EXEC to use while executing. Valid values range from 0 to 9999 and the default is 0. Set this parameter to ensure that any EXEC does not execute limitlessly.</td>
</tr>
<tr>
<td>PEREXLIM</td>
<td>is the maximum CPU percentage usage that is allowed for an EXEC to use while executing. Valid values range from 0 to 99 and the default is 0. Set this parameter to ensure that any EXEC does not use a disproportionate amount of the CPU time.</td>
</tr>
<tr>
<td>TSOTIME</td>
<td>is the time-out value (in seconds) for attached TSO commands. Valid values range from 0 to 9999 and the default is 1200. Set this parameter to limit the amount of time that a TSO command associated with an EXEC can use.</td>
</tr>
<tr>
<td>ELAPSIM</td>
<td>is the elapsed time limit for all EXECs. If an EXEC is still running after the number of minutes specified, it will be canceled. Cancellation messages are sent to the BBI Journal that say an EXEC has exceeded the ELAPSLIM limit. You can set elapsed time limits for an individual EXEC with the IMFEXEC CNTL ELAPSLIM() keyword. Valid values range from 0 to 9999 and the default is 0.</td>
</tr>
<tr>
<td>UCPARMS</td>
<td>specifies that parameters passed to an EXEC must be converted to uppercase characters. Valid values are YES and NO and the default is YES. All CLIST EXECs require uppercase characters for parameters.</td>
</tr>
<tr>
<td>AUDITMSG</td>
<td>specifies whether you want to record in the BBI-SS PAS Journal all occurrences of BLDLs against the SYSPROC data set and all user-initiated EXEC requests. Valid values are YES and NO and the default is YES.</td>
</tr>
<tr>
<td>Field name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>AUDI TEXE</td>
<td>specifies whether you want to record in the BBI-SS PAS Journal audit messages indicating when EXECs start and end. Valid values are YES and NO and the default is NO.</td>
</tr>
<tr>
<td>OSPINUM</td>
<td>specifies the maximum number of OSPI ACBs that is allowed. Valid values range from 0 to 999 and the default is 0.</td>
</tr>
<tr>
<td>OSPIPRFX</td>
<td>specifies the default four-character OSPI ACB prefix. Valid values are any four-character string and the default is OSPI.</td>
</tr>
<tr>
<td>UNITNAME</td>
<td>is the default UNITNAME that is used for allocating a data set. Valid values are any eight-character string and the default is SYSALLDA.</td>
</tr>
<tr>
<td>PREFIX</td>
<td>is the prefix that is used for allocating a data set in an EXEC if the data set name is not enclosed in quotation marks. Valid values are any seven-character string and the default is blank, which refers to the subsystem ID.</td>
</tr>
</tbody>
</table>
| SUBXAUTH | specifies one of the following names:
- DEFER: defers the use of the job name or user ID for the security check to the batch job
- RACF: uses the RACF user ID for all batch job security checks
- USER ID: uses the user ID for all batch job security checks
- JOBNAME: uses the job name for all batch job security checks The default is DEFER.
- REXX: shows the current REXX= setting. Valid values are YES or NO and the default is YES.

Restriction: The number of EXECs that can be scheduled concurrently is equal to \((x - 3) / 2\) where \(x\) is the number of REBs. At BBI-SS PAS startup time, the following warning message is issued if the aggregate of MAXNORM and MAXHIGH exceeds this limit:

EM0002W EXEC MULTITASKING EXCEEDS SITE LIMITS
In addition, further scheduling of EXECs is inhibited if this limit is reached. |
| APIAUTH | specifies the user ID to be used for MVAPI calls issued from EXECs. Default value is RACF; valid values are as follows:
- ORIGIN specifies that the EXEC origin is used as user ID for MVAPI call. For ALERT-initiated EXECs, the origin is the origin of the ALERT. For Rule-initiated EXECs, the origin is the SSID of the BBI-SS PAS started task. For ALERT escalation-initiated EXECs, the origin is the jobname of the BBI-SS PAS.
- RACF the user ID associated with the BBI-SS PAS is used for MVAPI calls. |
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICSECID</td>
<td>specifies whether the user ID or the current origin of the EXEC is used for security checking of a IMFEXEC CICS command that is used in a remote EXEC when it is scheduled by a local Rule-initiated EXEC. Default value is ORIGIN, which is used if you do not specify a value for this keyword; valid values are as follows: - ORIGIN specifies that the EXEC origin is the name of the originating BBI-SS PAS where the EXEC was scheduled and the name of that BBI-SS PAS is used during security checking. - RACF specifies that the security ID of the BBI-SS PAS is used during security checking. In both cases, the user ID is used for security checking of CICS commands that are used in EXECs scheduled in a remote BBI-SS PAS that are called by a local EXEC.</td>
</tr>
<tr>
<td>RESAUTH</td>
<td>specifies the user ID that will be used when SYSPROG Services are invoked from MainView AutoOPERATOR EXECs. Default value is ORIGIN, which is used if you do not specify a value for this keyword; valid values are as follows: - ORIGIN specifies that the EXEC origin is used as user ID for Sysprog Services. For ALERT-initiated EXECs, the origin is the origin of the ALERT. An exception occurs when the EXEC origin contains the BBI-SS PAS SSID or the jobname of the BBI-SS PAS. In this case, the user ID that is associated with the BBI-SS PAS started task is used. - RACF specifies that the user ID associated with the BBI-SS PAS started task is used for SYSPROG Services.</td>
</tr>
<tr>
<td>EXEC</td>
<td>enables you to display another panel where you can define the names of EXECs that will always run on High priority threads. Refer to “Setting high-priority EXECs” on page 77 for more information about this panel.</td>
</tr>
</tbody>
</table>

Setting high-priority EXECs

To update the list of high-priority EXECs, enter a question mark (?) on the EXEC Parameters panel, next to the `EXEC ===>` field in the `Member` column. This displays the Update Non-Unique Parameter List panel.
Figure 18: Update Non-Unique Parameter List

To add an EXEC for high-priority execution, type

```plaintext
ADD execname
```

where `execname` is the one- to eight-character name of the EXEC that you want to execute in the high-priority queue.

To delete an EXEC, use the line command Delete in the `Cmd` field next to the EXEC name that you want to delete.

Additional EXEC parameters

Use the EXEC Parameters 2 panel (see the following figure) to specify additional EXEC-related parameters.

Figure 19: EXEC Parameters 2 panel

Describing the fields

Descriptions of the fields on this panel follow:
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| EMLOG | specifies whether the windows-mode EMLOG view is available for viewing, sorting and filtering EXEC messages
Valid values are YES or NO. The default is NO.
In the EMLOG view, you can select to view (filter) all the messages from a specific EXEC. This filtering ability is not supported in the MVLOG view.
For more information about the windows-mode EMLOG view, see the MainView AutoOPERATOR Basic Automation Guide, Volume 2. |
| EXHMC | specifies whether you can use the IMFEXEC HMC command in EXECs
Valid values are YES or NO. The default is NO.
WARNING: The IMFEXEC HMC command allows EXECs to issue queries and commands to IBM mainframe hardware. IMFEXEC HMC provides capabilities that are similar to those allowed in the Hardware Management Console (HMC) and mainframe Support Element.
Using IMFEXEC HMC can alter your IBM machine, which might result in outages or incur unexpected financial costs. For example, using the IMFEXEC HFC command and its parameters can increase the machine’s capacity, which might increase costs.
BMC recommends that only users who have proficiency in operating the IBM System z Support Elements and Hardware Management Console (HMC) should use the IMFEXEC HMC command. You should also already be familiar with HMC and System z terminology and properties.
In addition, the user control and confirmation features available on the actual HMC do not apply when using the IMFEXEC HMC command in an EXEC issued from MainView AutoOPERATOR. For example you can configure the HMC to require a user to enter a password before performing an IPL (issuing a Load command) of the system. With the IMFEXEC HMC command, the Load command executes without requiring any confirmation. |
| AUDITRES | specifies whether BBI Journal message EM0715I is written to the log when an EXEC issues IMFEXEC RES
Use the message to help identify which of your automation EXECs use the IMFEXEC RES command. This information can be especially helpful when the MainView SYSPROG Services product releases new versions that introduce changes to SYSPROG commands, or services that might impact your automation. |

Modifying MainView AutoOPERATOR parameters in AAOPRMxx

BBPARM members AAOPRMxx contain the parameters that control certain functions of MainView AutoOPERATOR.
To modify an AAOPRMxx member, type S in the Cmd field of the Dynamic Parameter Manager panel. Figure 20 on page 80 shows an example of the panel.

You can use the ACTIVATE command or the BBI control command .RESET for BBPARM member AAOPRMxx to reset all of the values specified in AAOPRMxx and to restart all time-initiated Rules that are currently defined. These actions also occur any time the BBI-SS PAS is restarted with WARM or COLD specified.

Note
You cannot dynamically reset the values of the AAOPRMxx keywords AOOPTION and RULESET when you use the Activate command in DPM or use the BBI control command .RESET.

The only way to reset the values for the AOOPTION and RULESET keywords is to restart the BBI-SS PAS with WARM or COLD specified.

The Dynamic Parameter Manager can update AAOPRMxx with the changes, however the PAS must be restarted (warm or cold) for the changes to take effect.

Figure 20: Dynamic Parameter Manager panel—example 4

<table>
<thead>
<tr>
<th>BMC Software -------------- Dynamic Parameter Manager -- AutoOPERATOR</th>
<th>COMMAND ----></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary command: Add</td>
<td>TGT ---> BBSYSA</td>
</tr>
<tr>
<td>Date --- YY/MM/DD</td>
<td>Time --- 11:41:36</td>
</tr>
<tr>
<td>LC CMD ---- (S)elect, (B)rowse w/o Symbolic Substitution</td>
<td></td>
</tr>
<tr>
<td>(A)ctivate, B(rowse w/ Symbolic Substitution</td>
<td></td>
</tr>
<tr>
<td>Cmd Member Lib VV.MM Created Changed Size ID</td>
<td></td>
</tr>
<tr>
<td>__________</td>
<td>___________</td>
</tr>
<tr>
<td>_ AAOALS00 1 01.11 YY/MM/DD YY/MM/DD 20:12 4 JDB1</td>
<td></td>
</tr>
<tr>
<td>- AAOALS01 1 00.01 YY/MM/DD YY/MM/DD 13:30 3 JDB1</td>
<td></td>
</tr>
<tr>
<td>_ AAOARP01 1 00.01 YY/MM/DD YY/MM/DD 13:30 3 JDB1</td>
<td></td>
</tr>
<tr>
<td>_ AAOEXP00 1 02.26 YY/MM/DD YY/MM/DD 20:12 27 JDB1</td>
<td></td>
</tr>
<tr>
<td>S AAOPRM00 1 02.26 YY/MM/DD YY/MM/DD 20:12 27 JDB1</td>
<td></td>
</tr>
<tr>
<td>_ AAOTSP00 1 02.01 YY/MM/DD YY/MM/DD 20:12 12 JDB1</td>
<td></td>
</tr>
<tr>
<td>END OF MEMBERS END OF MEMBERS END OF MEMBERS END OF MEMBERS</td>
<td></td>
</tr>
</tbody>
</table>

Use this panel to see a list of all the AAOALSxx, AAOARPxx, AAOEXPxx, AAOPRMxx, and AAOTSPxx members in BBPARM.

From this panel, you can

- use the line commands; refer to Table 10 on page 58 for more information

- use the primary command ADD to add a new members

To add a new member or members, type the following command on the COMMAND line, where xx is a new suffix for a new member:

```
ADD AAOPRMxx
```
Setting MainView AutoOPERATOR parameters

The Dynamic Parameter Manager member panel (the following figure) lists the categories of MainView AutoOPERATOR functions that you can modify.

Figure 21: MainView AutoOPERATOR primary parameters panel

<table>
<thead>
<tr>
<th>Member Name: AAOPRM00 - AutoOPERATOR Primary Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC CMDS --- (S)elect</td>
</tr>
<tr>
<td>Cmd Panel Description</td>
</tr>
<tr>
<td>General Parameters</td>
</tr>
<tr>
<td>Automation and Rule Set</td>
</tr>
<tr>
<td>Operator RequestParms</td>
</tr>
<tr>
<td>AutoLog and Event Replay</td>
</tr>
<tr>
<td>IMS Parameters</td>
</tr>
<tr>
<td>WebSphere MQ</td>
</tr>
</tbody>
</table>

The following sections describe each of these options from this panel.

Selecting General Parameters

This topic describes selecting general parameters.

When you use the Select line command to select General Parameters from Figure 21 on page 81, Figure 22 on page 81 is displayed.

Figure 22: MainView AutoOPERATOR General Parameters panel

<table>
<thead>
<tr>
<th>Member</th>
<th>Current</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOOPTION</td>
<td>(Enter ? for Option list)</td>
<td>Suppress Replies to WTO/R</td>
</tr>
<tr>
<td>SUPREPLY</td>
<td>YES</td>
<td>Suppress Replies to WTO/R</td>
</tr>
<tr>
<td>IMFJNUM</td>
<td>5</td>
<td>IMFJNUM variable length</td>
</tr>
<tr>
<td>MAXDLYQ</td>
<td>100</td>
<td>Max queued DELAYed Requests</td>
</tr>
<tr>
<td>MSGJOBNM</td>
<td>ORIGIN</td>
<td>Use Actual or Origin job name</td>
</tr>
<tr>
<td>SPLXVARS</td>
<td>N</td>
<td>Sysplex variables (Y/N)</td>
</tr>
<tr>
<td>SPLXPREF</td>
<td>AOSPLX_</td>
<td>Sysplex variables prefix</td>
</tr>
<tr>
<td>SPLXSTR</td>
<td>BMCAB</td>
<td>Coupling Fac structure name</td>
</tr>
<tr>
<td>UCVARS</td>
<td>NO</td>
<td>Uppercase var. names in Rules</td>
</tr>
</tbody>
</table>

Press END to save changes, CANCEL to cancel changes

Describing the fields

Descriptions of the fields on this panel follow:
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOOPTION</td>
<td>allows you to limit the licensed MainView AutoOPERATOR product components that are started during BBI-SS PAS initialization. When this parameter is not specified, all MainView AutoOPERATOR components with valid BMC passwords are activated at the time of BBI-SS PAS startup. Enter a "?" next to the keyword to display a list of the current options that you can edit. Default value is blank; valid values are ANV, TSH, CAO, IAO, SHA, QAO, MAO. For best results, perform a cold start of the BBI-SS PAS after you make changes to the AOOPTION parameter.</td>
</tr>
<tr>
<td>SUPREPLY</td>
<td>suppresses commands that are sent as replies to WTOR in the BBI Journal. Default value is NO; valid values are YES or NO. Specify YES to have commands suppressed from view in the BBI Journal; for example, if you specify YES, and an EXEC issues a "R 33,XYZ", the BBI Journal displays this reply as "R 33,SUPPRESSED". Note that only the local journal will still display the command as "R 33,XYZ".</td>
</tr>
<tr>
<td>IMFJNUM</td>
<td>specifies whether the variable IMFJNUM will be 5 digits in length with leading zeros or a variable length number without leading zeros. You must specify IMFJNUM=V to support JES job numbers greater than 99,999. Default value is V; possible values are 5 or V. Refer to “IMFJNUM option and seven-digit JES job numbers (z/OS version 1.2 and later)” on page 241 for more information.</td>
</tr>
<tr>
<td>Field name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MAXDLYQ</td>
<td>specifies the maximum concurrent number of delayed requests from Rules. The default is 100; valid values are 0 to 999. Specifying zero means no maximum is set. The maximum value is 999 or half the value of the MAXPQE parameter that is specified in the BBPARM member BBISSPxx member, whichever value is lower. A delayed request may be for a command or message. When the number of concurrent DELAYED requests reaches 60 percent of the MAXDLYQ threshold, the following message is issued: DY6160W xxxxxx Delayed Requests queued When the number of concurrent DELAYED requests reaches 75 percent of the MAXDLYQ threshold, the following message is issued: DY6175W xxxxxx Delayed Requests queued If the MAXDLYQ value is reached, no additional requests can be queued until the number drops below the specified threshold and the following message is issued: DY6199E Maximum Delay Request queued The MAXDLYQ threshold calculations are re-adjusted when the AAOPRMxx member is reset. The threshold is calculated every time a DELAYED request is queued. Delayed actions are not retained over a warm or cold restart of the BBI-SS PAS. Therefore if outstanding delayed actions exist when the BBI-SS PAS is restarted, those delayed actions are lost and are not re-queued when the BBI-SS PAS restarts. You can use the BBI command .DISPLAY DLY before you restart the BBI-SS PAS to review any delayed actions that have not yet been completed. Determine whether you should delay restarting the BBI-SS PAS or, restart the BBI-SS PAS but note that you need to reissue the delayed actions when the BBI-SS PAS restarts.</td>
</tr>
<tr>
<td>MSGJOBNM</td>
<td>specifies how MainView AutoOPERATOR should derive batch, Started Task, and TSO job names for MSG events The job name or the IMFOJOB variable can be used in the Rule Processor Selection Criteria panel while defining Rules. The following values are possible: ACTUAL: Use the job name as it is derived from the address space that creates the event. There are situations where this value might not match the address space that initiated the event (WTO). For example some JES3 messages will have a value of "CONSOLE". ACTUAL is the default value. ORIGIN: Use the job name as it is derived from the MVS control block (WQE). Specifying ORIGIN would result in a more accurate name of the issuer of the WTO.</td>
</tr>
<tr>
<td>SPLXVARS</td>
<td>specifies that the BBI-SS PAS supports sysplex variables Default value is N; valid values are Y(yes) or N(no).</td>
</tr>
<tr>
<td>SPLXPREF</td>
<td>specifies the prefix that denotes that the SHARED variable name is a sysplex variable Default value is AOSPLX_; valid values are 1 to 16 alphanumeric characters long. If you use the default setting, an example of a sysplex variable name would be AOSPLX_DB2STATUS</td>
</tr>
<tr>
<td>Field name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SPLXSTR</td>
<td>specifies the name of the XCF Structure that stores the sysplex variables. The XCF Structure resides in a Coupling Facility. Valid values can be 1 to 8 alphanumeric characters long. SPLXSTR uses the default value of the XCFGROUP option in BBISSPxx. BMC recommends that you avoid coding user-specified values for the XCFGROUP= and SPLXSTR= parameters and use the default values. The default value for XCFGROUP= is BMCAB and the default XCF Structure name will be MVAO_BMCAB.</td>
</tr>
<tr>
<td>UCVARS</td>
<td>specifies whether the Rules Processor should convert variable names to uppercase before resolving. The following values are valid: NO: do not make variable names uppercase before resolving the variable value YES: convert the variable name to uppercase before resolving Specify UCVARS=YES if you want the the Rules Processor to convert variable names to uppercase. Two passes are made when resolving compound variables, which might result in a mixed case name. If the variable name is mixed case, you must specify UCVARS=YES for that variable to be resolved. Note: When creating Rules that allow you to send events from MainView AutoOPERATOR to a BMC Impact Manager cell, be aware that the slot fields on the Event Action (BA) or Alert Action (AE) panels are case sensitive. Variable names specified on this panel are converted to uppercase before they are resolved when UCVARS=YES is specified.</td>
</tr>
</tbody>
</table>

Selecting Automation and Rule Set parameters

When you use the Select line command to select Automation and Rule Set from “Setting MainView AutoOPERATOR parameters” on page 81, Figure 23 on page 84 is displayed.

Figure 23: MainView AutoOPERATOR Automation and Rule SetParms panel

BMC Software ----- Automation and Rule Set Parms --------------	AutoOPERATOR		
COMMAND ===>	TGT --- BBSYSA		
DATE --- YY/MM/DD	DATE --- YY/MM/DD		
TIME --- 12:51:04	TIME --- 12:51:04		
RULESET ===>	(Enter ? for Rule Set list)		
RULESCAN ===>	I	I	Rule strategy-(First,All,Individual)
HONORMPF ===>	NO	NO	Honor MPF Suppression (Yes/No)
IMFDATE ===>	DDMMYYYY	DDMMYYYY	User Date Format
RULESAVE ===>	FIRST	FIRST	Save Options (FIRST, ORIGINAL, PROMPT)
RULEPROT ===>	NO	YES	Multi-user Rule Protection (Yes/No)
Press END to save changes, CANCEL to cancel changes			
Describing the fields

Descriptions of the fields on this panel follow:

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| RULESET | specifies one or more RULESETs to become active upon initialization of the BBI-SS PAS
You can specify the Rule Set name by the two character Rule Set suffix only or by specifying the complete Rule Set name.
Default value is 00.
Format of the statement is RULESET= xx for one set, or RULESET= (xx,yy,...,zz) for multiple sets. The two-character code is appended to AAORUL.
You can enter a question mark (?) to display a list of the current Rule Sets and you can add or delete Rule Set names as needed. |
| RULESCAN | specifies the automation strategy of F (FIRST), A (ALL), or I (INDIVIDUAL) to determine how Rule Sets and Rules are searched to match events
Valid values are as follows:
- F indicates only the first Rule with matching selection criteria is fired.
- A indicates Rules with matching selection criteria are fired.
- I indicates that each Rule Set can have its own (individual) automation strategy.
 Each Rule Set can be set with First or All.
This automation strategy is used when the BBI-SS PAS is either warm or cold started. |
| HONORMPF | specifies if the Rules Processor application honors MPF suppression
Default is N; valid values are Y(yes) or N(no).
The HONORMPF parameter setting determines whether messages are handled by the Rule Processor when MPF suppression is active. |
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| IMFDATE | specifies the format of the IMFDATE variable
The following list shows valid formats and an example of each:
 - YYYY/MM/DD; 2050/10/23
 - YYYYMMDD; 20501023
 - DD/MM/YYYY; 23/10/2050
 - DDMMYYYY; 23102050
 - MMDDYYYY; 10232050
 - MM/DD/YYYY; 10/23/2050
 - MMMDDYYYY; OCT232050
 - DDMMMMMYYY; 23OCT2050 |
| RULESAVE | specifies what happens when you save a Rule Set from the Rule Processor Detail Control panel
Valid options are as follows:
 - FIRST (the default) automatically saves the Rule Set in the first data set of the BBIPARM DD concatenation, regardless of the data set from which the Rule Set was read.
 - ORIGINAL saves the Rule Set in the data set from which it was originally read in the BBIPARM DD concatenation.
 - PROMPT lets you specify the data set (FIRST or ORIGINAL) to which to save the Rule Set. |
| RULEPROT | activates serialization on a Rule when it is edited, which prevents multiple users from updating the same Rule in the same BBI-SS PAS at the same time
When the parameter is not specified, the default is NO.
The following values are valid:
 - NO does not activate serialization when a Rule is edited.
 - YES activates serialization within the scope of each PAS. |

Selecting Operator Request parameters
When you use the Select line command to select Operator RequestParms from “Setting MainView AutoOPERATOR parameters” on page 81, Figure 24 on page 87 is displayed.

Figure 24: MainView AutoOPERATOR Operator Requests parameters panel

| BMC Software ------ Operator Request (OR) Parameters ----------- AutoOPERATOR |
COMMAND ===>	TGT ---- BBSYSA		
DATE ---- YY/MM/DD	TIME --- 13:17:18		
Member	Current		
OR ===>	N	N	Activate Operator Request (Yes/No)
MAXORSTG ===>	5	0	Maximum Virtual Storage for "OR"
ORDESC ===>	(Enter ? for Descriptor Code list)		
ORROUT ===>	(Enter ? for Route Code list)		
OREXC ===>	(Enter ? for excluded Message IDs)		
ORAPPL ===> DELETE	DELETE	Allow DELETE WTOR/Cancel Jobs	

Press END to save changes, CANCEL to cancel changes.

Describing the fields

Descriptions of the fields on this panel follow:

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| OR | specifies whether the operator request should be active
Default is N (no), which does not activate the Operator Requests application.
If you want to activate the Operator Requests application, you must specify OR=Y. |
| MAXORSTG | Specifies the maximum amount of virtual storage (in KB) that the Operator Request facility is allowed to use to track operator request messages.
Default value is 0; a value of 0 deactivates this control. Valid values range from 0 to 999999. |
| ORDESC | specifies the WTO descriptor codes for messages eligible for the Operator Request application
To not check descriptor codes (or, to accept all messages), specify ORDESC=0. The default is 1,2,11. Valid values are 0 through 16.
Enter a question mark (?) next to this keyword to display a list of the current value(s) and you can add or delete values as needed.
Messages must meet both ORROUT and ORDESC criteria to be accepted by Operator Request. |
| ORROUT | identifies the WTO route codes for messages eligible for the Operator Request application
The default is 0 and specifies that the OR application accept all messages regardless of the route code. A setting of 2,5 specifies that the OR application accepts messages of a 2 route code or a 5 route code. Valid values are 0 through 128.
Enter a question mark (?) next to this keyword to display a list of the current value(s) and you can add or delete values as needed.
Messages must meet both ORROUT and ORDESC criteria to be accepted by Operator Request. |
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OREXC</td>
<td>identifies full or partial operator messages that will be excluded from Operator Request (OR) tracking. Enter a question mark (?) next to this keyword to display a list of the current value(s) and you can add or delete values as needed. A maximum of 16 characters can be specified. You can use generics by specifying asterisks (*) or positional wildcard characters by using plus signs (+) in the value. You can also repeat this parameter. For example, specifying BBA means that all messages that begin with the characters BBA will be excluded from OR tracking. Note: BMC Software recommends that you consult with your MainView AutoOPERATOR customer support representative before implementing this parameter.</td>
</tr>
<tr>
<td>ORAPPL</td>
<td>allows you to limit the use of the line commands on the Operator Request panel. Default value is DELETE; valid values are DELETE or NODELETE. Refer to “BBPARM member AAOPRM00 parameters” on page 295 for more information.</td>
</tr>
</tbody>
</table>

Selecting Automation Logger application (AutoLog) parameters

When you use the Select line command to select AutoLog Parameters from “Setting MainView AutoOPERATOR parameters” on page 81, Figure 25 on page 88 is displayed.

Figure 25: MainView AutoOPERATOR Event Logging (AutoLog) parameters panel

<table>
<thead>
<tr>
<th>COMMAND ===></th>
<th>TGT --- BBSYSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE --- YY/MM/DD</td>
<td>TIME --- 08:45:44</td>
</tr>
<tr>
<td>Member</td>
<td>Current</td>
</tr>
<tr>
<td>ALOGEV ===></td>
<td>Y</td>
</tr>
<tr>
<td>ALOGACT ===> Y</td>
<td>Y</td>
</tr>
<tr>
<td>AOREPLAY ===> Y</td>
<td>Y</td>
</tr>
<tr>
<td>Press END to save changes, CANCEL to cancel changes</td>
<td></td>
</tr>
</tbody>
</table>

Describing the fields

Descriptions of the fields on this panel follow:
### Field name	Description
AOLOGEV | specifies one or more event types whose activity will be tracked by the Automation Logger application
Default value is NONE; valid values are ALL (all events are logged), ALRM, ALRT, BRC, CICS, CMD, DB2, EOM, EOS, EXT, IMS, JRNL, MQS, NVC, NVM, TIME, TLM, VAR.
To activate the Automation Logger application, you must specify at least one event type.
Enter a question mark (?) next to this keyword to display a list of the current values where you can add or delete event type names.

AOLOGACT | specifies whether a record of the actions taken by a Rule are sent to the Automation Logger application
To send a record of all actions taken by a Rule to the Automation Logger application, specify YES.
Default value is NO; valid values are YES or NO.

AOREPLAY | specifies whether to send Event Replay records to the MainView Logger where you can review (replay) them at a later time
Default value is NO; valid values are YES or NO.
This keyword is valid only if AOLOGEV is not set to NONE. Event Replay records will be saved only for the event types specified on the AOLOGEV statement.
The MVLOGSS parameter in BBPARM member BBISSP00 specifies the SSID of the MainView Logger for the EMLOG records.

Selecting IMS parameters

When you use the Select line command to select IMS parameters from “Setting MainView AutoOPERATOR parameters” on page 81, Figure 26 on page 90 is displayed.
Describing the fields

Descriptions of the fields on this panel follow:

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **IMFORGN** | specifies that the LOCAL variable IMFORGN is set to the IMS LTERM name for IMS command and response
 Default is the VTAM node name. |
| **IMSPLTIM** | specifies a user-defined timeout limit for waiting for a response from IMSplex commands that are issued from the Journal
 Default timeout limit is 30 seconds; valid values range from 5 to 9999 seconds.
 The IMSplex command timeout limit represents the maximum time to wait for a response from IMS.
 If a response is received from all IMS regions of the IMSplex before the timeout is reached, the response is displayed and waiting is terminated.
 If a response is not received from all IMS regions of the IMSplex before the timeout is reached, a partial response is displayed and the IMS Operations Manager terminates execution of the IMSplex command. |
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| IMSROUTE | Specifies the default routing for IMSplex commands issued from the MainView AutoOPERATOR Journal, Rules or EXECs. Valid values are ALL and LOCAL. Default is ALL. ALL: IMSplex commands are sent to all IMS regions of the IMSplex. LOCAL: IMSplex commands, issued without a ROUTE() keyword are sent only to the IMS region connected to the MainView AutoOPERATOR PAS. This parameter does not apply when:
- the ROUTE() parameter is specified with an IMSplex command
- the IMSPLEX() parameter on an IMSplex command from EXEC specifies IMSplex that does not include the IMS region connected to the MainView AutoOPERATOR PAS. |
<p>| IMSMSTIM | Specifies the maximum time to wait between receiving segments of IMS multisegment messages. Arrival of the final segment terminates the wait and the message is processed by the Rules processor. If the time is exceeded without receiving a final segment from IMS, the wait is terminated and any future segments are ignored. The delay may occur due to system heavy workloads, a lower dispatching priority of the IMS issuing the message, or other IMS processing. Default wait time is 5 seconds; valid values range from 1 to 999 seconds. Specify this parameter if Rules automation is not processing the complete IMS multisegment message, for example if only the first message segment is logged on the Journal. Note: Increasing the default value might create a delay of Rules-based automation for IMS multisegment messages. |
| IMSSHTIM | Specifies the internal time to wait for termination of the MainView AutoOPERATOR tasks in the IMS Control region address space during IMS shutdown. Default timeout limit is 2 seconds; valid values range from 1 to 999 seconds. Specify this parameter only if your IMS Control region takes unusually long to terminate and frequently experiences abend sA03 at shutdown. Note: Increasing the default value reduces the possibility of sA03 abends, but might extend the amount of time required for IMS to shut down. |</p>
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSAUTH</td>
<td>specifies whether to pass the user ID to IMS with every IMS command that MainView AutoOPERATOR issues. Valid values are as follows:</td>
</tr>
<tr>
<td></td>
<td>■ NONE (the default) does not pass the user ID.</td>
</tr>
<tr>
<td></td>
<td>■ USER passes the user ID.</td>
</tr>
<tr>
<td></td>
<td>Standard IMS command security rules will be applied. For commands that are issued from the User Address Space (UAS), the user ID is the issuer of the command. For commands that are issued from automation such as Rules and EXECs, the user ID value is the user ID that is associated with the MainView AutoOPERATOR PAS.</td>
</tr>
<tr>
<td></td>
<td>This parameter applies to:</td>
</tr>
<tr>
<td></td>
<td>■ Type-2 (IMSplex) commands</td>
</tr>
<tr>
<td></td>
<td>■ Type -1 for IMS DBCTL with DBCTLCMD=MVS</td>
</tr>
<tr>
<td></td>
<td>■ commands issued from the Journal</td>
</tr>
<tr>
<td></td>
<td>■ line commands from IMS OPERATOR displays</td>
</tr>
<tr>
<td></td>
<td>■ commands that Rules and EXECs issue</td>
</tr>
<tr>
<td></td>
<td>This parameter does not apply to IMS commands:</td>
</tr>
<tr>
<td></td>
<td>■ Type-1 for IMS DBCTL with DBCTLCMD=IMS</td>
</tr>
<tr>
<td></td>
<td>■ Type-1 for IMS DB/DC region</td>
</tr>
</tbody>
</table>

Note: This parameter is not related to MainView windows-mode or full-screen mode security.
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSCMDCN</td>
<td>Specifies whether a confirmation panel is displayed when you manually enter an IMS action command from MainView AutoOPERATOR views or from the Journal. Valid values are NO and YES:</td>
</tr>
<tr>
<td></td>
<td>- NO (the default) does not display a confirmation panel.</td>
</tr>
<tr>
<td></td>
<td>- YES: displays a confirmation panel for all IMS action commands that you issue manually from MainView AutoOPERATOR views, or from the Journal.</td>
</tr>
<tr>
<td></td>
<td>Note: A confirmation panel is displayed for both Type-1 and Type-2 commands. A confirmation panel is not displayed for non-action commands such as <code>DISPLAY</code> and <code>QUERY</code>, or for commands issued by automation (such as Rules or EXECs). Ensure that the User Address Space (UAS) is locally connected to the MainView AutoOPERATOR PAS where this parameter is specified.</td>
</tr>
<tr>
<td>IMSPLAUD</td>
<td>Specifies whether MainView AutoOPERATOR and MainView for IMS version 5.1 and later issues audit messages to the Journal for all IMSplex (type-2) commands. Valid values are NO and YES:</td>
</tr>
<tr>
<td></td>
<td>- NO: (the default) audit messages are not issued.</td>
</tr>
<tr>
<td></td>
<td>- YES: audit messages, containing the user ID, are issued to the Journal for all IMSplex commands. For commands that originate from the user address space (UAS), the user ID is the issuer of the command. For commands that MainView AutoOPERATOR automation (such as Rules and EXECs) issues, the user ID is the MainView AutoOPERATOR PAS user ID.</td>
</tr>
<tr>
<td>IMSOMEX</td>
<td>Specifies whether this PAS should receive IMSplex (type-2) commands from the AutoOPERATOR IMS OM Input user exit. Valid values are NO and YES:</td>
</tr>
<tr>
<td></td>
<td>- NO: The AutoOPERATOR IMS OM Input user exit does not broadcast IMS Type-2 commands to this PAS. IMP event type Rules do not fire.</td>
</tr>
<tr>
<td></td>
<td>- YES: (the default) when the MainView AutoOPERATOR for IMS product is active, the MainView AutoOPERATOR IMS OM Input user exit broadcasts IMS Type-2 commands to this PAS and IMP event type Rules will capture and automate these commands.</td>
</tr>
</tbody>
</table>
Field name | **Description**
---|---
DBCTLORG | specifies whether the Journal logs IMS DBCTL commands with the origin of who issued the commands. Valid values are NO and YES:
- NO: (the default) the Journal logs IMS DBCTL commands with only the origin of the DBCTL job name.
- YES: the Journal logs IMS DBCTL commands with the origin as the name of the command issuer, in addition to logging the commands with the originating DBCTL job name.

For commands that are issued from the User Address Space (UAS), the origin is the TSO user ID. For automation-issued commands, such as Rules and Rule-initiated EXECs, the origin is the event-originating job name.

This parameter applies to the following types of IMS DBCTL commands that are:
- Issued from the Journal
- Line commands from IMS OPERATOR displays
- Issued by Rules and EXECs
- Issued from MainView for IMS views

Selecting WebSphere MQ parameters

When you use the Select line command to select **WebSphere MQ** from “Setting MainView AutoOPERATOR parameters” on page 81, Figure 27 on page 94 is displayed.

Figure 27: WebSphere MQ panel

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND</td>
<td>WebSphere MQ</td>
</tr>
<tr>
<td></td>
<td>AutoOPERATOR</td>
</tr>
<tr>
<td>TGT</td>
<td>AOAO</td>
</tr>
<tr>
<td>DATE</td>
<td>YY/MM/DD</td>
</tr>
<tr>
<td>TIME</td>
<td>09:37:21</td>
</tr>
<tr>
<td>Member</td>
<td>Current</td>
</tr>
<tr>
<td>AutoOPERATOR for WebSphere MQ:</td>
<td></td>
</tr>
<tr>
<td>MQEV</td>
<td>(Enter ? for MQ Event list)</td>
</tr>
<tr>
<td>MQGINHIB</td>
<td>JRNL</td>
</tr>
<tr>
<td>MQSHARE</td>
<td>JRNL</td>
</tr>
<tr>
<td>MQEVLPRC</td>
<td></td>
</tr>
<tr>
<td>QAQIUS</td>
<td>N</td>
</tr>
<tr>
<td>MQALTUSR</td>
<td>N</td>
</tr>
<tr>
<td>MQAUPRMS</td>
<td>N</td>
</tr>
<tr>
<td>Press END to save changes, CANCEL to cancel changes</td>
<td></td>
</tr>
</tbody>
</table>

Describing the fields

Descriptions of the fields on this panel follow:
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **MQEV** | specifies that MainView AutoOPERATOR for WebSphere MQ should automatically enable instrumentation events for a queue manager during connection if it is not already enabled. You can specify that all, none of selected events are enabled. When you specify multiple event types, you must code them consecutively, without using blank spaces or commas (does not apply if you are specifying Y or N). Valid values are as follows:
| N: do not enable any events
| Y: enable all events
| S: enable start/stop (strstpev) events
| L: enable local (localev) events
| I: enable inhibit (inhibtev) events
| P: enable performance (perfmev) events
| R: enable remote (remoteev) events
| F: enable configuration (configev) events
| M: enable command (cmdev) events
| C: enable channel (chlev) events
| V: enable ssl (sslev) events
| B: enable bridge (bridgeev) events |
| **MQGINHIB** | specifies the action MainView AutoOPERATOR should take when MainView AutoOPERATOR attempts to listen to a queue which is defined as GET(DISABLED). Possible settings are:
| JRNL: Issue a message to the BBI Journal stating that MainView AutoOPERATOR cannot listen to the queue.
| WTO: Issue a write-to-operator (WTO) message stating that MainView AutoOPERATOR cannot listen to the queue.
| IGNORE: Take no action.
| ALTER: Alter the queue to GET(ENABLED). |

The default value is NO.
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| MQNSHARE | specifies the action MainView AutoOPERATOR should take when MainView AutoOPERATOR attempts to listen to a queue which is defined as NOSHARE. Possible settings are:
 JRNL: issue a message to the BBI Journal stating that MainView AutoOPERATOR cannot listen to the queue.
 WTO: issue a write-to-operator (WTO) message stating that MainView AutoOPERATOR cannot listen to the queue.
 IGNORE: take no action.
 ALTER: alter the queue to share.
 The default value is JRNL. |
| MQEVLPRC | specifies the name of the WebSphere MQ Event Listener PROC
 Do not use this parameter if the WebSphere MQ Event Listener is not required. Refer to the *MainView AutoOPERATOR for WebSphere MQ Installation and User Guide* for more information about the WebSphere MQ Event Listener and coexistence of MainView AutoOPERATOR and other BMC Software products that require the WebSphere MQ event queues. |
| QALIAS | specifies whether MainView AutoOPERATOR for WebSphere MQ should open and listen for messages on QALIAS type queues
 Note: If you specify an alias queue name in BBPARM AAOMQL00, in addition to specifying a base queue, any Rules that you have written for the same message for the base queue might also fire for the alias queue.
 For example, if the selection criteria for a Rule for messages going to the base queue does not specifically contain the queue name then the Rule might fire twice; once for the base queue and once for the alias queue. |
| MQALTUSR | specifies an AlternateUserid to be specified when issuing MQSC or PCF MQ commands from MainView AutoOPERATOR
 The user ID is used when MQ commands are issued from an EXEC or from a Rule.
 There is no default; valid values are as follows:
 RACF: specifies that the security ID of the BBI-SS PAS is used as the AlternateUserid for commands
 user ID: specifies that a valid user ID is used as the AlternateUserid
 This global parameter can be overridden with the ALTUSER() | AU() parameter of the IMFEXEC CMD TYPE(MQS) command or as an action from a MQ initiated Rule. When you use this parameter the MQ PUT1 options will include MQOO_ALTERNATE_USER_AUTHORITY, MQPMO_DEFAULT_CONTEXT and MQPMO_ALTERNATE_USER_AUTHORITY and the AlternateUserid will be placed in the object descriptor.
 Refer to the *MainView AutoOPERATOR for WebSphere MQ Installation and User Guide* for more information about the IMFEXEC CMD TYPE(MQS) and issuing MQ commands from Rules. |
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQAUPRMS</td>
<td>specifies whether individual MQSC or PCF MQ commands that are issued from EXECs or Rules can use the ALTUSER parameter to override the global parameter MQALTUSR (when specified) and specify an AlternateUserId. When no value is specified for the MQALTUSR parameter, this parameter allows or denies the use of AlternateUserId for MQ command. Default value is NO, which means that the ALTUSER value is ignored.</td>
</tr>
</tbody>
</table>

Modifying TapeSHARE parameters in AAOTSP.xx

BBPARM members AAOTSP.xx contain the parameters that you can modify to customize the way that the MainView AutoOPERATOR TapeSHARE component automates the sharing of tape devices among your z/OS images.

Remember, the MainView AutoOPERATOR TapeSHARE component is designed to perform tape sharing automation without you needing to customize any of these parameters. For more information about TapeSHARE and how these parameters affect TapeSHARE, refer to the MainView AutoOPERATOR Options User Guide.

To modify an AAOTSP.xx member, type S in the **Cmd** field of the Dynamic Parameter Manager panel.

Figure 28 on page 97 shows an example of the panel.

Figure 28: Dynamic Parameter Manager panel—example 5

Use this panel to see a list of all the AAOALSxx, AAOARPxx, AAOEXPxx, AAOPRMxx, and AAOTSPxx members in BBPARM.

From this panel, you can

- use the line commands; refer to Table 10 on page 58 for more information
- use the primary command ADD to add a new member

To add a new member or members, type the following command on the COMMAND line, where xx is a new suffix for a new member:

```
ADD AAOTSP:xx
```

Customizing TapeSHARE

Use the TapeSHARE Parameters panel to see and modify parameters for the TapeSHARE application and control how TapeSHARE automates the sharing of tape devices among your z/OS images.

Figure 29 on page 98 shows an example of this panel.

Figure 29: TapeSHARE Parameters panel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Member</th>
<th>Current</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTNER</td>
<td></td>
<td>* LIST *</td>
<td>(Enter ? for a partner list)</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>120</td>
<td>120</td>
<td>Subsystem response timeout value</td>
</tr>
<tr>
<td>RETRYCNT</td>
<td>2</td>
<td>2</td>
<td>Times to retry a take request</td>
</tr>
<tr>
<td>RETRYINT</td>
<td>30</td>
<td>30</td>
<td>Interval between take retries</td>
</tr>
<tr>
<td>ACTION</td>
<td>DEFAULT</td>
<td>DEFAULT</td>
<td>Allocation failure action</td>
</tr>
<tr>
<td>NOGIVE</td>
<td></td>
<td></td>
<td>Enable / Force preferencing</td>
</tr>
<tr>
<td>NOTAKE</td>
<td></td>
<td></td>
<td>(Enter ? for a device list)</td>
</tr>
<tr>
<td>PREF</td>
<td>NO</td>
<td>NO</td>
<td>Dealloc procedure name</td>
</tr>
<tr>
<td>PREFDEV</td>
<td></td>
<td></td>
<td>Start / Stop TapeSHARE tracing</td>
</tr>
<tr>
<td>FREE</td>
<td>DEALLOC</td>
<td>DEALLOC</td>
<td>Dealloc procedure name</td>
</tr>
</tbody>
</table>

Press END to save changes, CANCEL to cancel changes

This panel provides two columns of data:

- on the left, the value of the parameters in the AAOTSP xx member for the target BBI-SS PAS

You can enter your modifications on this side of the panel.

- on the right, the value of the parameters that are currently in effect for the target BBI-SS PAS; these values cannot be edited

The first time you bring up this panel, the display-only fields match the input fields and default values are shown in both columns.

Describing the fields

A description of the fields on this panel follows.
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| PARTNER | specifies a BBI-SS PAS name (that can be associated with either one or a range of tape devices) that is a TapeSHARE PLEX partners. You also can include with the BBI-SS PAS name, the device address (or a range of device addresses) that TapeSHARE cannot GIVE to the named partner. See examples below.
Example:
```
PARTNER=SYSA
```
In this example, SYSA is a partner to this image.
Example:
```
PARTNER=SYSC,0123
```
In this example, SYSC is a partner to this image and the device whose address is 0123 cannot be GIVEN to partner SYSC.
Example:
```
PARTNER=SYSB,0120-0127
```
In this example, SYSB is a partner to this image and the devices whose addresses fall between 0120 and 0127 cannot be GIVEN to partner SYSB.
If no values are associated with this parameter, TapeSHARE assumes that any BBI node defined in BBINOD00 member is a partner within a TapeSHARE PLEX. |
| TIMEOUT | specifies the amount of time (in seconds) to wait for the partners to respond to a request for devices.
When this time is reached and a successful GIVE has not been completed, an Allocation Failed Event occurs unless you have specified a number of retries on the RETRYCNT parameter. See below.
Example:
```
TIMEOUT=20
```
Valid values are 0 - 999 seconds and 120 seconds is the default. |
| RETRYCNT | specifies the number of times that TapeSHARE attempts to satisfy a request for devices after an initial attempt has failed.
For example, suppose this system’s request for devices is not satisfied and three retries are specified. TapeSHARE attempts three more times to satisfy this request for devices.
Example:
```
RETRYCNT=3
```
This parameter is used in conjunction with the RETRYINT parameter that specifies how long TapeSHARE waits between retry attempts.
Valid values are 0-10 retries and 2 is the default. |
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
</table>
| RETRYINT | specifies the number of seconds that TapeSHARE waits for devices between attempts after an initial attempt has failed. For example, suppose:
 - the RETRYCNT= parameter is set to 3 retries
 - the RETRYINT= parameter is set to 45 seconds
 - the system’s request for devices is not satisfied
 TapeSHARE waits 45 seconds after the initial attempt fails and retries to satisfy the request (retry attempt 1). If this attempt fails, TapeSHARE waits another 45 seconds and retries (attempt 2). If this attempt also fails, TapeSHARE waits another 45 seconds and retries (attempt 3). Should all three attempts fail, an Allocation Failed Event occurs and the specified action is taken.
 Example:
 \[\text{RETRYCNT}=3\]
 Valid values are 0 - 300 seconds and 30 is the default. |
| ACTION | specifies the action that TapeSHARE should take when an Allocation Failed Event occurs because a successful GIVE cannot be performed. Possible values and their definitions are as follows:
 - DEFAULT: specifies that the installation’s default action is to occur
 - WTOR: issues a WTOR to the operator
 - If the site does not have a defined default action, this action is the default.
 - CANCEL: cancels the job
 - NOHOLD: specifies that the job waits without holding resources
 - HOLD: specifies that the job waits while holding resources
 Example:
 \[\text{ACTION}=\text{WTOR}\] |
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOGIVE</td>
<td>specifies a list of device addresses (or a range of addresses) that should not be GIVEN to other request devices to TAKE.</td>
</tr>
<tr>
<td></td>
<td>Note: This action does not prevent you from manually GIVING a NOGIVE device.</td>
</tr>
<tr>
<td></td>
<td>If a device address is not associated with this parameter, TapeSHARE assumes that no devices are dedicated to this image.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>NOGIVE=0123</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>NOGIVE=0120-012F</td>
</tr>
<tr>
<td></td>
<td>You also can use this parameter in conjunction with the NOTAKE parameter. By specifying a device address on both these parameters, the device will be a NOGIVE-NOTAKE device and it will be excluded completely from TapeSHARE control.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>NOGIVE=0123</td>
</tr>
<tr>
<td></td>
<td>NOTAKE=0123</td>
</tr>
<tr>
<td></td>
<td>If the device address 0123 is specified on both the NOGIVE and NOTAKE parameters, the 0123 is completely excluded from TapeSHARE control.</td>
</tr>
<tr>
<td></td>
<td>TapeSHARE does not attempt to GIVE or TAKE this device.</td>
</tr>
<tr>
<td></td>
<td>The default value is none.</td>
</tr>
<tr>
<td>NOTAKE</td>
<td>specifies a list of device addresses (or a range of addresses) that this image should not TAKE when a request for resources is made.</td>
</tr>
<tr>
<td></td>
<td>TapeSHARE on this image will not accept (TAKE) the devices specified. If a value is not associated with this parameter, TapeSHARE assumes that it can accept any tape devices when a request for resources is made.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>NOTAKE=0123</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>NOTAKE=0120-012F</td>
</tr>
<tr>
<td></td>
<td>You also can use this parameter in conjunction with the NOGIVE parameter. By specifying a device address on both these parameters, the device will be a NOGIVE-NOTAKE device and it will be excluded completely from TapeSHARE control.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>NOGIVE=0123</td>
</tr>
<tr>
<td></td>
<td>NOTAKE=0123</td>
</tr>
<tr>
<td></td>
<td>If the device address 0123 is specified on both the NOGIVE and NOTAKE parameters, the 0123 device is completely excluded from TapeSHARE control.</td>
</tr>
<tr>
<td></td>
<td>TapeSHARE does not attempt to GIVE or TAKE this device.</td>
</tr>
<tr>
<td></td>
<td>The default value is none.</td>
</tr>
<tr>
<td>Field name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| PREF | specifies whether Preferencing is activated
If activated, TapeSHARE uses the devices identified on the PREFDEV parameter for only the operation (input or output) identified for that device.
This parameter must be used in conjunction with the PREFDEV parameter.
Specifying YES turns on Preferencing in Guideline mode. For example, in Guideline mode, if SYSA needs an output-only device but only input-only devices are available, the input-only device is GIVEN to SYSA.
Specifying FORCE turns on Preferencing in Force mode. If Force mode were in place, the input-only device would not be GIVEN to SYSA and an Allocation Failure Event would occur.
Example:
PREF=YES
or
PREF=NO
or
PREF=FORCE |
| PREFDEV | specifies a tape device address (or a range of tape device addresses) followed by either an I for input-only or an O for output-only; see examples
This parameter must be used in conjunction with the PREF parameter.
With the PREF activated, when a device is needed for an output-only operation, TapeSHARE attempts to choose from those devices identified by this parameter as output-only.
If a value is not associated with this parameter, TapeSHARE will not invoke device preferencing.
Example:
PREFDEV=01A0-01A3,I
or
PREFDEV=0130,O
or
PREFDEV=0150-015F,O
Default value is none. |
| FREE | For use with MVS SP4.x only
specifies a 1- to 8-character deallocation procedure which starts after TapeSHARE issues the VARY OFFLINE command to GIVE a device to another image
Scheduling this procedure triggers deallocation processing in the system GIVING the device and places the device in an OFFLINE state.
The default deallocation name is DEALLOC. |
Dynamically implementing new settings with the Activate command

The Dynamic Parameter Manager Activate line command can be used to dynamically change the BBPARM members currently in use by a BBI-SS PAS without restarting the BBI-SS PAS.

The command is specified on the main Dynamic Parameter Manager panel (see examples in “Accessing the Dynamic Parameter Manager” on page 56 and “Modifying ALERT thresholds in AAOALSxx ” on page 60.)

Figure 30 on page 103 shows the Confirm Parameter Activation panel that is displayed after the Activate line command is entered.

Figure 30: Confirm Parameter Activation panel

Automation is suspended briefly while the BBPARM member is read and new control blocks are built. Other products operating in the target BBI-SS PAS continue to operate.

Describing the fields

Descriptions of the fields on this panel follow:

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRACE</td>
<td>specifies that diagnostic information be written to the BBITST DD statement</td>
</tr>
</tbody>
</table>

Example:

```
TRACE=NO
```

If YES is specified, the BBITST DD statement must appear in the BBI-SS PAS startup JCL for information to be written to it (see BBSAMP member SSJCL).
<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Target</td>
<td>is the ID of the current target</td>
</tr>
<tr>
<td>Current SSID</td>
<td>is the ID of the current BBI-SS PAS</td>
</tr>
<tr>
<td>Current Parm</td>
<td>is the name of the member of BBPARM that was used to build the current</td>
</tr>
<tr>
<td></td>
<td>parameters in the BBI-SS PAS</td>
</tr>
<tr>
<td>Replaced by</td>
<td>is the name of the BBPARM member you want to use to build the new set of</td>
</tr>
<tr>
<td></td>
<td>parameters in the BBI-SS PAS</td>
</tr>
<tr>
<td>Last update</td>
<td>is the date and time of the last change to this member</td>
</tr>
<tr>
<td>User</td>
<td>is the user ID that made the last change to this member</td>
</tr>
</tbody>
</table>
The MainView Logger is a stand-alone logging facility that allows any BMC product, or the MainView Infrastructure itself, to log important messages or events in a centralized repository. MainView AutoOPERATOR uses the MainView Logger in a variety of ways. For example, MainView AutoOPERATOR can write event records to Aux Log if warranted when a Rule fires for an event.

Enabling logging to MainView Logger

Edit the MVLOGSS parameter in BBPARM member BBISSPxx to write Aux Log events to the Mainview Logger.

Note

If you are using the default logger in the LPAR, you do not need to edit the MVLOGSS parameter. However, if you want to write records to a specific logger in the LPAR other than the default logger, you must use the MVLOGSS parameter to specify the SSID that you want to use.

Aux Log uses a product-specific logspace to hold the Aux Log data. The default name for this logspace is AOAUXLOG.

To enable Aux Log logging

1. Create the product-specific logspace in the MainView Logger task.

 For more information about this process and creating the required datasets for the logspace, see the MainView Customization Reference. To review a sample logspace definition, see BBPARM member LOGGERAO.
Tip

Use the default name AOAUXLOG for the product-specific logspace. Using AOAUXLOG can minimize the number of changes that you need to make. Using the default also gives you more flexibility in managing data retention separately from other MainView Logger data.

However, if you have multiple MainView AutoOPERATOR product-specific logspaces, use a logspace name other than the default. An example is if you use a separate logspace for each BBI-SS PAS that writes data; specifying a logspace name other than the default enables you to manage data retention separately.

Only one instance of a product-specific logspace name can be active in an LPAR at one time. To specify a name other than the default, you must code the AUXLOGNM= keyword in the BBI-SS PAS BBPARM member AAOPRMxx.

2 Start (or restart) MainView Logger and verify that the MainView AutoOPERATOR product-specific logspace is initialized.

For more information about setting up, enabling, starting, and using MainView Logger, see the MainView Administration Guide and the MainView Customization Reference.

Accessing the AUXLOG view

The following procedure describes accessing the AUXLOG view.

1 Enter option P on the MainView AutoOPERATOR primary option menu to enter windows-mode.

2 Select AUXLOG from the EZAO menu or type AUXLOG on the COMMAND line, and press Enter.

The following is an example of the AUXLOG view:
For more information about the AUXLOG view, see the online Help.
MVS console considerations

This chapter describes MVS console considerations.

Overview

MVS commands can be issued by MainView AutoOPERATOR terminal session (TS) users, EXECs, or Rules. When MVS commands are issued by TS users and from EXECs, the TS user or the EXEC can also wait for and inspect the response from the command.

Extended MCS (EMCS) consoles allow MainView AutoOPERATOR to issue MVS command and inspect the responses from these commands.

The use of consoles is not a consideration for MVS commands issued from Rules because MainView AutoOPERATOR Rules never expect a response. However, some commands issued by TS users and EXECs require a response to the command and therefore, require a MVS console.

For more information about how EXECs use consoles, refer to the MainView AutoOPERATOR Advanced Automation Guide where the IMFEXEC CMD statement is documented.

What extended MCS consoles (EMCS) are

EMCS consoles are identified by an 8-character name and a 4-byte ID.

Note
With versions of z/OS earlier than 1.8, EMCS also could have an optional 1-byte console ID known as a Migration ID. With z/OS release 1.8 and later, EMCS consoles do not support 1-byte Migration IDs.

Upon startup, MainView AutoOPERATOR dynamically allocates EMCS consoles named with the format
SSID$qqnn

where

SSID

is the subsystem ID (SSID) of the BBI-PAS subsystem

qq

is the 2-character value from the BBPARM member BBISSP00 parameter CONSQUAL=qq

The default value is 00. When there are BBI-PASs with the same SSID in a sysplex, the CONSQUAL parameter allows you to create unique EMCS console names for MainView AutoOPERATOR PASs that use identical SSIDs. Supported characters for the CONSQUAL value include letters A through Z, numbers 0 through 9, and the characters at sign (@), pound sign (#) and dollar sign ($).

nn

is a number from 1 to 0099 that represents the total number of EMCS consoles created

The nn value is derived from the 2-digit value from the BBPARM member BBISSP00 parameter CONSOLES=nn.

Example

SSID=ABCD, CONSQUAL=not-specified, CONSOLES=2

results in the following three EMCS consoles being activated:

ABCD0000

ABCD0001

ABCD0002

SSID=DEFG, CONSQUAL=34, CONSOLES=2

result in the following three EMCS consoles being activated:

DEFG3400

DEFG3401

DEFG3402
WARNING

You must ensure no other application allocates consoles with the same names or MainView AutoOPERATOR will encounter an error when attempting to activate these consoles.

Ensure that all BBI-PASs in a sysplex must have unique SSIdqqn names. It is recommended all BBI-PASs have unique SSIDs even across sysplexes.

MainView AutoOPERATOR uses the first EMCS console allocated, SSID0000, to issue MVS commands without response, and therefore console SSID0000 is known as the no-response console.

To allocate the next group of EMCS consoles, you must enter the number of additional no-response consoles in BBPARM member BBISSP00 with the CONSOLES parameter.

Refer to the MainView Customization Reference for more information about specifying values for the CONSOLES and MIGCONS parameters in BBPARM member BBISSP00.

Determining how many consoles to allocate

This section describes how to determine how many consoles MainView AutoOPERATOR needs to allocate to function effectively.

EMCS consoles are a shared resource. MainView AutoOPERATOR allocates an EMCS console to an EXEC when it is scheduled and also when a TS user issues an MVS command, an EMCS console is allocated for the duration of the MVS command. In both these cases, the console is in use until the command response has been received or the time out period expires.

Generally a small number of EMCS consoles can satisfy the needs of many EXECs and TS users. If an EXEC requires an EMCS console and all of the consoles are currently in use, the EXEC waits until one becomes available.

For best performance

1 Determine the maximum number of EXECs that will issue MVS commands concurrently.

 Note

 The optimum number of EXECs threads is typically the lowest number needed to provide adequate throughput for your workload.

2 Determine the maximum number of TS users that are likely to issue MVS commands concurrently.
Add these two numbers.

Specify the total number in the CONSOLES parameter in member BBISSP00.

For example if you anticipate total of 5 EXECs and 2 TS users might all issue a MVS command simultaneously, in BBPARM member BBISSP00 specify

CONSOLES=7

Note
The Continuous State Manager (CSM) application requires a minimum of three EMCS consoles.

CICS considerations

If you plan to issue commands to CICS from a MVS console, that console must be defined to CICS by using the Resource Definition Facility (RDF) or by using the CICS Autoinstall process.

When you dynamically define MVS consoles to CICS using the CICS Autoinstall Facility, in most cases the CICS Autoinstall Facility removes any need to use the CMDCONS parameter in BBPARM member BBISSP00.
Propagating enqueues to other MVS systems

Using the IMFEXEC command VENQ in REXX EXECs and CLISTs results in MVS enqueues for resources with a major name of BBIUSER and a minor name of the user-specified value. Therefore, you must ensure that SYSTEMS enqueues with the major name BBIUSER are propagated to all members of the Global Resource Serialization (GRS) complex.

In particular, if you use the Computer Associates (CA) product MIM (Multi Image Manager), you must verify that SYSTEMS enqueues with the major name BBIUSER are propagated. Because you might have CA-MIM configured to downgrade SYSTEMS enqueues automatically, which prevents the BBIUSER enqueues from being propagated to other MVS systems.

If you use the CA-MIM product, CA-MIM customer support can help you verify that SYSTEMS enqueues with the major name BBIUSER are being correctly propagated to all MVS systems.
Implementing TapeSHARE

This chapter describes how to implement the TapeSHARE for MainView AutoOPERATOR component. Some steps are optional.

Overview

TapeSHARE runs in a BBI-SS PAS and an image can have only one BBI-SS PAS where TapeSHARE is installed. Steps 1 and 2 are required and they must be performed on every BBI-SS PAS within the TapeSHARE PLEX.

Note
To use TapeSHARE, you must make sure the z/OS Allocated/Offline Device Exit is not specified on any image where TapeSHARE will run. TapeSHARE is defined dynamically as an Allocated/Offline Device Exit to z/OS when it initializes.

Prerequisites

To use TapeSHARE, the only prerequisites are that you have a valid MainView AutoOPERATOR for z/OS password key and that you have a password key for the TapeSHARE for MainView AutoOPERATOR component. See “Step 1: Entering the password key for TapeSHARE” on page 115 for more information about password keys.

Step 1: Entering the password key for TapeSHARE

Use the following procedure to enter the password key for TapeSHARE.
1 TapeSHARE requires that you have a password key to use it. Refer to the Installation System User Guide for information about how to install and activate the passwords.

2 Go to “Step 2: Activating TapeSHARE” on page 116.

3 Repeat these steps for every BBI-SS PAS that is a partner in the TapeSHARE PLEX as part of the TapeSHARE PLEX installation.

Step 2: Activating TapeSHARE

After the password key is implemented, all you need to do is restart the BBI-SS PAS and TapeSHARE is activated for that image. *You do not have to restart z/OS.*

For every image that you want to include in a TapeSHARE PLEX, you must add a password key for that image and restart the BBI-SS PAS.

Using TapeSHARE in its default state

TapeSHARE is designed for you to install and use in its out-of-box default state.

If you choose to use TapeSHARE in its default state, every BBI node defined in the BBINOD00 member with a TapeSHARE installed will be considered a partner in the TapeSHARE PLEX.

For more information about what values are used in the default state, refer to “Modifying TapeSHARE parameters in AAOTSPxx ” on page 97.

Step 3: Securing TapeSHARE (optional)

Complete this optional step if you decide to secure who has access to the TapeSHARE for MainView AutoOPERATOR component.

Security for all MainView AutoOPERATOR options is described in the BMC Software document MainView Security Reference Guide.

Securing access to TapeSHARE is the same as securing access to any of the MainView AutoOPERATOR applications, which is described in the MainView Security Reference Guide manual.

The resource name for securing access to the TapeSHARE component is prefix.ssid.AAO.target.TAPSHR.
After TapeSHARE is installed

After TapeSHARE is installed, it can perform all of your tape device sharing without ever performing any customization steps. Refer to the MainView AutoOPERATOR Options User Guide for information about how to customize and use TapeSHARE.
Implementing Automatic Restart Manager (ARM)

This chapter describes implementing Automatic Restart Manager (ARM).

Overview

The Automatic Restart Manager (ARM) is an IBM facility that allows the IBM MVS/ESA product to automatically restart Started Tasks (excluding TSO users) after abnormal termination.

By implementing support for ARM, you can ensure that MainView AutoOPERATOR will be restarted quickly and automatically after an abend with no operator intervention required.

Previously, to ensure MainView AutoOPERATOR availability, you had to use a second MainView AutoOPERATOR to monitor the primary MainView AutoOPERATOR subsystem or use an outboard processing facility. If the primary MainView AutoOPERATOR abended, user-defined automation routines in the secondary MainView AutoOPERATOR (or outboard facility) would attempt to restart MainView AutoOPERATOR.

ARM eliminates the need for a secondary MainView AutoOPERATOR system (or outboard) to monitor MainView AutoOPERATOR availability and can simplify MainView AutoOPERATOR restarts by allowing MVS to monitor and restart MainView AutoOPERATOR.

Implementation considerations

To implement ARM support for MainView AutoOPERATOR, you must modify the ARMPOLCY parameter in BBPARM member BBISSP00 (see “Enabling ARM support” on page 121). The following choices are available:
- Do not implement ARM support.
- Implement ARM support with the default ARM policy.
- Implement ARM support with your own user-designed policy.

Implementing ARM support: default ARM policy

The default ARM restart policy is that ARM attempts to restart an abended Started Task up to three times in a five-minute interval. After three attempts and the Started Task has still failed to restart, ARM stops attempting restarts and a message is written to SYSLOG.

Therefore, if you choose to use the default ARM policy for MainView AutoOPERATOR, ARM will attempt to restart an abended MainView AutoOPERATOR subsystem up to three times in a five-minute interval.

The default ARM policy uses the same start command that was used to start the MainView AutoOPERATOR subsystem originally. After the third attempt, if MainView AutoOPERATOR has not successfully restarted, a message is written to SYSLOG and restart attempts stop.

If you decide that ARM should perform more restarts or perform them over a different period of time, you can write your own ARM restart policy. Refer to “Implementing ARM support: creating a user-defined policy” on page 120.

Implementing ARM support: creating a user-defined policy

You might already have an ARM restart policy in place or you can create your own ARM restart policy.

To create your own policy, refer to the IBM publication *Setting Up a Sysplex*. In either case, MainView AutoOPERATOR provides support for a user-defined ARM restart policy. “Enabling ARM support” on page 121 describes how to enter the name of a user-defined ARM restart policy in BBPARM member BBISSP00.

Note

Only one ARM policy can operate in an z/OS image at one time.
Enabling ARM support

To enable ARM support, edit the BBPARM member BBISSP00 and specify

\[\text{ARMPOLCY=} \{\text{NO|YES}\text{|xxxxxxxx}\} \]

where valid values are

- **NO**: specifies that the BBI-SS PAS will not use the ARM facility; the default setting
- **YES**: specifies that the BBI-SS PAS will use the ARM default restart policy
 The default ARM restart policy is that ARM will restart an abended address space up to three times within five minutes. If the address space fails to restart after the third attempt, a message is written to the SYSLOG and the address space remains unstarted.
- **xxxxxxxx**: Specifies a 1- to 8-character name of a user-created policy to be used to control BBI-SS PAS restarts

When you have completed modifying the ARMPOLCY parameter, restart the BBI-SS PAS. Either a warm start or a cold start will cause the new ARM policy to be recognized.

The *MainView Customization Reference* describes how to implement ARM support during manual customization.

Stopping MainView AutoOPERATOR when ARM is enabled

You might find that you need to stop MainView AutoOPERATOR when ARM is enabled and you do not want ARM to restart MainView AutoOPERATOR. To stop (or cancel) MainView AutoOPERATOR without ARM attempting a restart:

- Use the `STOP|P` command for a normal shutdown of MainView AutoOPERATOR; for example:

 \[P \text{ ao_ssid} \]
Use the CANCEL | C or FORCE command if you unexpectedly need to cancel MainView AutoOPERATOR; for example:

C ao_ssid

or

FORCE ao_ssid

where ao_ssid is the subsystem ID of the MainView AutoOPERATOR that you want to stop or cancel.
Implementing support for MPF

This chapter describes how MainView AutoOPERATOR can coexist with the MVS Message Processing Facility (MPF). If your site does not use MPF, you can skip this chapter.

Overview

The MVS Message Processing Facility (MPF) allows you to modify the attributes of write-to-operator messages (WTOs). For example, with MPF you can modify the appearance of a WTO (such as its color and highlighting) and suppress messages from consoles.

Previous releases of MainView AutoOPERATOR provided the HONORMPF=(YES | NO) parameter, which determined how MainView AutoOPERATOR automated WTOs with the MPF SUP keyword setting.

- If HONORMPF is set to the default value of NO:

 HONORMPF=NO

 all WTOs are eligible for MainView AutoOPERATOR automation (regardless of how the SUP keyword is set on the WTO).

- If HONORMPF is set to YES:

 HONORMPF=YES

 only WTOs with the SUP keyword set to NO are eligible for MainView AutoOPERATOR automation.

You can specify that MainView AutoOPERATOR will determine which WTOs are eligible for automation by checking the WTO for both the SUP and the AUTO keyword setting.

The possible values of the MPF AUTO keyword are

AUTO=(YES|NO|token)
where `token` is an up to 8-character user-specified token name. The token name can contain wildcards and blanks.

The possible values of the MPF SUP keyword are

```
SUP=(YES|NO)
```

Note
For more information about MPF, refer to the IBM publication *MVS/ESA Initialization and Tuning Reference*.

To check a WTO for its AUTO and SUP settings, use the MPFFILTR= parameter in BBPARM member AAOPRM00. For more information, refer to “Implementation considerations” on page 124.

Implementation considerations

Use the MPFFILTR parameter when you want MainView AutoOPERATOR to check the MPF AUTO and SUP settings of a WTO to determine if the WTO should be eligible for MainView AutoOPERATOR automation.

Note
You cannot use the MPFFILTR parameter if HONORMPF=YES is set. If HONORMPF=YES is set, MainView AutoOPERATOR ignores any settings on the MPFFILTR= parameter.

When the MPFFILTR parameter is set, MainView AutoOPERATOR actively checks the AUTO and SUP settings and only WTOs that match the MPFFILTR criteria are eligible for automation.

For more information, refer to “Setting the MPFFILTR parameter” on page 124.

Setting the MPFFILTR parameter

The MPFFILTR parameter allows you specify how MainView AutoOPERATOR handles WTOs that have the MPF AUTO and SUP keywords associated with them.

The syntax for MPFFILTR parameter is

```
MPFFILTR=(AUTO=YES|NO|token,SUP=YES|NO)
```
The AUTO and SUP keywords always must be used together on the MPFFILTR statement. You cannot use one keyword without the other.

The possible combinations of the AUTO and SUP keywords are

<table>
<thead>
<tr>
<th>MPFFILTR=</th>
<th>(AUTO=NO,SUP=YES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(AUTO=NO,SUP=NO)</td>
</tr>
<tr>
<td></td>
<td>(AUTO=YES,SUP=YES)</td>
</tr>
<tr>
<td></td>
<td>(AUTO=YES,SUP=NO)</td>
</tr>
<tr>
<td></td>
<td>(AUTO=*,SUP=NO)</td>
</tr>
<tr>
<td></td>
<td>(AUTO=*,SUP=YES)</td>
</tr>
<tr>
<td></td>
<td>(AUTO=NO,SUP=*)</td>
</tr>
<tr>
<td></td>
<td>(AUTO=YES,SUP=*)</td>
</tr>
<tr>
<td></td>
<td>(AUTO=,SUP=)</td>
</tr>
<tr>
<td></td>
<td>(AUTO=TOKEN,SUP=YES)</td>
</tr>
<tr>
<td></td>
<td>(AUTO=TOKEN,SUP=NO)</td>
</tr>
<tr>
<td></td>
<td>(AUTO=TOKEN,SUP=*)</td>
</tr>
</tbody>
</table>

You can select up to four of the possible combinations. Once you use any of the combinations, MainView AutoOPERATOR checks all WTOs for a match between the WTO’s settings and the MPFFILTR setting.

If the WTO’s setting matches the MPFFILTR setting, the WTO is eligible for automation by MainView AutoOPERATOR. The following examples describe some of the possible MPFFILTR settings.

Example

If the MPFFILTR parameter is set

MPFFILTR=(AUTO=NO,SUP=NO)

only WTOs that have both AUTO and SUP set to NO are eligible for MainView AutoOPERATOR automation. MainView AutoOPERATOR ignores all other messages that have different AUTO and SUP settings; they are not eligible for MainView AutoOPERATOR automation.

Example

If the MPFFILTR parameter is set

MPFFILTR=(AUTO=NO,SUP=YES)

only WTOs that have these AUTO and SUP settings are eligible for automation by MainView AutoOPERATOR. MainView AutoOPERATOR ignores all other messages that have different AUTO and SUP settings; they are not eligible for MainView AutoOPERATOR automation.
Example

If the MPFFILTR parameter is set

```
MPFFILTR=(AUTO=BOOLE, SUP=NO)
```

only WTOs with an AUTO setting of BOOLE and a SUP setting of NO are eligible for automation by MainView AutoOPERATOR.

Example

If you want all WTOs that have a MPF token setting of BOOLE and you do not want to check the SUP setting, use

```
mpffiltr=(AUTO=BOOLE, SUP=* )
```

All WTOs with an AUTO setting of BOOLE are eligible for automation by MainView AutoOPERATOR, regardless of its SUP setting. So, for example, if a WTO has any of the following settings, they are not eligible for automation:

- AUTO=YES, SUP=NO
- AUTO=NO, SUP=NO
- AUTO=YES, SUP=YES
- AUTO=NO, SUP=NO
- AUTO=BOOLE, SUP=NO
- AUTO=NETVIEW, SUP=YES

Example

To use more than one set of AUTO and SUP settings

```
MPFFILTR=((AUTO=YES, SUP=YES), (AUTO=YES, SUP=NO))
```

Now all WTOs with an auto setting of YES are eligible for automation regardless of the setting. You get the same result when you set MPFFILTR to

```
mpffiltr=(AUTO=YES, SUP=*)
```

MainView AutoOPERATOR ignores all other WTOs that have different AUTO and SUP settings; they are not eligible for MainView AutoOPERATOR automation.
Implementing the REXX/370 Alternate Library

This chapter describes how to implement the REXX/370 Alternate Library.

Note

If your site is running z/OS version 1.9 or later, you do not need to perform the steps described in this chapter.

If your site does not have the IBM library for SAA REXX/370 installed and you want to run compiled REXX programs in a BBI-SS PAS, you must follow the instructions in this chapter to implement the REXX/370 Alternate Library.

If the IBM SAA REXX/370 library is available, no customization is required on the MainView AutoOPERATOR side. Please refer to the IBM documentation for any steps required to make the library accessible to the BBI-SS PAS.

Make sure that the BBI-PAS has a STEPLIB to the BBLINK data set containing the REXX/370 Alternate Library modules. If the BBI-PAS does *not* have a STEPLIB (for example, you place the BBLINK data set in the LINKLST), the BBI-PAS loads IRXCMPTM from the LPA instead of the BBLINK data set (as a result of the normal MVS search order). You must load IRXCMPTM from the BBLINK data set in order to activate the REXX/370 Alternate Library.

Activating the REXX/370 Alternate Library

Use the following procedure to activate the REX/370 Alternate Library.

1. Review the sample job distributed in BBSAMP member BBREXALT.

This job activates the REXX/370 Alternate Library. The REXX/370 Alternate Library must be activated at sites that need to execute compiled REXX programs in a BBI-SS PAS *but do not have the IBM library for SAA REXX/370 (program number 5695-014) available.*
This job should be not be used at sites where the IBM library for SAA REXX/370 is available.

2 Edit the job, if necessary.

3 Follow all customization instructions.

4 Submit the job.

The REXX/370 Alternate Library is installed.

SMP/E messages

You might receive the following SMP/E messages when you install compiled REXX programs.

These are benign messages and you can ignore them.

For SMP/E release 1.4, you might receive

```
GIM4441 ASSEMBLY FOR SRC aaaaaaa in SYSMOD BP0nnnn
WILL NOT BE DONE - RELATED MOD ENTRY NOT FOUND
```

For SMP/E release 1.5 and later, you might receive

```
GIM44402W aaaaaaaa WAS NOT ASSEMBLED FOR SRC aaaaaaa
IN SYSMOD BP0nnnn BECAUSE THERE IS NO MOD
ENTRY FOR aaaaaaa. SMP/E CANNOT DETERMINE
THE TARGET LIBRARY FOR THE ASSEMBLER OUTPUT.
```

These messages are issued because compiled REXX elements are distributed as +SRC elements.
Supporting IMFEXEC CMD TYPE(ZLINUX) and TYPE(VM)

This chapter describes how to implement support for using IMFEXEC CMD TYPE(ZLINUX) and IMFEXEC CMD TYPE(VM) commands.

Prerequisites

You can use the IMFEXEC CMD TYPE(ZLINUX) command to access the Linus Torvalds Linux environment from any MainView AutoOPERATOR BBI-SS PAS that has CAS connectivity to a MainView for Linux - Servers product, and is monitoring a zLinux system.

Similarly you can use IMFEXEC CMD TYPE(VM) to access VM environments that are being monitored by MainView for Linux - Servers.

Install MainView for Linux — Servers

You must install and configure MainView for Linux - Servers version 1.4.00 or later on the target Linux and VM systems.

See the MainView for Linux — Servers Customization Guide for information about installing and customizing the MainView for Linux — Servers product.

Configure BBPARM member BBISSP00

You must configure the following BBPARM member BBISSP00 parameter:

CASID=
Ensure that you specify a CAS name that has direct access (or indirect access through CAS connectivity) to the context specified on the TARGET parameter.

Security considerations

IMFEXEC CMD TYPE(ZLINUX) commands are processed through the view FSLEXEC in the MainView for Linux — Servers product.

IMFEXEC CMD TYPE(VM) commands are processed through the view VMFEXEC in the MainView for Linux -- Servers product.

You can specify additional security by using the MainView for Linux — Servers security definitions for the FSLEXEC or VMFEXEC view. Review the SERDEF view for the resource entry associated with Execute file. By securing these entries, you can prevent access to the FSLEXEC or VMFEXEC views and therefore, prevent access to zLinux and VM targets being monitored by the MainView for Linux -- Servers PAS.

Also, note that this command utilizes the MainView API and requires READ access to the resources TERMINAL(VBAPI) and PROGRAM(BBM0IA10). If you do not allow access to these resources, the IMFEXEC CMD TYPE(ZLINUX) or TYPE(VM) command fails with an IMFCC code of 8.

Identifying zLinux systems

To identify all of the Linux and VM systems that are currently connected to MainView for Linux -- Servers, use the windows mode Plex Manager view, PLEXPROD.

Refer to “Identifying zLinux systems” on page 130 and “Identifying zLinux systems” on page 130 for examples of this view.

The PLEXPROD view summarizes the status of local and remote MainView products. The PLEXPROD view lists all of the active and inactive targets, grouped by area, and shows the number of instances of a particular product on any connected system.

The System column shows the Linux or VM system name and the last column (Server) shows the MainView for Linux -- Servers server name. After you have identified the systems, you can enter the system name on the TARGET keyword of the IMFEXEC CMD TYPE(ZLINUX) or TYPE(VM) command.
Refer to "CMD TYPE(LINUX) or CMD TYPE(VM)" in the MainView AutoOPERATOR Advanced Automation Guide for complete information about how to use the command.

Figure 31: PLEXPROD view of MainView for Linux with a MVLNX Linux context and targets

<table>
<thead>
<tr>
<th>Product</th>
<th>Context</th>
<th>System</th>
<th>Description</th>
<th>Status</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVLNX</td>
<td>LNX01CS</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>InActive</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX01JJ</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>Active</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX01MN</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>InActive</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX14SUS</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>Active</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX16SUS</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>Active</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX33SUS</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>Active</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX34SUS</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>Active</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX37SUS</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>InActive</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX38SUS</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>Active</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX39SUS</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>Active</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX40SUS</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>InActive</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX41SUS</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>Active</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX42RH.</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>InActive</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX43RH.</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>Active</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX44RH.</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>Active</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX45RH.</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>InActive</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX46RH.</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>InActive</td>
<td>MML0</td>
</tr>
<tr>
<td>MVLNX</td>
<td>LNX47RH.</td>
<td>XTS1SJSC</td>
<td>MainView for Linux</td>
<td>Active</td>
<td>MML0</td>
</tr>
</tbody>
</table>

Figure 32: PLEXPROD view of MainView for Linux with a VM context and targets

<table>
<thead>
<tr>
<th>Product</th>
<th>Context</th>
<th>System</th>
<th>Description</th>
<th>Status</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVLNXV</td>
<td>SYSLBMC</td>
<td>SJSCXTS4</td>
<td>MainView for Linux z/VM</td>
<td>Active</td>
<td>MML6</td>
</tr>
</tbody>
</table>

Chapter 12 Supporting IMFEXEC CMD TYPE(ZLINUX) and TYPE(VM) 131
Implementing support for sysplex variables

The following sections describe how to implement support for sysplex variables.

What sysplex variables are

Sysplex variables are an optional feature that you can use to store changing values that need to be synchronized among all MainView AutoOPERATOR BBI-SS PASs within a sysplex.

For more information about sysplex variables, refer to the chapter "Using variables in REXX EXECs" in the MainView AutoOPERATOR Advanced Automation Guide.

Enabling support for sysplex variables

The following sections describe the options in BBPARM member AAOPRM xx that allow you to enable support for sysplex variables.

You can manually specify these values by editing BBPARM member AAOPRMxx or you can enter them in the Dynamic Parameter Manager application that allows you to edit and activate certain BBPARM members. Refer to the “Continuous operation with the Dynamic Parameter Manager” on page 55 for more information about how to use the Dynamic Parameter Manager application.

Note

Sysplex variables are not supported in BBPARM member BBIVAR00. Do not specify sysplex variables in BBPARM member BBIVAR00 or unpredictable results might occur.
Activating support for sysplex variables

To enable support for sysplex variables in MainView AutoOPERATOR, in BBPARM member AAOPRMxx, specify the following parameter and then warm start MainView AutoOPERATOR:

SPLXVARS=Y

The default specification is SPLXVARS=N, which means support for sysplex variables is not enabled.

WARNING

Changing an active MainView AutoOPERATOR BBI-SS PAS from SPLXVARS=Y to SPLXVARS=N causes any existing sysplex variables to become ordinary SHARED variables, which operate independently in each MainView AutoOPERATOR. You can clear the whole SHARED pool by starting the MainView AutoOPERATOR BBI-SS PAS with START=COLD, VPOOL=RESET however, you should be aware that there may be unpredictable results from taking this action. For example, the CSM application might perform as if the system was IPLed and CSM will start Transient Objects.

Specifying the default sysplex variable prefix (optional)

The default prefix is A0SPLX_. BMC recommends that you use the default prefix unless you have a specific need to specify a different prefix value.

1. To specify the prefix that identifies which variables are sysplex variables, specify a value for following parameter in BBPARM member AAOPRMxx:

SPLXPREF=(1 to 16 user_specified_prefix)

Valid user-specified prefixes must be alphanumeric and cannot start with a number. Some special characters are permitted, such as dollar sign ($), pound sign (#), and at sign (@).

BMC also recommends that if you must specify a sysplex prefix value, that you ensure that all the MainView AutoOPERATOR subsystems use the same sysplex prefix, which will make both maintenance and problem diagnosis easier to do.

2. Warm start the MainView AutoOPERATOR BBI-SS PAS for the change to take effect.
Specifying the name of the coupling facility

This procedure specifies the name of the coupling facility.

1. To specify the name of the coupling facility structure where the sysplex variables are stored, specify a value for following parameter in BBPARM member AAOPRMxx:

 SPLXSTR=coupling_facility_name

 The default value comes from the specified value on the XCFGROUP= parameter in BBPARM member BBISSPxx.

2. Warm start the MainView AutoOPERATOR BBI-SS PAS for the change to take effect.

 Table 11 on page 135 shows examples based on different settings for the XCFGROUP and SPLXSTR parameters. Column 2 lists whether AOAnywhere commands can be sent from one BBI-SS PAS to the other BBI-SS PASs and column 3 lists if sysplex variables can be shared. Column 4 shows the resulting coupling facility structure.

Table 11: Examples of how parameter settings XCFGROUP and SPLXSTR affect sysplex variables

<table>
<thead>
<tr>
<th>AAOPRMxx parameter settings for MainView AutoOPERATOR system 1 (MAO1) and MainView AutoOPERATOR system 2 (MAO2)</th>
<th>AOAnywhere communications available?</th>
<th>Sysplex variables are shared</th>
<th>CF structure name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MAO1) XCFGROUP=default, SPLXSTR=default (MAO2) XCFGROUP=default, SPLXSTR=default</td>
<td>Yes</td>
<td>Yes</td>
<td>MVAO_BMCAB MVAO_BMCAB</td>
</tr>
<tr>
<td>(MAO1) XCFGROUP=xxx, SPLXSTR=default (MAO2) XCFGROUP=yyy, SPLXSTR=default</td>
<td>No</td>
<td>No</td>
<td>MVAO_xxx MVAO_yyy</td>
</tr>
<tr>
<td>(MAO1) XCFGROUP=xxx, SPLXSTR=sss (MAO2) XCFGROUP=yyy, SPLXSTR=sss</td>
<td>No</td>
<td>Yes</td>
<td>MVAO_sss MVAO_sss</td>
</tr>
<tr>
<td>(MAO1) XCFGROUP=default, SPLXSTR=aaa (MAO2) XCFGROUP=default, SPLXSTR=bbb</td>
<td>Yes</td>
<td>No</td>
<td>MVAO_aaa MVAO_bbb</td>
</tr>
</tbody>
</table>
Additional considerations

MainView AutoOPERATOR does not provide support for a BBPARM member that allows you to pre-initialize sysplex variables because the design assumes that sysplex variables contain dynamic values that cannot be unconditionally set.

For example, all of the MainView AutoOPERATOR subsystems could run the same startup EXEC or Rule that tests the environment and conditionally use the VPUT function to specify sysplex variables with different values.

You should carefully examine your automation needs and environment to first determine if your automation even requires the use of sysplex variables. As previously noted, static values or values used by only one MainView AutoOPERATOR subsystem should be stored in SHARED, PROFILE, or TSO variables.

If you decide to enable support for sysplex variables, and you have three MainView AutoOPERATOR systems (AO1, AO2, and AO3) in the sysplex, you must ensure that automation works correctly no matter which MainView AutoOPERATOR BBIS PAS starts first or if they all start at the same time.

To initialize your sysplex variables correctly, do not design automation where one BBIS PAS must start before subsequent BBIS PASs.

You should design and test any automation that uses sysplex variables so that any of the MainView AutoOPERATOR BBIS PAS can be started first.

Also test that all of the systems, (in this case, AO1, AO2, and AO3), can be started simultaneously and the sysplex variables have the correct values.

You can use EXECs with the IMFEXEC VENQ SCOPE(Global) command to protect or serialize operations across MainView AutoOPERATOR BBIS PASs in the sysplex.

Using the coupling facility

The following sections describe the coupling facility and how to configure and manage it to enable and sustain MainView AutoOPERATOR sysplex variables.
Coupling facility hardware requirements

The use of sysplex variables in MainView AutoOPERATOR requires access to a coupling facility. The coupling facility must be available to all LPARs in the sysplex where MainView AutoOPERATOR runs.

For high availability, through both planned and unplanned outages, you can define a duplex structure where the primary and secondary copies of the structure reside in different coupling facilities on separate machines. This way, an outage of one coupling facility (or the machine that it runs on) does not affect the availability of sysplex variables.

Rebuilding the coupling facility

The four types of Rebuilds, what they are, and why you would want to do them, are described in the MVS manual, Sysplex Services Guide.

The following list describes additional limitations:

- User-Managed Rebuild is not supported by MainView AutoOPERATOR.
- User-Managed Duplexing Rebuild is not supported by MainView AutoOPERATOR.
- System Managed Rebuild is supported by MainView AutoOPERATOR, however, sysplex variables will not be available during the time when the structure is not functional during the rebuild.
- System-Managed Duplexing Rebuild is supported by MainView AutoOPERATOR and offers the highest level of availability.
- MVS supports duplexing a structure as one method of improving reliability and availability.

If the structure is unavailable, for example due to some failure or during a Rebuild, then sysplex variable operations will fail during this outage period (for example, reads of a sysplex variable will behave as though the variable did not exist).

You can define a duplex structure where copies of the structure reside in different coupling facilities as a means of providing high availability through both planned and unplanned outages.

For example, you have three physical z9 machines where the MainView AutoOPERATOR BBI-SS PASs and your applications run on machine1 while the
coupling facility with the primary copy of your structure resides on machine2 and the secondary copy of your structure resides on machine3.

With this duplex structure arrangement, the loss of one coupling facility, whether planned or unplanned, should not disrupt sysplex variables operation.

Coupling facility structure sizing

The maximum number of sysplex variables for your structure size can be seen by issuing the .D V command in the BBI Journal or the following MVS command to display the structure:

```
D XCF,STR,STRNM=mvao_bmcab
```

For example, a 2 megabyte (2,000 KB) structure on a 2817 (z196) machine can contain approximately 1,100 sysplex variables. A 5,000 KB structure can contain approximately 4,600 sysplex variables. It is difficult to estimate the number of long variables that can be stored because long variables are internally implemented as invisible chains of short variables.

The amount of overhead storage consumed in a structure is related to the CFLEVEL. Higher CF Levels (versions) with increased features tend to have more overhead and will therefore support a fewer number of sysplex variables for the same size structure.

IBM typically provides notice to customers when new CF levels incur more overhead, alerting customers to evaluate if existing structures need to be made larger.

You might choose to allocate a smaller or larger structure to suit their needs. The optimum-sized structure is one that supports the maximum number of sysplex variables needed with a safety margin for unexpected variables or an unexpected increase in coupling facility overhead.

When planning your number of sysplex variables, you should note that sysplex variables are slower and consume more resources than SHARED variables. Variables that are referenced in only one MainView AutoOPERATOR subsystem, or those that have static values, are best stored as SHARED variables.

You may need to slightly increase the size of the coupling facility structure when migrating to a new machine or upgrading the CFLEVEL on the same machine, if the amount of overhead storage consumed by the coupling facility is more than before.
WARNING

Do not create overly large structures or structures that are less than 60% utilized. For example, do not create a 20,000 KB structure or allocate a structure for 20,000 sysplex variables when you will need only a maximum of 200 sysplex variables. Such large or under utilized structures will consume significant amounts of CPU and storage. Based on the size of the structure, the internal code in the coupling facility will allocate an equal number of control blocks, and also search or scan that same number of blocks even though very few sysplex variables have been created.

Coupling facility structure definition

Your MVS system programmer needs to define the coupling facility structure to use sysplex variables.

If both the BBPARM member BBISSPxx XCFGRP parameter and the AAOPRMxx member SPLXSTR parameter use the defaults, the default structure name is as follows, where BMCAB is the default value for the XCFGROUP and MVAO_ is a hard-coded prefix:

MVAO_BMCAB

Run the appropriate IBM utility to define the coupling facility structure. For example, this utility might be the IXCMIAPU program that is also known as the Administrative Data Utility.

An example input statement follows for the utility to create a 1 Megabyte (1,000 KB) structure.

STRUCTURE NAME(MVAO_BMCAB)
SIZE(1000)

If XCFGROUP=YOURCOMP and SPLXSTR=MYCOMP is specified, the effective structure name is BMCAB_MYCOMP. Refer to Specifying the name of the coupling facility on page 135 for more examples.

Modifying the coupling facility structure

To change the size of the structure or modify its properties (for example, to enable duplexing), you must ensure all BBI-SS PASs are down before manually deleting and redefining the structure.
1. Stop all the BBI-SS PASs connected to the structure.

2. To verify that all connections to the structure have been stopped, issue the MVS command:

 D XCF STR,STRNM= structure name

 The default structure name is MVAO_BMCAB.

3. To delete the structure, issue the MVS command:

 SETXCF FORCE,STR,STRNM= structure name

 At this point the structure is deleted and all sysplex variables are lost.

4. Run your job to redefine the structure with the desired properties.

5. Issue the MVS command to display the structure and verify that it has the new desired properties.

6. Re-start MainView AutoOPERATOR to resume automation.

Coupling facility structure connections

Each MainView AutoOPERATOR subsystem creates one connection to the coupling facility structure.

The maximum number of connections allowed for a structure is controlled by a CFRM parameter and this parameter directly controls the maximum number of MainView AutoOPERATOR subsystems that can connect or share a structure.

Use the Format utility for couple data sets to change this parameter. An example of the statement follows:

```
ITEM NAME(CONNECT) NUMBER(nnn)
```

For z/OS version 1.7 and later, the default for `nnn` is 32, the minimum is 1 and maximum is 255.

Refer to the IBM manual, *z/OS V1R7.0 MVS Setting Up a Sysplex*, appendix C, "CFRM Parameters for Administrative Data Utility" for more information.

If you set the maximum number of connections to 255, as many as 255 MainView AutoOPERATOR subsystems can connect to the structure and share sysplex variables.
To display the current maximum number of connections allowed to a structure, issue the following MVS command:

D XCF,COUPLE,TYPE=CFRM

Coupling facility structure persistence

The coupling facility is a volatile entity and only exists in memory.

MainView AutoOPERATOR allocates the structure so that it persists and retains sysplex variables even when all MainView AutoOPERATOR subsystems have shut down.

When the coupling facility is reset or re-IPLed, all structures that reside in the coupling facility are destroyed and subsequently all sysplex variables are lost.

Individual structures might also be manually destroyed or deleted by using an MVS command such as:

SETXCF FORCE,STRUCTURE,STRNAME=(structure name)

Do not destroy any structure while it is in use by MainView AutoOPERATOR.

Note

MVS supports duplex structures, with each structure in a separate coupling facility, as a means to improve reliability and availability.
Defining OSPI virtual terminals

This chapter describes defining Open Systems Procedural Interface (OSPI) virtual terminals.

To use the OSPI interface, you must be running VTAM 3.0 or later.

Overview

MainView AutoOPERATOR provides OSPI the as an interface to VTAM-based products. OSPI provides a means for REXX- or CLIST-based automation procedures to interface with any LU2 VTAM application that uses full screens to communicate with users.

With OSPI, MainView AutoOPERATOR has logon capabilities and complete access to any VTAM application’s data stream. In this way, MainView AutoOPERATOR can interact with the application by analyzing the output data and issuing the VTAM application’s own commands.

By automatically interfacing with critical VTAM applications and simulating a user at a VTAM terminal, OSPI can communicate with various data center software products and decrease the number of VTAM-based terminals.

This terminal emulation requires that some number of OSPI virtual terminals be defined to VTAM. In addition, some applications, such as CICS and IMS, might require local definitions for OSPI terminals. Refer to “OSPI terminal definitions for CICS and IMS” on page 333 for more information.

Using the OSPI ACB pool

When OSPI attempts to establish a session with a VTAM application, a VTAM ACB is required to represent the OSPI virtual terminal. If a specific ACB name is not requested, the OSPI ACB pool is searched for an available and usable ACB.
See the chapters that describe the OSPI Scripting facility and the IMFEXEC LOGON command in the *MainView AutoOPERATOR Advanced Automation Guide* for information about requesting a specific ACB.

Naming conventions

The pool consists of a group of ACBs named using the following conventions:

\[PPPPnnnn \]

where

<table>
<thead>
<tr>
<th>PPPP</th>
<th>is the 4-character pool prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnnn</td>
<td>is a sequential number from 0000 to 9999</td>
</tr>
</tbody>
</table>

The default pool prefix is OSPI. You can specify a different prefix by using the OSPIPRFX parameter in BBPARM member AAOEXP00.

Note
The prefix must be four characters.

OSPI attempts to locate the first usable ACB beginning with OSPI0000. The search continues sequentially until a usable ACB is found or all OSPI ACBs have been exhausted.

Defining the ACB pool

A VTAM APPL statement is required for each ACB that you want to define in the OSPI ACB pool. You can add new APPL statements to an existing member or create a new member in SYS1.VTAMLST. The statements should be similar to the following example:

```plaintext
OSPI VBUILD TYPE=APPL
OSPI0000 APPL AUTH=(ACQ,NOTS0,VPACE)
OSPI0001 APPL AUTH=(ACQ,NOTS0,VPACE)
```

The number of ACBs defined determines the maximum number of concurrent OSPI sessions *MainView AutoOPERATOR* can support unless ACBs outside the OSPI pool are also used.

ACBs must be activated before they can be used. They may be activated automatically at VTAM start-up or by issuing a VTAM VARY command.
If LOGMODE entries other than the entries defined in the default MODETAB will be used by OSPI sessions, add the MODETAB= keyword to each APPL statement.

Defining the ACB pool to MainView AutoOPERATOR

When OSPI attempts to locate a usable ACB in the pool, the search begins with OSPI0000 and continues sequentially until a usable ACB is found or all OSPI ACBs have been exhausted.

If the number of ACBs in the OSPI pool has not been defined to MainView AutoOPERATOR, OSPI assumes that the highest numbered (last) ACB has been used when an open is unsuccessful against an ACB that is not in use. The search will not continue even if higher numbered ACBs might be usable.

BMC Software recommends that you define the number of ACBs in the pool using the OSPINUM parameter in BBPARM member AAOEXP00. This causes a pool search to continue until all OSPI ACBs have been examined. The number specified using the OSPINUM parameter should match the number of ACBs defined to VTAM.

OSPI application definitions

Some applications, such as CICS and IMS, require local definitions for OSPI terminals.

Refer to “OSPI terminal definitions for CICS and IMS” on page 333 for information about how to define virtual terminals to CICS and IMS.

When defining OSPI virtual terminals to applications other than CICS and IMS, BMC Software recommends that the terminals be defined as 3278 model 2.
Considerations for OMVS and TCP/IP

The MainView AutoOPERATOR BBI-SS PAS might use TCP/IP services. If the BBI-SS PAS uses TCP/IP services, the BBI-SS PAS must have access to an OMVS segment with superuser authority.

Some examples of processing within the MainView AutoOPERATOR BBI-SS PAS that might use TCP/IP services include the General Message Exchange (GME), TCP-based solutions (such as EXECs QAOMTP2, QAOSNPP2, QAOALMP2, QAOALMP5, and QAOSNMP2), or any user written automation that uses the commands NETSTAT or PING. When TCP/IP services are in use a basic UNIX System Services segment is required. In addition, it is required that TCP/IP is up and running before the MainView AutoOPERATOR BBI-SS PAS requires TCP/IP services.

Refer to the chapter "Managing cross system communication" in the MainView Administration Guide for information about how to define a TCP/IP connections and additional information about OMVS.
Implementing BBI-SS PAS to CICS communication

This chapter describes the steps required to implement BBI-SS PAS to CICS communication.

Overview

For sites implementing the MainView for CICS product at the same time as MainView AutoOPERATOR for CICS, use the MainView for CICS Customization Guide and perform the steps described in "Standard Implementation Procedures."

This chapter discusses implementation procedures if you are installing MainView AutoOPERATOR for CICS only.

Certain MainView AutoOPERATOR for CICS functions require BBI-SS PAS to CICS communication. However, numerous MainView AutoOPERATOR for CICS functions are available to you if you do not implement BBI-SS PAS-to-CICS communication. See “MainView AutoOPERATOR for CICS functions (with BBI-SS PAS-to-CICS communication)” on page 161 for additional information.

Note

A CICS target can only connect to, and be automated by, one MainView AutoOPERATOR BBI-SS PAS at a time

The following steps are required to implement BBI-SS PAS to CICS communication:

- Review implementation considerations (“Implementation considerations” on page 150).
- Specify resources to CICS (“Specifying resources to CICS” on page 151).
- Modify CICS startup JCL (“Modifying CICS startup JCL” on page 160).
- Restart CICS target regions (“Restarting CICS target regions” on page 160).
To begin implementing BBI-SS PAS-to-CICS communication, go to “Implementation considerations” on page 150.

Note

If you are running MainView AutoOPERATOR for CICS and in BBPARM member BBISSP00 you specified ACONCICS=ONLY or ACONCICS=YES with no static or dynamic target definition, all CICS commands that can be used in MainView AutoOPERATOR Rules and EXECs are dependent, which means they will not be available until the CICS region target has established communications with the BBI-SS PAS.

Refer to the *MainView for CICS Customization Guide* for more important information about the ACONCICS parameter in BBPARM member BBISSP00.

Implementation considerations

This section provides information you should consider when you are implementing MainView for CICS or MAINVIIEW AutoOPERATOR for CICS or both products together.

Site-specific security

Transactions FST2, JNL2, FIC2, FCM1, and FCD2 run asynchronously. The TRANSEC parameter of the transaction definition must have a value of 1 when CICS security is used. If your site uses an external security package, such as IBM RACF or Computer Technologies CA-ACF2, that package must be updated to let these transactions run asynchronously.

Transaction SMN2 can be RACF-secured.

Temporary Storage Table (TST) compatibility

To avoid conflicts between the BMC Software temporary storage prefix and any existing recoverable temporary storage definitions, perform the following steps for each CICS that will communicate with a BBI-SS PAS:

1. Determine if a Temporary Storage Table (TST) is now in use.

 If a TST is not being used, there is no conflict.
2 For an existing TST, determine if the DATAID parameter for any of the DFHTST TYPE=RECOVERY or TYPE=REMOTE macros specifies a value that conflicts with the following string:

CMRI

If there is a conflict, see “Changing the use of CICS recoverable temporary storage” on page 263.

Specifying resources to CICS

The following sections describe the steps necessary to make the MainView AutoOPERATOR transactions and programs available to CICS.

Making MainView AutoOPERATOR transactions and programs available to CICS and CTS

Use the auto maintenance facility to install and apply maintenance for all supported releases of CICS and CTS.

For more information, see the section “Using auto maintenance” on page 153. Also, be sure to review the section “Update the CSD” on page 156 for information about applying CSD updates.

Modifying the Program List Table (PLT)

The PLT defines programs to be executed in the post-initialization phase of CICS startup.

Completing the steps in this section automates the initiation of BBI-SS PAS-to-CICS communication at CICS startup.

Use of the PLT is optional. However, if you do not use the PLT, manually start BBI-SS PAS-to-CICS communication using either the SMN2 transaction from within the CICS region or the FST2 transaction from the z/OS console.

Refer to “Manual activation of BBI-SS to CICS communication” on page 271 for more information.
To assemble the table changes, concatenate BBSAMP with SYSLIB in your site’s CICS table assembly JCL (normally, DFHAUPLE).

To edit an existing PLT

1. Edit the PLT and find the following statement at the end of the table:

   ```
   DFHPLT TYPE=FINAL
   ```

2. Just before the `DFHPLT TYPE=FINAL` statement, insert the following macro invocation:

   ```
   CMRPLT MODE=AUTO
   ```

 The parameters for the CMRPLT macro are described in the following table.

Table 12: Syntax for the CMRPLT macro

<table>
<thead>
<tr>
<th>Term</th>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE</td>
<td>AUTO</td>
<td>Required parameter to use auto maintenance, which is also required.</td>
</tr>
<tr>
<td>SUFFIX</td>
<td>BI</td>
<td>Specifies the suffix for the new PLT. Specify a suffix that adheres to the naming conventions at your site. BI is the default. If you do not use the default, create an entry for DFHPLTxx (where xx is the suffix) in the PPT table of the CICS system that uses the PLT. When SUFFIX is used, TYPE=INITIAL and TYPE=FINAL statements are generated automatically.</td>
</tr>
</tbody>
</table>

3. Assemble the newly revised PLT.

 The PLT is modified.

To create a new PLT

1. Create a new PLT in your CICS table library using a member name that adheres to the naming conventions at your site. The new member should contain the following macro invocation:

   ```
   CMRPLT MODE=AUTO
   ```

 The parameters for this macro are described in Table 12 on page 152.
2 Assemble the newly created PLT.

3 Add the following parameter to the CICS initialization override parameters:

 PLTPI=xx

 where xx is the suffix specified in Step 1 above.

 The PLT is created and enabled.

 Go to “Modifying CICS startup JCL” on page 160.

Using auto maintenance

The MainView AutoOPERATOR for CICS auto maintenance facility enables you to apply upgrades to the product software without restarting target CICS systems.

The auto maintenance facility provides INIT and TERM functions that completely remove the MainView agents from a running CICS system and re-initialize the MainView agents without affecting the CICS system itself.

The TERM function terminates all active MainView AutoOPERATOR functions and removes the MainView AutoOPERATOR for CICS resources in CICS, with the exception of those resources necessary to redefine the discarded resources. The TERM function stores the MainView processing environment in a status record and writes it to a temporary storage queue.

TERM requests

For TERM requests, MainView AutoOPERATOR for CICS

The Transient Data Exit, CMRTDPXn is also released from storage. TERM requests can come from the following sources:

1 discards all created resources

2 stops the Transient Data Exit

3 closes the BBICOM01 DD subsystem data set

4 frees the BBICOM01 DD
The Transient Data Exit, CMRTDPXn is also released from storage. TERM requests can come from the following sources:

- the MainView AutoOPERATOR PAS terminates
- the MVCICS CRegion View commands RES, TRM or AOF
- the invocation of transaction FST2 TERM
- the invocation of transaction FST2 SYSM OFF

INIT requests

The INIT function recreates all the MainView AutoOPERATOR for CICS resources and restarts all their functions according to the status record. The auto maintenance facility replaces the code within a running CICS system. The function can be initiated after you apply the necessary upgrade and maintenance jobs.

For INIT requests MainView AutoOPERATOR for CICS creates all the necessary resources with the exception of program OLTVCAO. This program is defined in the CICS CSD and is the root program for MainView AutoOPERATOR for CICS. OLTVCAO determines if it is running in a supported CICS release and allows or disallows the continuation of MainView AutoOPERATOR for CICS initialization.

INIT requests can come from the following sources

- the CICS system starts and MainView AutoOPERATOR for CICS is defined in the PLT and the MainView AutoOPERATOR PAS is already running
- CICS is already running and the MainView AutoOPERATOR PAS starts
- the MVCICS CRegion View commands RES, INI or AON
- the invocation of transaction FST2 INIT
- the invocation of transaction FST2 SYSM ON

ON requests

For ON requests that are generated by the FST2 SYSM ON command or when MainView AutoOPERATOR for CICS initialization starts with auto maintenance not active, MainView AutoOPERATOR for CICS creates the program resource OLTVCAORL to check for CICS release compatibility. If auto maintenance finds that any of the required resources are not available, OLTSCAO dynamically creates them.
OFF requests

For OFF requests that are generated by the FST2 SYSM OFF command, the CMRTDPXn exit program is disabled but BBICOM01 is not closed or freed. Messages are no longer be processed for automation.

Implementing auto maintenance requires modifications to the CICS CSD, CICS PLT and SIT, and to the BBI-SS JCL. These procedures are described in this chapter.

Before you begin: auto maintenance checklist

Before initiating auto maintenance, verify that

- the appropriate load libraries are updated with the modules for the PTF(s) and the data sets do not expand into additional extents
- all prerequisite PTFs can be applied by using the auto maintenance facility

In some cases, a cold or warm restart of the BBI-SS PAS may be required.

Initiating auto maintenance

Auto maintenance can be started in the following ways

- an action command from the CREGAGT view
 The RES command is used when updating MainView for CICS modules that run in the CICS address space only. The RES command initiates the TERM and the INIT functions for the target CICS systems. In addition, the TRM and INT commands can be used individually in place of the RES command.

 Note
 This facility is not related specifically to MainView AutoOPERATOR for CICS but is a part of the MainView for CICS product. If you are installing MainView AutoOPERATOR for CICS without also installing MainView for CICS, you will not be able to use this facility.

- a restart of the BBI-SS PAS restart
 When the BBI-SS PAS terminates, it is detected by common functionality in MainView for CICS and by MainView AutoOPERATOR for CICS in the CICS system. When the termination is detected, a TERM function is initiated.
 When the BBI-SS PAS restarts, an INIT request for MainView for CICS and MainView AutoOPERATOR for CICS is sent to the target CICS systems through
the External CICS Interface facility (EXCI). The EXCI facility sends the action commands from the CREGAGT view to the CICS system.

- an FST2 TERM/INIT sequence is issued from the console, a CICS terminal, or from a MainView AutoOPERATOR for CICS EXEC

The EXCI facility enables auto maintenance to initiate the MainView for CICS and MainView AutoOPERATOR for CICS agents without a BBI-SS PAS communications link. It also enables the BBI-SS PAS to initiate the link to a CICS system.

Auto maintenance messages

MainView AutoOPERATOR for CICS messages are documented in members of the BBMLIB data set and can be viewed by using the MESSAGES General Services option from the MainView AutoOPERATOR for CICS Primary Option Menu.

Note

CICS issues DFHXM and DFHPG messages when the CREATE and DISCARD commands are issued. These messages are directed to the CSPL transient data queue by default. MainView AutoOPERATOR for CICS issues error messages to the CICS job log for any CREATE and DISCARD failures.

Update the CSD

The CICS CSD data set must be updated with the transaction definitions and program resources that are used by MainView AutoOPERATOR for CICS. The transaction definitions become part of the internal CICS Program Control Table (PCT); the program definitions become part of the internal CICS Processing Program Table (PPT).

This procedure modifies or adds resource groups and group lists to the CICS CSD. The resource groups contain the resource definitions for the PCT and PPT which identify MainView AutoOPERATOR for CICS transactions and programs to a CICS system. The group lists identify the resource groups that are installed at CICS initialization.

The CSDs for each CICS region that communicate with a BBI-SS PAS must be modified.

The BBSAMP members CMRCSDAL, CMRCSDLA, CMRCSDLB and CMDCSDEL contain sample JCL with online program and transaction resource definitions. Use the JCL to define the resource groups that required for MainView AutoOPERATOR for CICS. Each BBSAMP member contains documentation for customizing the JCL.
To modify resource groups and lists

1. Read the comments in BBSAMP member CMRCSDAL and modify the JCL accordingly.

CMRCSDAL creates the BMCMVOLT and BMCMVAAO groups. These groups contain the following resources

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMCMVOLT</td>
<td>Common resources:</td>
</tr>
<tr>
<td></td>
<td>■ OLTFSET program</td>
</tr>
<tr>
<td></td>
<td>■ FST2 transaction</td>
</tr>
<tr>
<td></td>
<td>■ BMCE transaction</td>
</tr>
<tr>
<td>BMCMVAAO</td>
<td>MainView AutoOPERATOR for CICS resources</td>
</tr>
<tr>
<td></td>
<td>■ OLTVCAO program</td>
</tr>
</tbody>
</table>

The CMRCSDAL job submits the CSDcccDF members based on your modifications, where ccc is OLT or AAO.

For more information about the members in the BBSAMP data set, refer to “Sample data set members” on page 325.

2. Submit the JCL.

3. Check the output for a return no higher than 4.

4. Modify and run the BBSAMP member CMRCSDLA.

 The CMRCSDAL member referred to in Step 1 on page 157 explains which member to use if you are installing MainView for CICS along with MainView AutoOPERATOR for CICS. In this case, refer to the MainView for CICS Customization Guide for installation information. These members modify the group list that is used at CICS initialization that contains the BMC Software resource groups.

5. Remove members from groups BOOLEPCT and BOOLEPPT.

 Review the instructions in BBSAMP member CMRCSDEL to modify and run the CMRCSDEL job. The CMRCSDEL job deletes obsolete resource definitions from the CICS CSD by removing resource definitions from the existing BOOLEPPT and BOOLEPCT groups.
This job also inserts the correct CSDcccrr members based on the specifications that you enter where

- ccc: corresponds to parameter PRODUCT setting in BBSAMP member CMRCSDEL
- rr: corresponds to the CICS version and release numbers that are defined in BBSAMP member CMRCSDEL

6 Implement EXCI connection and session definitions

Program, transaction, connection, and session definitions are required to use the EXCI function. Ensure that all CICS systems have the appropriate EXCI connection and session definitions installed and in service. MainView for CICS provides the necessary program and transaction definitions with BMCE (transaction) and OLTTFSET (program).

You must create the connection and session definitions yourself. The connection definitions must specify the EXCI protocol, IRC access method, and CONNTYPE(GENERIC).

Refer to the IBM document CICS External Interfaces Guide for more information about the EXCI interface.

7 Modify the Program List Table (PLT)

The PLT specifies which programs are executed in the post-initialization phase of CICS startup. This procedure modifies the PLT to initiate BBI-SS PAS to CICS communication at CICS startup. Using the PLT to modify MainView AutoOPERATOR for CICS is optional. However, if you do not use the PLT, you must manually start BBI-SS PAS to CICS communication by using the FST2 transaction from the MVS console.

There are two different procedures in this section:

- “To modify an existing PLT” on page 158
- “To create a new PLT” on page 159

You must complete one of these procedures based upon whether you have an existing PLT or are creating a new PLT. Either procedure automates the initiation of BBI-SS PAS to CICS communication.

To modify an existing PLT

Complete this procedure if you have an existing PLT that you want to modify. Modify the PLT by inserting the appropriate program or using the CMRPLT macro. BMC Software recommends that you manually insert the program name.
1. To insert the program name manually, find the following statement:
   ```
   TYPE=ENTRY, PROGRAM=DFHDELIM
   ```
2. Insert the following program name immediately after the `PROGRAM=DFHDELIM` statement:
   ```
   DFHPLT TYPE=ENTRY, PROGRAM=OLTFSET
   ```
3. To use the CMRPLT macro, find the following statement at the end of the table:
   ```
   DFHPLT TYPE=FINAL
   ```
4. Insert the CMRPLT macro invocation immediately before the DFHPLT `TYPE=FINAL` statement:
   ```
   CMRPLT MODE=AUTO
   ```
5. Assemble the newly revised PLT.

 You must include the BBSAMP data set in the assembler SYSLIB concatenation if you use the CMRPLT macro.
6. Add the PLTPI parameter to the SIT to identify this updated PLT to CICS:
   ```
   PLTPI=xx
   ```
 where `xx` is the suffix of this PLT.

 When you have completed the above steps, you have modified the PLT for automatic start up of BBI-SS PAS to CICS communication.

To create a new PLT

Complete this procedure if you need to create a new PLT. Create a new PLT in your CICS table library using a member name that matches the naming conventions used at your site. The new member should contain either a CMRPLT macro invocation or the appropriate program name:

1. To use the program name, add this statement after the `PROGRAM=DFHDELIM` statement:
   ```
   DFHPLT TYPE=ENTRY, PROGRAM=OLTFSET
   ```
2. To use the CMRPLT macro, add this macro invocation:
   ```
   CMRPLT MODE=AUTO
   ```
3. Assemble the newly revised PLT.

 You must include the BBSAMP data set in the assembler SYSLIB concatenation if you use the CMRPLT macro.
4 Add the PLTPI parameter to the SIT to identify this updated PLT to CICS:

\[\text{PLTPI=}xx \]

where \(xx \) is the suffix of this PLT.

When you have completed the above steps, you have modified the PLT for automatic startup of BBI-SS PAS to CICS communication.

Modifying CICS startup JCL

Do the following steps for each CICS that will communicate with a BBI-SS PAS:

1. Add the following DD statement to the CICS execution step:

\[//\text{BBIPARM DD DSN=}\text{prefix.UBBPARM,DISP=}\text{SHR} \]

2. Add the following DD statement to the DFHRPL library concatenation in the CICS execution step:

\[// \text{ DD DSN=}\text{prefix.BBLINK,DISP=}\text{SHR} \]

The CICS startup JCL is modified.

Restarting CICS target regions

To complete the implementation of BBI-SS PAS to CICS communication, do the following steps:

1. Start each BBI-SS PAS that will communicate with a CICS region (if it is not already active).

2. Shut down each CICS region that will communicate with a BBI-SS PAS that is already active.

3. Start each CICS region that will communicate with a BBI-SS PAS.

4. For each CICS region that communicates with a BBI-SS PAS but for which the procedure in “Modifying the Program List Table (PLT)” on page 151 was not performed, manually start BBI-SS PAS-to-CICS communication; use either the SMN2 transaction from within the CICS region or the FST2 transaction from the z/OS console.

Refer to “Manual activation of BBI-SS to CICS communication” on page 271 for more information.
Ensure that the following messages are issued from each CICS region that will communicate with a BBI-SS PAS:

+FT431I SESSION WITH BBI-SS PAS ESTABLISHED
+FT428I CICS MESSAGE INTERCEPT COMPLETED

The following messages are issued from each CICS region that communicates with a BBI-SS PAS:

+FT431I SESSION WITH BBI-SS SSID ESTABLISHED
+FT806I AutoOPERATOR for CICS initialization started
+FT803I CICS TRANSIENT DATA INTERCEPT STARTED
+FT428I CICS MESSAGE INTERCEPT START COMPLETED
+FT809I AutoOPERATOR for CICS initialization complete

The implementation of BBI-SS PAS to CICS communication is now complete.

MainView AutoOPERATOR for CICS functions (with BBI-SS PAS-to-CICS communication)

If you choose to implement BBI-SS PAS-to-CICS communication, you will be able to

- use Rules to invoke CICS-dependent commands without using an EXEC
- use the Rule Processor to capture messages from the CICS transient data queue
- use hyperlinks to invoke MainView for CICS applications
- use the BROADCAST application from the CICS Operator Workstation in the BBI-TS
- use the CICS-dependent IMFEXEC CICS commands from an EXEC

The CICS-dependent IMFEXEC CICS commands are as follows:

<table>
<thead>
<tr>
<th>IMFEXEC CICS command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQUIRE TERMINAL</td>
<td>Acquire a VTAM-supported terminal.</td>
</tr>
<tr>
<td>ALLOC</td>
<td>Allocate a data set to a CICS region.</td>
</tr>
<tr>
<td>CEMT</td>
<td>Issue a CICS master terminal command.</td>
</tr>
<tr>
<td>CHAP</td>
<td>Change a task’s priority in a CICS region.</td>
</tr>
<tr>
<td>CLOSE</td>
<td>Close a file in a CICS region.</td>
</tr>
<tr>
<td>DISABLE</td>
<td>Disable a CICS resource.</td>
</tr>
<tr>
<td>IMFEXEC CICS command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DROP</td>
<td>Decrease the use count of a CICS program.</td>
</tr>
<tr>
<td>DUMPDB</td>
<td>Prepare a database for dumping.</td>
</tr>
<tr>
<td>ENABLE</td>
<td>Make a CICS resource available for use.</td>
</tr>
<tr>
<td>FREE</td>
<td>Deallocate a data set from a CICS region.</td>
</tr>
<tr>
<td>INSERVE</td>
<td>Place a CICS resource in service</td>
</tr>
<tr>
<td>KILL TASK(PURGE, FORCEPURGE)</td>
<td>Terminate a task in a CICS region by task number.</td>
</tr>
<tr>
<td>KILL TERM</td>
<td>Terminate a task in a CICS region by term ID.</td>
</tr>
<tr>
<td>LOAD</td>
<td>Load a program in a CICS region.</td>
</tr>
<tr>
<td>NEWCOPY</td>
<td>Load a new version of a program in a CICS region.</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open a file in a CICS region.</td>
</tr>
<tr>
<td>OUTSERVE</td>
<td>Place a CICS resource out of service.</td>
</tr>
<tr>
<td>PURGE</td>
<td>Purge a resource in a CICS region.</td>
</tr>
<tr>
<td>RECOVERYDB</td>
<td>Prepare a database for recovery.</td>
</tr>
<tr>
<td>RELEASE TERMINAL</td>
<td>Release a VTAM-supported terminal.</td>
</tr>
<tr>
<td>STARTDB</td>
<td>Start a database.</td>
</tr>
<tr>
<td>STOPDB</td>
<td>Stop a database.</td>
</tr>
</tbody>
</table>

MainView AutoOPERATOR for CICS functions (without BBI-SS PAS-to-CICS communication)

If you choose not to implement BBI-SS PAS-to-CICS communication, you can still use MainView AutoOPERATOR for CICS to

- use the STATUS application from the CICS Operator Workstation in the BBI-TS
- use Rules to invoke CICS-independent commands without needing an EXEC
- use the CICS-independent IMFEXEC CICS commands from an EXEC

The CICS-independent IMFEXEC commands are as follows:

<table>
<thead>
<tr>
<th>IMFEXEC CICS command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOC (LOCAL only)</td>
<td>Allocate a data set to the BBI-SS.</td>
</tr>
<tr>
<td>ALTER</td>
<td>Change CICS task-related throttles.</td>
</tr>
</tbody>
</table>
IMFEXEC CICS command Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERVS</td>
<td>Change virtual storage in the CICS region.</td>
</tr>
<tr>
<td>DISABLE(TRAN, DEST, PROGRAM)</td>
<td>Disable a CICS resource.</td>
</tr>
<tr>
<td>ENABLE (TRAN, DEST, PROGRAM)</td>
<td>Make a CICS resource available for use.</td>
</tr>
<tr>
<td>FREE (LOCAL only)</td>
<td>Deallocate a data set from the BBI-SS.</td>
</tr>
<tr>
<td>KILL TASK (KILL, WITH DUMP, FORCE)</td>
<td>Terminate a task in a CICS region by task number.</td>
</tr>
<tr>
<td>QUERY</td>
<td>Invoke a MainView for CICS service.</td>
</tr>
<tr>
<td>SPURGE</td>
<td>Change the spurge value for CICS transactions.</td>
</tr>
</tbody>
</table>
MainView AutoOPERATOR *for CICS* optional tailoring

This section describes optional steps for tailoring MainView AutoOPERATOR *for CICS* to your site’s requirements.

Overview

All steps described in this section are optional, and the full functionality of MainView AutoOPERATOR *for CICS* is available whether or not they are performed.

The MainView AutoOPERATOR *for CICS* optional tailoring steps are as follows:

- “Customizing terminal types eligible for broadcast messages (CAOTTAB)” on page 165
- “Limiting CICS transient data queues eligible for Rule processing (CAODTAB)” on page 167

If customized to do so, MainView AutoOPERATOR *for CICS* can intercept any data written to the Intrapartition Transient Destinations as well.

Customizing terminal types eligible for broadcast messages (CAOTTAB)

When the MainView AutoOPERATOR *for CICS* BROADCAST application is invoked, a list of all terminals eligible for the BROADCAST function is displayed. The following criteria must be met before a terminal is eligible for broadcasting:

- It must have a CICS status of INSERVICE.
If it is a VTAM terminal, it must be currently acquired.

Its model specification must match the specifications of the supplied terminal table.

Because terminal models can differ from installation to installation, you may need to customize the MainView AutoOPERATOR for CICS terminal table so that it includes the terminal types used at your site.

The CAOTTAB macro is used to generate the MainView AutoOPERATOR for CICS terminal table. The default table is distributed by BMC Software using the following CAOTTAB macro invocation:

```plaintext
CAOTTAB (L3277,R3277)
```

Any terminal type that can be specified for the CICS terminal definition operand TERMMODL can be specified for CAOTTAB.

The member TTABJCL in `prefix.BBSAMP` contains sample JCL that can be used to assemble and link CAOTTAB as follows:

To customize terminal types eligible for broadcast messages (CAOTTAB)

1. Copy TTABJCL from `prefix.BBSAMP` to `prefix.UBBSAMP`. Make sure the new member name conforms to site naming conventions.

2. Edit the member created in Step 1. Read the comments in the member and then modify the JCL accordingly.

3. Modify the sample invocation of the CAOTTAB macro so that all the terminal types required are eligible for BROADCAST messages.

4. Submit the newly created JCL; check the output to insure that all steps complete with a return code of 0.

Note

S106 abends can occur if the newly link-edited module causes the BBLINK data set to enter secondary extents and the active BBI-SS PAS attempts to load the module. If this happens, stop BBI-SS PAS and restart it.
Limiting CICS transient data queues eligible for Rule processing (CAODTAB)

By default, MainView AutoOPERATOR for CICS intercepts any data written to any CICS extra partition transient data destination.

If customized to do so, MainView AutoOPERATOR for CICS also can intercept any data written to intrapartition destinations. It then runs its Rule Processor definitions to determine if a particular message should be intercepted and acted upon.

The default may be acceptable in a CICS system that does not send large amounts of user data to its transient data destinations. But if there is a large volume of data traffic, performance can be impacted.

If your CICS regions have a large volume of transient data traffic and you want to limit the names of the CICS transient data destinations that are eligible for the Rule Processor message interception, use the CAODTAB macro to generate a CICS transient data name table that can define which queue names are part of the table and that can

- include only selected intrapartition transient data queue destinations
- include only selected extrapartition transient data queue destinations
- include both selected extrapartition and intrapartition transient data queue destinations
- exclude only selected intrapartition transient data queue destinations
- exclude only selected extrapartition transient data queue destinations
- exclude both selected extrapartition and intrapartition transient data queue destinations

Refer to “Using the CAODTAB macro” on page 167 for more information about how the CAODTAB macro works.

Any CICS extrapartition or intrapartition transient data destination name defined at your site can be specified for CAODTAB.

Using the CAODTAB macro

The member DTABJCL in prefix.BBSAMP contains sample JCL which you can use to assemble and link CAODTAB:
1 Copy DTABJCL from `prefix.BBSAMP` to `prefix.UBBSAMP`. Make sure the new member name conforms to site naming conventions.

2 Edit the member created in Step 1. Read the comments in the member and then modify the JCL accordingly.

3 Modify the sample invocation of the CAODTAB macro so that it uses applicable parameters from “Describing CAODTAB macro parameters” on page 168.

4 Submit the newly created JCL; check the output to ensure that all steps are completed with a return code of 0.

Describing CAODTAB macro parameters

The following list describes input parameters for the CAODTAB macro:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible values</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTRA</td>
<td>(YES</td>
</tr>
<tr>
<td>INTRA</td>
<td>(YES</td>
</tr>
<tr>
<td>QUEUES</td>
<td>[(name1),(name2),(namen)...]</td>
</tr>
</tbody>
</table>

The QUEUES= parameter is optional. Use the QUEUES= parameter when you want to explicitly include or exclude specific queues by queue name.

Examples

The following examples show how to use different combinations of the parameters on the CAODTAB macro invocation.

Example

To specify that only extrapartition transient data messages will be eligible for processing by the Rule Processor:

```
EXTRA=(YES,INCLUDE),INTRA=(NO),QUEUES=(QUE1,QUE2,QUE3)
```

The CICS transient data name table will be an inclusion table for extrapartition transient data messages from queues named QUE1, QUE2, and QUE3. If no queue names are specified (for example, if QUEUES=() or if the queues parameter is not used), all extrapartition transient data messages are included.
Example
To specify that only intrapartition transient data messages will be eligible for processing by the Rule Processor:
\[
\text{EXTRA}=(\text{NO}), \text{INTRA}=(\text{YES, INCLUDE}), \text{QUEUES}=(\text{QUE4, QUE5, QUE6})
\]
The CICS transient data name table will be an inclusion table for intrapartition transient data messages from queues named QUE4, QUE5, and QUE6.
If no queue names are specified (for example, if QUEUES=() or if the queues parameter is not used), all intrapartition transient data messages are included.

Example
To specify that both intrapartition and extrapartition transient data messages will be eligible for processing by the Rule Processor:
\[
\text{EXTRA}=(\text{YES, INCLUDE}), \text{INTRA}=(\text{YES, INCLUDE}), \text{QUEUES}=(\text{QUE7, QUE8})
\]
The CICS transient data name table will be an inclusion table for both extrapartition and intrapartition transient data messages for queues named QUE7 and QUE8.
If no queue names are specified (for example, if QUEUES=() or if the queues parameter is not used), all extrapartition and intrapartition transient data messages are included.

Example
To specify that no transient data messages from any queue will be eligible for processing by the Rule Processor:
\[
\text{EXTRA}=(\text{NO}), \text{INTRA}=(\text{NO})
\]

Example
To specify that only intrapartition transient data messages will be eligible for processing by the Rule Processor:
\[
\text{EXTRA}=(\text{NO}), \text{INTRA}=(\text{YES, INCLUDE})
\]
The CICS transient data name table will be an inclusion table for all intrapartition transient data messages from all queues.

Example
To specify that only intrapartition transient data messages will be eligible for processing by the Rule Processor:
\[
\text{EXTRA}=(\text{NO}), \text{INTRA}=(\text{YES, EXCLUDE})
\]
The CICS transient data name table will be an exclusion table for intrapartition transient data messages. In this example, since the QUEUES parameter is not used, no intrapartition queues are explicitly excluded. Thus, all intrapartition queues are included.
Implementing MainView products in IMS

This chapter includes the following sections and describes how to install and implement BMC modules, which are required for

- MainView AutoOPERATOR for IMS
- MainView for IMS (MVIMS) Online

Follow the procedures in this chapter if you are customizing one or both one or both of these products and you have not performed MainView Customization. You can refer to the manual customization steps in this chapter if you need help during MainView Customization.

Note

If you have more than one IMS, you might want to allocate a BBPARM data set that is unique to a IMS, as described in “Setting up BBPARM data sets” on page 172 and “Modifying the IMS control region JCL” on page 176.

For information about how to use product libraries, including parameter libraries (BBPARM and UBBPARM) and sample libraries (BBSAMP and UBBSAMP), see “Using MainView Product Libraries” in the MainView Customization Reference or “Using Product Libraries” in the MainView Administration Guide.

Deleting modules from a prior release

You can skip this section if you are installing MainView AutoOPERATOR for IMS for the first time.

If a previous release of MainView for IMS, MainView for DBCTL, or MainView AutoOPERATOR for IMS was installed on the target IMS, use the information in Table 13 on page 172 and follow the instructions below.

If you copied BBLINK members to an authorized STEPLIB data set using ICOPY, you can use the following BBSAMP jobs to delete the old modules:
Table 13: BBSAMP jobs to delete old modules

<table>
<thead>
<tr>
<th>IMS release</th>
<th>MVIMS 4.6 MAO 7.2</th>
<th>MVIMS 5.1 MAO 7.3.xx</th>
<th>MVIMS 5.2 MAO 7.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS 11.1</td>
<td>IDEL45$5</td>
<td>IDEL46$5</td>
<td>IDEL51$5</td>
</tr>
<tr>
<td>IMS 12.1</td>
<td>n/a</td>
<td>IDEL46$6</td>
<td>IDEL51$6</td>
</tr>
<tr>
<td>IMS 13.1</td>
<td>n/a</td>
<td>n/a</td>
<td>IDEL51$7</td>
</tr>
<tr>
<td>IMS 14.1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

To delete the old modules

1. From Table 13 on page 172, select the delete job that corresponds to the BMC product (or products) and IMS release installed at your site.

2. Edit the delete job you selected to change all &RESLIBs to the name of the data set where the old modules reside.

3. Run the delete job.

 If you added BBLINK to the IMS STEPLIB concatenation, replace the BBLINK data set in the current IMS STEPLIB concatenation with the new BBLINK data set.

 If you included BBLINK in the link list concatenation, replace the BBLINK data set in the current link list concatenation with the new BBLINK data set. This data set replacement will affect all the IMS address spaces running in that IBM OS/390 system.

Setting up BBPARM data sets

The customization instructions in this chapter refer to the following data sets:

- `hilevel.ibbparm`
- `hilevel.UBBPARM`
- `hilevel.BBPARM`

<table>
<thead>
<tr>
<th>Data set name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hilevel</code></td>
<td>is the high-level data set name qualifier used at your site</td>
</tr>
</tbody>
</table>
Data set name | **Description**
--- | ---
ibbparm | is a user-defined parameter data set unique to this IMS
You can allocate a separate *ibbparm* data set to contain any members that you want to make unique to the IMS, such as IMFSYS00, IMFECPO00, and AAOPRM00. The *ibbparm* data set must be allocated.

Note: If the only members that require customization for an IMS system are IMFSYS00, IMFECPO00, or both, an *ibbparm* data set is not required. Instead, you can create a renamed (*imsidSYS*) version of the IMFSYS00 member, a renamed (*imsidECP*) version of the IMFECPO00 member, or both, include them in UBBPARM, and edit them (as explained below in UBBPARM). If you require customized member AAOPRMMxx, specify the suffix using the AAOPRM=xx parameter in the IMFSYS00 (or imsidSYS) member that the IMS system is using.

UBBPARM | is a parameter data set that is copied and customized from the distributed BBPARM data set and shared by all IMS systems
Note: If you used MainView Customization, you can edit and customize the UBBPARM data set that MainView Customization creates. If you did not use MainView Customization, allocate a UBBPARM data set, copy the distributed BBPARM data set to it, and edit the UBBPARM data set as needed.

In the UBBPARM data set, you can include a copied, renamed version of IMFSYS00 to customize the system parameters for an IMS system, including the SUBSYS parameter, which establishes communication between the IMS and the BBI-SS PAS. The name of an IMS-specific system parameter member must be in the following format:

imsidSYS (where imsid is the four-character IMS ID code)
You can also include a copied, renamed version of IMFECPO00 to customize the Event Collector parameters for an IMS. The name of an IMS-specific Event Collector parameter member must be in the following format:

imsidECP (where imsid is the four-character IMS ID code)
You can include the AAOPRMMxx member by specifying the suffix with the AAOPRM=xx parameter in the IMFSYS00 (or imsidSYS) member that the IMS system is using.

If you do not need to customize additional UBBPARM members for an IMS system, you do not need to create and allocate an *ibbparm* member for that system.

BBPARM | is the target BBPARM data set distributed by BMC
Note

Throughout the MainView AutoOPERATOR documentation, parameter library members are normally referred to as BBPARM members, even though customized versions of the members may reside in the UBBPARM data set or in an IBBPARM data set.

The system parameter member is referred to as BBPARM member IMFSYS00, and the Event Collector parameter is referred to as BBPARM member IMFECPO0, even though the members might also reside in a parameter data set with a member name in the format imsidSYS or imsidECP.

Customizing BBPARM members for an IMS system

This section is provided primarily for new installations of MainView AutoOPERATOR for IMS. If you have a prior version installed, you can use your existing parameter settings, but this would be a good time to review them.

This following procedure customizes the parameter members required to establish communication between an IMS region and the BBI-SS PAS.

Set the system parameters in an imsidSYS member in the UBBPARM data set or in an IMFSYS00 member in an ibbparm data set. The parameters and their uses are as follows:

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYS</td>
<td>Use this parameter to identify the subsystem name of the BBI PAS that the IMS region should communicate with. The subsystem should be the same as the one specified in the BBIIJT00 member of the UBBPARM data set or an ibbparm data set.</td>
</tr>
<tr>
<td>MSGLVL1</td>
<td>Set the message level to MTO, WTO, BOTH, or NONE.</td>
</tr>
<tr>
<td>KEYWARN</td>
<td>Use this parameter to set a minimum number of days before expiration warning messages are issued for product keys. The default is 45 days. (The KEYWARN parameter applies to MVIMS Online, MVIMS Offline, and MainView for DBCTL only, and it is used only in the IMS control region, not the BBI-SS PAS.)</td>
</tr>
<tr>
<td>AOEINIT</td>
<td>This parameter is used with the DFSAOE00 initialization call. (See BBPARM member IMFSYS00 for more information.)</td>
</tr>
</tbody>
</table>
Activating MainView AutoOPERATOR for IMS

To activate MainView AutoOPERATOR for IMS, you must enable product initialization and product authorization.

Enabling product initialization

To enable MainView AutoOPERATOR for IMS initialization, in BBPARM member BBISSP00, specify

```plaintext
PRODUCT=AAO
```

Enabling product authorization

You must have a valid password to enable MainView AutoOPERATOR for IMS product authorization.

If you are licensed for the MainView AutoOPERATOR for IMS option, refer to the *Installation System User Guide* for information about how to install and activate the passwords for MainView AutoOPERATOR for IMS.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOEEXIT and AOIEXIT</td>
<td>Use these parameters to specify the names of user-written AO exit routines. You can also use AOEEXIT and AOIEXIT to specify the order in which AO exit routines get control and whether a return code is padded. See “Enabling AO exit routines” on page 177 for more information. As distributed, IMFSYS00 activates all MVIMS components in IMS. You can use imsidSYS in the UBBPARM data set or IMFSYS00 in an ibbparm data set to temporarily deactivate one or more components. BBPARM member IMFSYSBB contains information about how to deactivate components. Copy what you need from IMFSYSBB to your UBBPARM imsidSYS member or ibbparm IMFSYS00 member.</td>
</tr>
</tbody>
</table>
Modifying the IMS control region JCL

The following sections describe how to allocate a BBPARM data set and provide IMS access to the BBLINK modules.

Allocating a BBPARM data set

To establish the parameters for MVIMS Online and MainView AutoOPERATOR for IMS, allocate the BBPARM data sets by adding the following statements to the IMS control region startup procedure:

- `//IMFPARM DD DSN=hllevel.ibbparm`
- `// DD DSN=hllevel.UBBPARM`
- `// DD DSN=hllevel.BBPARM`

Giving IMS access to MainView AutoOPERATOR for IMS

The IMS control region must be able to access the BBLINK modules to enable execution of MVIMS Online and MainView AutoOPERATOR for IMS.

If the BBLINK data set is in the LNKLST concatenation, MainView AutoOPERATOR for IMS access is already established. If not, you can provide access by modifying your IMS control region JCL or by copying the required modules to the site authorized library (such as IMS RESLIB).

To modify the IMS control region JCL, add the BBLINK data set to the IMS STEPLIB concatenation. (BBLINK must be authorized.)

To copy the modules used in IMS, copy the individual BBLINK members to an authorized STEPLIB data set. Select one of the following jobs in BBSAMP:

- **ICOPY5** for IMS 11.1
- **ICOPY6** for IMS 12.1
- **ICOPY7** for IMS 13.1
- **ICOPY8** for IMS 14.1

Then edit the JCL and run the job. This job copies the appropriate BMC modules from the BBLINK library to the site-authorized library, such as IMS RESLIB. You must rerun the JCL each time you apply BMC service.
Enabling AO exit routines

You can skip this section if you have a prior version of MainView AutoOPERATOR for IMS installed.

IMS gives control to AO exit routines to do initialization processing and to do message processing. BMC Software does not supply an AO exit routine to do initialization processing. If you have your own routine, specify its one- to eight-character load module name in the AOEINIT parameter in an imsidSYS member in the UBBPARM data set or an IMFSYS00 member in an ibbpurm data set.

BMC supplies two AO exit routines to do message processing: a type-1 AO exit routine, DFSAOUE0, and a type-2 AO exit routine, DFSAOE00.

Note
See the IBM publication IMS Operations Guide for an explanation of how the DFSAOUE0 and DFSAOE00 routines differ.

The DFSAOUE0 and DFSAOE00 routines capture MTO messages and IMS commands and pass them to MainView AutoOPERATOR for IMS. They also perform the following functions:

- provide an interface with your AO exit routines (if any)
- automatically start up MVIMS monitors when IMS starts up
- provide an interface between the Event Collector and the BBI-SS PAS for workload data collection
- initialize the Event Collector

On entry to DFSAOE00 with AOE0FUNC=1, MVIMS loads and executes any user exit specified in AOEINIT=xxxxxxxx one time only. The DFSAOE00 exit does not forward control to the user’s DFSAOE01 exit on the initialization call.

If you require a DFSAOE00 or DFSAOUE0 exit routine in addition to the exit provided by BMC Software, perform Step 1 and Step 2 below.

To enable AO exit routines

1. If you have

 a. One DFSAOE00 exit: Rename it DFSAOE01, or choose a different name and use the control statements described in Step B.
b Multiple DFSAOE00 exits in addition to the BMC Software-supplied exit, or one exit not named DFSAOE01: You must add one or more of the following AOEEXIT control statements to an imsid SYS member in UBBPARM or an IMFSYS00 member in an ibbparm data set.

Example

```
AOEEXIT=MYNAME
AOEEXIT=DFSAOE02
```

In the example above, both exits are loaded and executed by the BMC Software DFSAOE00 exit. Program MYNAME executes first.

2 If you have

a one DFSAOUE0 exit: Rename it DFSAOUE1, or choose a different name and use the control statements described in Step B.

b multiple DFSAOUE0 exits in addition to the BMC Software-supplied exit, or one or more exits not named DFSAOUE1: You must add one or more of the following AOIEXIT control statements to the imsid SYS member in UBBPARM or in an IMFSYS00 member in an ibbparm data set.

Example

```
AOIEXIT=MYNAME
AOIEXIT=DFSAOUE2
```

In the example above, both exits are loaded and executed by the BMC Software DFSAOE00 exit. Program MYNAME executes first.

Flow of control

By default, the BMC Software DFSAOE00 exit invokes the BMC Software AO exit routine (IELOAD) before it invokes your user exits.

The return code set by the last user exit processed is passed to IMS. You can change the default processing in an imsid SYS member in the UBBPARM data set or an IMFSYS00 member in an ibbparm data set by specifying

- the order that exits are to be processed
- the exit return code

Example

```
AOEEXIT=(DFSAOE01,RC)
AOEEXIT=IELOAD
```
In the example above, the DFSAOE01 user exit assumes control before the IELOAD exit and the DFSAOE01 return code is passed to IMS.

IMS then executes the DFSAOUE0 exit unless indicated otherwise by the return code set by the DFSAOE00 exit. The BMC Software DFSAOUE0 exit calls your exits in the order you specified with the AOIEXIT control statements. By default, the return code set by the last user exit processed is passed to IMS. You can pass the return code from another exit by specifying the RC parameter with the AOIEXIT control statement as shown in the following example:

```
Example
AOIEXIT=(USEMINE,RC)
AOIEXIT=IGNOREME
```

Enhancement to the IMS DFSAOE00 interface

BMC Software enhances the programming interface when your DFSAOE00 exit is invoked in the following ways:

- Register 11 contains the address of the IMS SCD.
- Register 13 contains the address of 15 prechained save areas.

MainView AutoOPERATOR for IMS considerations

When you install your user exit with a BMC Software exit, you should consider the following information:

- If the BMC exit is executed before the user exit and the user exit’s return code cancels the processing of additional message segments of a multi-segment message, the message segments are also canceled for MainView AutoOPERATOR. The result is that incomplete IMS messages are passed to the MainView AutoOPERATOR and LAST SEG LOST messages from BBI. The MainView AutoOPERATOR AO exit holds the first segment for a certain length of time while waiting for additional segments, which can cause the messages to be processed out of time stamp sequence by MainView AutoOPERATOR.

- When the user exit is executed before the BMC exit, changes to the messages made by the user exit are received by the MainView AutoOPERATOR AO exit.
 - If the user exit sets the length code of a message (or a segment of a multi-segment message) to zero, MainView AutoOPERATOR does not process the message (or segment).
—If the user exit sets the length code of the first segment to 0 and the return code to 4, all further segments are canceled for MainView AutoOPERATOR also.

Note

If any modules are specified with the AOIEXIT parameter in IMFSYS00 or imsidSYS, but the BMC exit is not specified, the exit still executes after all specified exits.

The MainView AutoOPERATOR AO exit and any other AO exit you use are under ESTAE protection when invoked by the BMC routines. If an abend occurs in one of these exits, only that routine is disabled; the other routine and IMS itself are not affected.

Debug EXEC IAODEBUG

You can schedule the EXEC %IAODEBUG from the MainView AutoOPERATOR Journal. Use this EXEC to find and debug issues for MainView AutoOPERATOR for IMS.

The IAODEBUG EXEC examines the connection between the PAS and IMS and gathers information about the following items:

- The IMS region
- The IMS-related parameter settings in the parmlib
- The status of IMS command processing
- Additional diagnostics data

After EXEC discovers problems, it returns information making suggestions about you might be able to correct the issues.

Stopping message queuing to the IMS master terminal

Two methods of stopping message queuing to the IMS master terminal are available:

- Physically turn off the master terminal (requires BBI Logging).

 MainView AutoOPERATOR detects that the master terminal is not operable and will cancel any messages that are queued.
Create a MainView AutoOPERATOR IMS-initiated Rule to suppress messages from the master terminal. Refer to the section on Rules in the MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules.

If the master LTERM is defined as NON-SNA (in other words, as a local 3270), IMS does not indicate to the AOI exit that the terminal is inoperable.

To avoid this problem, you can

- change the definition of the master LTERM
- prevent the master LTERM from connecting to VTAM
- dynamically force the VTAM node inactive by issuing the command

\[\text{V NET,ID=nodename,INACT,FORCE} \]

Dynamic installation and uninstallation

Before version 4.1.00 of MainView for IMS (MVIMS) and version 6.5.00 of MainView AutoOPERATOR, the only way to install MVIMS Online and MainView AutoOPERATOR for IMS was to use the IMS control region JCL to install the products during IMS initialization.

MVIMS version 4.1.00 and MainView AutoOPERATOR version 6.5.00 have added a dynamic installation option. For these versions of the products and later, you have the following installation choices:

- the standard JCL method (described on “Modifying the IMS control region JCL” on page 176)
- the dynamic install function described in this section

If you use the dynamic install function to install the products, you do not need to modify the standard IMS JCL. MVIMS and MainView AutoOPERATOR for IMS data sets are not required in STEPLIB, and the IMFPARM DD and BMCPSWD DD statements are not necessary.

However, the recommended procedure is to use the standard JCL method to install the products, so that MVIMS Online and MainView AutoOPERATOR for IMS are always available when IMS is initialized. Then you can use the dynamic uninstall and install functions to implement MVIMS Online maintenance while IMS is still up and running.
If MVIMS backs itself out because of a software failure, you can use the dynamic uninstall and install functions to reinstall the product (after applying corrective maintenance, if appropriate) without having to stop and restart IMS.

If you plan to continue using the IMS control region JCL method to install MVIMS and MainView AutoOPERATOR for IMS as IMS initializes and you want to use dynamic uninstall and install to apply maintenance, follow these steps:

To use dynamic uninstall and install to apply maintenance

1. Run the ICOPYAOI job, which is provided in the BBSAMP data set. The job will copy members DFSAOE00 and DFSAOUE0 from your target library into a separate data set.

2. Change the IMS control region JCL:
 a. Replace the BBLINK data set in the STEPLIB concatenation with the new data set created by ICOPYAOI.
 b. Add an IMFLOAD DD pointing to the BBLINK data set.

 DFSAOE00 and DFSAOUE0 will be loaded from STEPLIB. The JCL install process loads MVIMS and MainView AutoOPERATOR for IMS modules from IMFLOAD. IMFLOAD is deallocated after installation is completed so that you can apply maintenance while IMS is up. After maintenance is applied, you can uninstall and reinstall MVIMS and MainView AutoOPERATOR for IMS to incorporate the new maintenance, without stopping and restarting IMS.

Dynamic install JCL

The sample dynamic install JCL, shown in Figure 33 on page 183, is used to install MVIMS and MainView AutoOPERATOR for IMS into an active IMS system.

The JCL is provided in BBSAMP member IBINSTL.

If the dynamic installation process is successful, the following messages are issued.

<table>
<thead>
<tr>
<th>From the IMS control region:</th>
<th>IB1129I OLT AOE EXIT DISPATCHING</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND AUTOOPERATOR FOR IMS STARTED</td>
<td>IB1133I INSTALL OF MAINVIEW FOR IMS</td>
</tr>
<tr>
<td>--IMFLOAD DATASETS--</td>
<td>dsname.BBLINK</td>
</tr>
<tr>
<td>--IMFPARM DATASETS--</td>
<td>dsname.UBBPARM</td>
</tr>
<tr>
<td>--BMCPSWD DATASETS--</td>
<td>dsname.BMCPWD</td>
</tr>
<tr>
<td>ENABLED</td>
<td></td>
</tr>
</tbody>
</table>

182 MainView AutoOPERATOR Customization Guide
If the installation process fails, check the messages that are issued by the batch job to determine what went wrong. Related messages could also be written in the IMS control region. If you are not able to correct the problem that is indicated by the messages, contact BMC Customer Support.

If the control region issues message IB1136E, try to correct the indicated problem and then try the dynamic installation again. If the control region issues message IB1138E, you must run the uninstallation job first to clean up the partial installation attempt. Then you can try to correct the problem that caused the installation failure and try to install again.

Note
The BMCPSWD DD statement is not necessary if you are installing only the ‘AO’ component.

Figure 33: Dynamic Install JCL

```plaintext
// INSTALL JOB (XXXX),‘USER NAME’,CLASS=X,MSGCLASS=X,NOTIFY=&SYSUID
>Status----------------------------------------------------------------
*TMainView FOR IMS AND AUTOOPERATOR FOR IMS DYNAMIC INSTALL JOB
** THIS JOB CAN BE USED TO INSTALL MainView FOR IMS AND AUTOOPERATOR
** FOR IMS IN AN ACTIVE IMS SYSTEM.
** THE STEPLIB, IMFLOAD, AND IMSRESL DATASETS MUST BE APF AUTHORIZED.
** PARAMETERS:
** COMP ‘ECAO’ -INSTALL THE MainView FOR IMS EVENT COLLECTOR
** AND MainView AUTOOPERATOR FOR IMS.
** ‘EC’ -INSTALL THE MainView FOR IMS EVENT COLLECTOR.
** ‘AO’ -INSTALL MainView AUTOOPERATOR FOR IMS.
** IMSID -IMS TARGET OF THE INSTALL
** INSTLDSN -THE DATA SET CONTAINING THE INSTALL PROGRAM
** (IBDYN00). THIS DATA SET WILL BE BOTH THE
** STEPLIB AND IMFLOAD.
** IMFPARMX -THE MainView FOR IMS AND AUTOOPERATOR FOR
** IMS PARAMETER DATA SETS. YOU MAY HAVE UP TO
** 5 DATA SETS. TO USE ADDITIONAL DATA SETS,
** UNCOMMENT AND SPECIFY A VALID DATA SET NAME
** FOR THE IMFPARM2= OR IMFPARM3= PARAMETERS
** AND UNCOMMENT THE APPROPRIATE LINES AFTER
```
Dynamic uninstall JCL

The sample dynamic uninstall JCL, shown in Figure 34 on page 185, is used to uninstall MVIMS and MainView AutoOPERATOR for IMS from an active IMS system.
The JCL is provided in BBSAMP member IBUNINST.

When the dynamic uninstallation process is successful, the following messages are issued.

<table>
<thead>
<tr>
<th>From the IMS control region:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOOPERATOR FOR IMS STARTED</td>
<td>IE1134I UNINSTALL OF MAINVIEW</td>
<td></td>
</tr>
<tr>
<td>AUTOOPERATOR FOR IMS ENDED</td>
<td>IE1135I UNINSTALL OF MAINVIEW</td>
<td></td>
</tr>
<tr>
<td>STARTED</td>
<td>IB1134I UNINSTALL OF MAINVIEW FOR IMS</td>
<td></td>
</tr>
<tr>
<td>ENDED</td>
<td>IB1135I UNINSTALL OF MAINVIEW FOR IMS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From the dynamic uninstall batch job:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SUCCESSFULLY</td>
<td>IB1149I ECAO UNINSTALL IS PROCEEDING</td>
</tr>
<tr>
<td></td>
<td>IB1143I ECAO UNINSTALL COMPLETED</td>
</tr>
</tbody>
</table>

If the uninstallation process fails, check the messages that are issued by the batch job to determine what went wrong. Related messages might also be written in the IMS control region. If you are not able to correct the problem that is indicated by the messages, contact BMC Customer Support.

Figure 34: Dynamic Uninstall JCL

```<code>
//UNINSTAL JOB (XXXX),"USER NAME",CLASS=X,MSGCLASS=X,NOTIFY=&SYSUID
/**
* MainView FOR IMS DYNAMIC UNINSTALL JOB
**
* THIS JOB CAN BE USED TO UNINSTALL MainView FOR IMS AND/OR
* MainView AUTOOPERATOR FOR IMS FROM AN ACTIVE IMS SYSTEM.
* THE STEPLIB DATASETS MUST BE APF AUTHORIZED.
**
* PARAMETERS:
**  COMP     'EC'    -UNINSTALL THE MVIMS EVENT COLLECTOR' 
**          'AO'    -UNINSTALL MainView AUTOOPERATOR FOR IMS 
**          'ECAO'  -UNINSTALL EC AND AO
**  IMSID            -IMS TARGET OF THE UNINSTALL
**  UNSTLDSN         -THE DATA SET CONTAINING THE UNINSTALL PROGRAM
**                    (IBDYN00). THIS DATA SET WILL BE STEPLIB
**
** DYNUNSTL PROC COMP=, 
      IMSID=, 
      UNSTLDSN= 
**
** IBDYN00 EXEC PGM=IBDYN00, 
      PARM='UNINSTALL,&COMP,&IMSID', 
      TIME=1439,REGION=1024K 
**
** STEPLIB: DATASET CONTAINING THE UNINSTALL PROGRAM (IBDYN00) 
**
** SYSPRINT DD SYSOUT=* 
//IBDYN00 PEND
</code>
```
Note

Time-initiated EXECs with QIS=YES specified are not quiesced when MainView AutoOPERATOR *for IMS* is dynamically uninstalled because the IMS region is still active. The shared variable, QAOIMSUN is set to YES when MainView AutoOPERATOR *for IMS* is uninstalled. Use automation (Rules or EXECs) to query the QAOIMSUN variable to determine if MainView AutoOPERATOR *for IMS* has been uninstalled.
Implementing MainView AutoOPERATOR Access NV

This chapter describes how to install the MainView AutoOPERATOR Access NV option into NetView, how to define the default NetView system to MainView AutoOPERATOR.

Overview

To implement the MainView AutoOPERATOR Access NV option to NetView and define the default NetView system to MainView AutoOPERATOR, you must complete the steps in the following table. When the steps are described in this chapter, the page number of the discussion appears in the right column.

<table>
<thead>
<tr>
<th>Task description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>modify NetView JCL</td>
<td>“Modifying NetView JCL” on page 189</td>
</tr>
<tr>
<td>create member NAIOPT00 in the NetView DSIPARM data set</td>
<td>“Creating DSIPARM member NAIOPT00” on page 189</td>
</tr>
<tr>
<td>create user-modifiable copies of the IBM DSIPARM members DSICMDU, DSIDMNU, and DSIOPFU</td>
<td>NA a</td>
</tr>
<tr>
<td>modify DSIPARM member DSICMDU</td>
<td>“Modifying DSIPARM member DSICMDU” on page 190</td>
</tr>
<tr>
<td>modify DSIPARM member DSIDMNU</td>
<td>“Modifying DSIPARM member DSIDMNU” on page 191</td>
</tr>
<tr>
<td>if you are using NetView 5.1, modify DSIPARM member CNMSTYLE</td>
<td>“Modifying DSIPARM member CNMSTYLE” on page 191</td>
</tr>
<tr>
<td>copy members NAIINIT and NAISVAR into the NetView DSICLD data set</td>
<td>“Copying BBSAMP members to the NetView DSICLD data set” on page 192</td>
</tr>
<tr>
<td>modify member DSIOPFU in DSIPARM</td>
<td>“Modifying DSIPARM member DSIOPFU” on page 192</td>
</tr>
</tbody>
</table>
Allocating SYSUDUMP data sets

This procedure describes allocating SYSUDUMP data sets.

Note

Beginning with version 6.4, MainView AutoOPERATOR Access NV creates SVC dumps by default. BMC Software recommends the use of SVC dump data sets. If you want your default to be SVC dumps, you can skip the steps in this section. However, if you want to obtain SYSUDUMPs, you must code DUMPTYPE=SYSOUT in DSIPARM member NAOPT00. Additionally, if NetView is running SUB=MSTR, you must perform the 3 steps listed below.

1. Allocate a minimum of three dump data sets with RECFM=VBA and LRECL=125,BLKSIZE=1632,DSORG=PS. Make each one large enough to accommodate the largest dump that you expect.

2. Add the following allocations to your NetView address space JCL, pointing to the dump data sets that were created in the previous step.

```
//BBDDUMP01 DD DISP=SHR,DSN=dumpdsn1,VOL=SER=....,UNIT=....
//BBDDUMP02 DD DISP=SHR,DSN=dumpdsn2,VOL=SER=....,UNIT=....
//BBDDUMP03 DD DISP=SHR,DSN=dumpdsn3,VOL=SER=....,UNIT=....
```
3 Catalog all data sets that are referenced in the NetView address space JCL PROC in the master catalog or change all allocations to UNIT/VOLSER allocations.

Modifying NetView JCL

To make MainView AutoOPERATOR programs and parameters available in the NetView address space, modify the NetView JCL:

1 Add the MainView AutoOPERATOR BBLINK library to the NetView STEPLIB concatenation.

2 Add the following new DD statements to the NetView JCL:

```
//BBIPARM DD ... DSN=hilvl.BBPARM,DISP=SHR
//BBILOAD DD ... DSN=hilvl.BBLINK,DISP=SHR
```

Creating DSIPARM member NAIOPT00

Create member NAIOPT00 in the NetView DSIPARM data set to define

- BBI-SS PAS with which NetView will communicate
- NetView operator ID’s that are used to execute IMFEXEC NETVIEW commands from MainView AutoOPERATOR EXECs and NetView commands from Rules

Note

The BBSAMP member NAIOPT00 supports the use of system symbolics. Refer to “System variables substitution in parameter library members” on page 275 for more information.

1 Copy MainView AutoOPERATOR BBSAMP member NAIOPT00 to the NetView DSIPARM data set.

2 Edit NAIOPT00 to change the SSID parameter to specify the subsystem ID of the BBI-SS PAS that you want to process NAIEXEC commands issued from NetView EXECs.

Note

NAIEXEC commands can be sent to a different BBI-SS PAS using the TARGET keyword on the command. However, all NAIEXEC commands are initially routed to the specified BBI-SS PAS and if necessary, routed to another BBI-SS PAS by using BBI-SS PAS to BBI-SS PAS communication.
3 Add up to 19 OPERxx statements.

The OPERxx= statements specify operator IDs to NetView that are used to run commands and EXECs which originate from

- EXECs running in the MainView AutoOPERATOR BBI-SS PAS that execute the IMFEXEC NETVIEW command
- MainView AutoOPERATOR Rules that specify a NV command as part of the defined Action Specification for the Rule

You must specify at least one OPERxx statement; multiple statements do not need to be sequential. Specifying multiple OPERxx statements allows multiple NetView commands (and EXECs) to run at the same time.

The maximum number of OPERxx statements is 19.

The operator IDs specified should be used solely for MainView AutoOPERATOR Access NV. A user should not log on to NetView with any of these IDs.

Refer to “Reviewing NetView security for Access NV operator IDs” on page 193 for more information about creating security for the operator IDs that you specify in this step.

Modifying DSIPARM member DSICMDU

MainView AutoOPERATOR Access NV uses two command processors that must be defined to NetView in the DSICMDU member in the DSIPARM data set.

Modify the DSIPARM member DSICMDU by appending the contents of BBSAMP member NAICMDS to the end of your existing DSICMDU member.

This action adds definitions for the three NetView command processors that are used by MainView AutoOPERATOR Access NV, NAIEXEC, AOEXEC and NAISTUB.

BMC Software recommends using AOEXEC as a more efficient alternative to using NAIEXEC for performing automation tasks from the NetView address space. Using this command does not require the use of CSA storage which NAIEXEC does. It also allows greater portability because the same NetView EXEC that is used to invoke AOEXEC can also be invoked from TSO or other AutoOPERATOR address spaces.

Note

Do not attempt to use REXX LINKMVS to invoke AOEXEC. The AOEXEC fails and you will receive a return code of 54.
For more information about the functions of AOEXEC, refer to the *MainView AutoOPERATOR Advanced Automation Guide*.

Modifying DSIPARM member DSIDMNU

If you are running NetView version 5.1 or later, skip this section and proceed to “Modifying DSIPARM member CNMSTYLE” on page 191.

Some Access NV functions run as an optional subtask (OPT) under NetView. Modify the DSIPARM member DSIDMNU to define this OPT by inserting the contents of BBSAMP member NAITASK to your existing DSIDMNU member.

This action adds a definition for the NetView optional subtask (OPT), NATASK, that is used by Access NV.

INIT=Y is included on the NATASK definition so that Access NV automatically initializes when NetView starts. If this parameter is modified, the task may also be started by using the NetView START TASK=NATASK command.

The default NATASK definition does not have a priority specification. If high activity in the NetView address space prevents acceptable response time from Access NV, you might want to specify a priority for NATASK.

Modifying DSIPARM member CNMSTYLE

If you are running any version of NetView earlier than NetView version 5.1, skip this section and refer to “Modifying DSIPARM member DSIDMNU” on page 191.

Some Access NV functions run as an optional subtask (OPT) under NetView. Modify the DSIPARM member CNMSTYLE to define this OPT by inserting the contents of BBSAMP member NAITASK5 to your existing DSIDMNU member.

This action adds a definition for the NetView optional subtask (OPT), NATASK, that is used by Access NV.

INIT=Y is included on the NATASK definition so that Access NV automatically initializes when NetView starts. If this parameter is modified, the task may also be started by using the NetView START TASK=NATASK command.
The default NATASK definition does not have a priority specification. If high activity in the NetView address space prevents acceptable response time from Access NV, you might want to specify a priority for NATASK.

Copying BBSAMP members to the NetView DSICLD data set

To make the three CLISTs NAIINITX, NAIINIT, and NAISVAR, available to NetView, copy BBSAMP members NAIINITX, NAIINIT, and NAISVAR into the DSICLD data set.

Modifying DSIPARM member DSIOPFU

Modifying the DSIPARM member DSIOPFU is the default method for defining NetView operator IDs. If you maintain your NetView operator IDs in an external security manager (ESM) such as RACF, you need to define these operator IDs in your ESM.

To modify member DSIOPFU in DSIPARM

1. Add the new operator IDs that were previously specified in NAIOPT00.

 The profile specified for these IDs must be similar to the example profile in BBSAMP member NAIPROFX. See the following section for more information.

2. Add NetView operator IDs that will use the MainView AutoOPERATOR NetView Operator Workstation.

 You must define a NetView operator ID for each TSO user ID and each MainView Alternate Access user ID that will use the MainView AutoOPERATOR NetView Operator Workstation application.

 Specify a NetView profile that is similar to the example profile in BBSAMP member NAIPROF. Refer to “Verifying operator profiles” on page 193 for more information.
Verifying operator profiles

All Access NV controlled operator station tasks (OSTs) *must* execute an initialization CLIST that contains the NAISTUB command. This requirement applies to TS users as well as the OPERxx IDs used for IMFEXEC NETVIEW commands. If you use an ESM such as RACF, you must make the appropriate changes to the user definition for the IC parameter in your user definition.

To ensure that NAISTUB is executed

1. Copy BBSAMP members NAIPROF and NAIPROFX into the NetView DSIPRF data set.

2. If no profile specification already exists for an operator ID, specify either NAIPROFX or NAIPROF and use
 - NAIPROFX for OPERxx IDs that were specified in NAIOPT00
 - NAIPROF for TS operator IDs

3. If a profile is already specified for an operator ID, browse the profile in the NetView DSIPRF data set to determine which initialization CLIST is being used.

4. Edit this CLIST in the NetView DSICLD data set to include the statements from either NAINITX or NAINIT and use
 - NAINITX for OPERxx IDs that were specified in NAIOPT00
 - NAINIT for TS operator IDs

Reviewing NetView security for Access NV operator IDs

In Step 3 “Creating DSIPARM member NAIOPT00” on page 189, you added OPER01= through OPERxx= statements, which are operator IDs defined to NetView and that NetView uses to run commands and EXECs that originate from

- EXECs running in MainView AutoOPERATOR BBI-SS PAS that include the IMFEXEC NETVIEW command
- MainView AutoOPERATOR Rules that specify a NV command as part of the defined Action Specification for the Rule
You must authorize these operator IDs that are defined to NetView to run any commands or EXECs that originate from MainView AutoOPERATOR. You must also authorize the operator IDs to use the STOP and START commands because these commands may be used internally by MainView AutoOPERATOR without specifying them as a NetView Command or that may be used within a NetView EXEC.

In other words, these operator IDs must be defined to have enough NetView authority to perform any command requested from MainView AutoOPERATOR.

Note

- When NetView is accessed from a TS session, the NetView operator ID is the same as the TS user ID. Standard NetView security applies to the operator ID.
- When NetView is accessed from a MainView AutoOPERATOR EXEC (IMFEXEC NetView), the NetView operator ID is chosen by using a least-recently used algorithm from the pool of OPERxx IDs defined in DSIPARM member NAIOPT00. Standard NetView security applies to the operator ID.

Reviewing the use of NetView exit DSIEX02A

MainView AutoOPERATOR Access NV uses the NetView exit DSIEX02A.

If you do not have a DSIEX02A exit, skip step 2 and go to step 3.

If you already use this exit, perform the following steps to ensure that your existing DSIEX02A exit and the MainView AutoOPERATOR Access NV DSIEX02A exit can coexist:

1. Rename your existing DSIEX02A load module to DSIEX02B.

2. Link the two exits by using the following linkage editor statements:

   ```
   //OLDLIB   DD DSN=your.user.exit.library
   //SYSLMOD DD DSN=AutoOPERATOR.BBLINK
   //SYSIN DD *
   CHANGE DSIEX02A(DSIEX02B)
   INCLUDE OLDLIB(DSIEX02A)
   INCLUDE SYSLMOD(DSIEX02A)
   ORDER DSIEX02A
   ENTRY DSIEX02A
   NAME DSIEX02A(R)
   */
   ```

MainView AutoOPERATOR Access NV first passes control to DSIEX02B. If DSIEX02B has modified the incoming message, MainView AutoOPERATOR Access NV processes the modified message. If the exit indicates that the message should be discarded, MainView AutoOPERATOR Access NV returns control to NetView with a return code 4.
3 For NetView version 5.1 and later, you must modify the DSIPARM member CNMSTYLE to activate this exit.

See the *Tivoli NetView for z/OS Administration Reference Guide* for more information about loading NetView exits (LOADEXIT).

Reviewing the use of NetView exit DSIEX03

MainView AutoOPERATOR Access NV uses the NetView exit DSIEX03.

If you do not have a DSIEX03 exit, no other action is required for this step.

If you already use this exit, perform the following steps to ensure that your existing DSIEX03 exit and the MainView AutoOPERATOR Access NV DSIEX03 exit can coexist:

1. Rename your existing DSIEX03 load module to DSIEX03B.

2. Link the two exits by using the following linkage editor statements:

   ```
   //OLDLIB DD DSN=your.user.exit.library
   //SYSLMOD DD DSN=AutoOPERATOR.BBLINK
   //SYSIN DD *
   CHANGE DSIEX03(DSIEX03B)
   INCLUDE OLDLIB(DSIEX03)
   INCLUDE SYSLMOD(DSIEX03)
   ORDER DSIEX03
   ENTRY DSIEX03
   NAME DSIEX03(R)
   /*
   MainView AutoOPERATOR Access NV first processes the MainView AutoOPERATOR exit and control is passed to the NetView DSIEX03 exit. The Registers from NetView are passed with the exception of the return address and R13. The return codes are passed to NetView.

3 For NetView version 5.1 and later, you must modify the DSIPARM member CNMSTYLE to activate this exit.

### Reviewing the use of NetView exit DSIEX14

MainView AutoOPERATOR Access NV uses the NetView exit DSIEX14.

If you do not have a DSIEX14 exit, no other action is required for this step.
If you already use this exit, perform the following steps to ensure that your existing DSIEX14 exit and the MainView AutoOPERATOR Access NV DSIEX14 exit can coexist:

1. Rename your existing DSIEX14 load module to DSIEX14B.

2. Link the two exits by using the following linkage editor statements:

```
//OLDLIB DD DSN=your.user.exit.library
//SYSLMOD DD DSN=AutoOPERATOR.BBLINK
//SYSIN DD *
CHANGE DSIEX14(DSIEX14B)
INCLUDE OLDLIB(DSIEX14B)
INCLUDE SYSLMOD(DSIEX14)
ORDER DSIEX14
ENTRY DSIEX14
NAME DSIEX14(R)
```

MainView AutoOPERATOR Access NV first passes control to DSIEX14B with Register 1 pointing to the User Service Block (DSIUSE). Upon return from DSIEX14B, DSIEX14 will process the LOGOFF request and then return to NetView.

3. For NetView version 5.1 and later, you must modify the DSIPARM member CNMSTYLE to activate this exit. Edit the DSIEX014=NO to YES.

---

**Reviewing the use of NetView exit DSIEX16**

MainView AutoOPERATOR Access NV uses the NetView exit DSIEX16.

If you do not have a DSIEX16 exit, no other action is required for this step.

If you already use this exit, perform the following steps to ensure that your existing DSIEX16 exit and the MainView AutoOPERATOR Access NV DSIEX16 exit can coexist:

1. Rename your existing DSIEX16 load module to DSIEX16B.

2. Link the two exits by using the following linkage editor statements:

```
//OLDLIB DD DSN=your.user.exit.library
//SYSLMOD DD DSN=AutoOPERATOR.BBLINK
//SYSIN DD *
CHANGE DSIEX16(DSIEX16B)
INCLUDE OLDLIB(DSIEX16B)
INCLUDE SYSLMOD(DSIEX16)
ORDER DSIEX16
ENTRY DSIEX16
NAME DSIEX16(R)
```

MainView AutoOPERATOR Access NV first processes the MainView AutoOPERATOR exit and control is passed to the NetView DSIEX16 exit. The
Registers from NetView are passed with the exception of the return address and R13. The return codes are passed to NetView.

3 For NetView version 5.1 and later, you must modify the DSIPARM member CNMSTYLE to activate this exit.

Modifying BBPARM member BBISSP00

Add a NETVIEW specification to BBPARM member BBISSP00. This specification defines the default NetView target for the BBI-SS PAS. The BBI-SS PAS must be restarted for the parameter change to take effect.

The default NetView target is used when initially displaying the Access NV workstation and as the target for any IMFEXEC NETVIEW commands that do not specify a target. However, you can access other NetView systems by overtyping the NetView target on the Access NV workstation or specifying a job name on the IMFEXEC NETVIEW command.
Implementing BMC Event Manager to work with BMC products

This chapter describes how to implement a MainView AutoOPERATOR connection with BMC Event Manager by using BMC Impact Integration for z/OS (BMC II for z/OS).

For information about BMC Impact Integration for z/OS, refer to the MainView AutoOPERATOR BMC Impact Integration for z/OS User Guide.

Overview of bidirectional communications

You can implement MainView AutoOPERATOR to BMC Event Manager communication by implementing a TCP/IP-based interface between MainView AutoOPERATOR and BMC Event Manager.

Refer to “Establishing a connection to a BMC Event Manager” on page 200 for more information.

Communication between MainView AutoOPERATOR and BMC Event Manager is bidirectional:

- Using BMC Impact Explorer, you can view MainView AutoOPERATOR ALERTs and events and close the ALERTs on MainView AutoOPERATOR from the Explorer.

- MainView AutoOPERATOR users can send MainView AutoOPERATOR ALERTs and events to BMC Event Manager for cross-platform automation or business system modeling.

- BMC Event Manager users can send requests to run commands and EXECs in MainView AutoOPERATOR.
BMC Event Manager users can send requests to issue write-to-operator messages (WTOs) with MainView AutoOPERATOR.

To implement the bidirectional communication, you must establish a connection to each BMC Event Manager cell and specify the BMC Impact Integration Server in MainView AutoOPERATOR which is described in “Establishing a connection to a BMC Event Manager” on page 200.

Establishing a connection to a BMC Event Manager

Use the following procedure to enable MainView AutoOPERATOR to communicate with BMC Event Manager through a TCP/IP connection.

Before you begin

To establish a connection between MainView AutoOPERATOR and BMC Event Manager, you must have

- at least one BBI-SS PAS where MainView AutoOPERATOR 6.5 or later is running
- at least one BMC Event Manager system that has been configured to communicate with MainView AutoOPERATOR 6.5 or later

For more information, refer to the MainView AutoOPERATOR BMC Impact Integration for z/OS User Guide.

- the z/OS TCP/IP product

To establish a connection to a BMC Event Manager

1. In BBPARM member BBISSP00, specify

   \[GTS=00\]

   If default TCP specifications are insufficient for your installation, specify a two-character qualifier instead of YES and create a BBPARM member BBTTCP00. (Refer to "BBPARM Member BBTTCP00" in the MainView Customization Reference for more information about the BBTTCP00 member.)

2. Create a BBPARM member AAOGME00 (or edit an existing one) to identify the BMC Event Manager cells that are to be connected.
The BBPARM member AAOGME00 allows MainView AutoOPERATOR to use the General Messages Exchange (GME) facility to share MainView AutoOPERATOR ALERTs and events with BMC Event Manager.

This member name can be overridden by using the AAOGME=xx card in the BBCFG file, where xx is the suffix to use for the AAOGME member. See “BBPARM data set members for MainView AutoOPERATOR” on page 273 for complete details about this member.

3 (required) In BBPARM member AAOGMExx, specify

GMEACT=YES

4 (optional) To override the name of the local GME node or to uniquely identify this instance of MainView AutoOPERATOR in the enterprise, in BBPARM member AAOGMExx, specify

HOSTNAME= value | SSID

where value is the name of the local GME node. If you do not specify a value, the default is the SSID of the MainView AutoOPERATOR BBI-SS PAS and it must be unique among all instances of MainView AutoOPERATOR in the enterprise.

**Note**

This value should be specified in the mcell.dir to specify with which GME node the BMC Event Manager cell will communicate with. For more information, refer to the BMC Impact Manager Installation Guide.

It should also be specified in the iim.dirbim configuration file; for more information; refer to Chapter 4, "Configuring BMC Impact Integration for MainView" in the MainView AutoOPERATOR BMC Impact Integration for z/OS User Guide.

5 (optional) Perform this step only if you plan to launch MainView Explorer from BMC Impact Explorer and you are using MainView Alarm Manager.

To specify the name of the host where the MainView Explorer server is running and the port number that it is listening on, in BBPARM member AAOGMExx, specify

MVE_LINK=host_name:port_number

where

- The default host_name is the IP address where MainView Explorer is currently running and the default port number is 3940.
The host_name can be specified as a DNS name or an IP address. When the host_name is specified, you must also specify a port number. This information is used by the BMC Impact Explorer Console to launch the MainView Explorer client as a local action for an ALERT event.

6 (required) **Specify the BMC Impact Integration server**

This step describes the settings for the TGTIP and TGTBIMCF parameters that you must enter to establish the BMC Impact Integration server that facilitates bidirectional communication between MainView AutoOPERATOR and any connecting BMC Event Manager cells.

For an example of what your TGTIP and TGTBIMCF settings might look like after you have completed this step and Step 7, refer to Figure 35 on page 205.

a In BBPARM member AAOGMExx, specify

```
TGTIP=HOSTNAME_Value | SSID
```

where the HOSTNAME_Value | SSID specification matches the value specified for the HOSTNAME parameter in Step 4.

b In BBPARM member AAOGMExx, specify

```
TGTBIMCF= BIM_configuration_file_name
```

where BIM_configuration_file_name is the data set name of the BMC Impact Integration configuration file name.

This parameter setting must directly follow the setting for TGTIP. Refer to Figure 35 on page 205 for an example.

Refer to Chapter 4, "Configuring BMC Impact Integration for MainView" in the MainView AutoOPERATOR BMC Impact Integration for z/OS User Guide for more information about what the BMC Impact Integration configuration file name is and where it is created.

After this step is complete, MainView AutoOPERATOR will be able to receive requests from BMC Event Manager. This required step allows BMC Event Manager to send actions though the BMC Impact Integration server to MainView AutoOPERATOR that include deleting ALERTs, sending commands or scheduling EXECs to run on MainView AutoOPERATOR.

7 (required) **Establish connections to the BMC Event Manager cells**

This step describes the settings for the TGTIP and TGTBIMCF parameters that you must enter to establish a connection between MainView AutoOPERATOR and the BMC Event Manager cell.
For each BMC Event Manager cell that you want to communicate with MainView AutoOPERATOR, you must repeat this step.

a In BBPARM member AAOGMExx, specify

\[
\text{TGTIP=BMCEventManager\_cell\_name}
\]

where the \text{BMCEventManager\_cell\_name} specification matches the BMC Event Manager cell name that is specified in the \text{hilevel\_qualifier.IIM.DIR} data set.

Refer to Chapter 4, "Configuring BMC Impact Integration for MainView" in the \text{MainView AutoOPERATOR BMC Impact Integration for z/OS User Guide} for more information about what the BMC Event Manager cell name is and where it is created.

b In BBPARM member AAOGMExx, specify

\[
\text{TGTBIMCF=BIM\_configuration\_file\_name}
\]

where \text{BIM\_configuration\_file\_name} is the data set name of the BMC Impact Integration configuration file name.

This parameter setting must directly follow the setting for TGTIP. Refer to Figure 35 on page 205 for an example.

Refer to Chapter 4, "Configuring BMC Impact Integration for MainView" in the \text{MainView AutoOPERATOR BMC Impact Integration for z/OS User Guide} for more information about what the BMC Impact Integration configuration file name is and where it is created.

c \text{(optional)} In BBPARM member AAOGMExx, specify

\[
\text{TGTNAME= BIM\_connection\_name}
\]

where \text{BIM\_connection\_name} is an up to 16 character name for a BMC IM connection.

The TGTNAME can be shared by multiple BIM connections and is used by MainView AutoOPERATOR Rules or EXECs to send events or publish ALERTs to a specific target system.

In Rules and EXECs, you may use wildcards when specifying the target name for events and ALERTs. There is no default value.

d \text{(optional)} In BBPARM member AAOGMExx, specify

\[
\text{EVENTS=YES}
\]
which specifies whether the connection sends incoming BRC events to the Rules Processor

BAROC messages from ADAPTORs will appear to the MainView AutoOPERATOR Rules processor as BRC (BAROC) events.

You can choose to prevent all incoming BAROC messages from cells, ADAPTORs, or from other BMC products not defined in AAOGMExx from being sent to the MainView AutoOPERATOR Rules Processor. Specify EVENTS=NO on the definition of the server connection; for example:

```
HOSTNAME=ssid of AutoOPERATOR (note this is the default value of HOSTNAME)

TGTIP=ssid of AutoOPERATOR,EVENTS=NO
```

e In BBPARM member AAOGMExx, specify

```
EXEC=Y
```

This parameter setting specifies whether to allow the launching of MainView AutoOPERATOR EXECs from a BMC Event Manager cell that will run in the MainView AutoOPERATOR BBI-SS PAS.

f In BBPARM member AAOGMExx, specify

```
WTO=Y
```

This parameter setting specifies whether a BMC Event Manager cell can send write-to-operator message (WTO) through MainView AutoOPERATOR.

8 (required) Reset the BBPARM member AAOGMExx by using the BBI command:

```
.RESET PARM AAOGMExx RESYNC
```

This command starts the communications to the BMC Event Manager cells and the MainView AutoOPERATOR Impact Integration server.

For complete information about each of the parameters in BBPARM member AAOGMExx in this section, refer to “BBPARM member AAOGMEX00 parameters” on page 287.
Example of AAOGMExx settings

The following figure shows an example of what the settings in BBPARM member AAOGMExx may look like after you have completed steps 2 through 7 in this section.

**Figure 35: Example of AAOGMExx settings**

<table>
<thead>
<tr>
<th>Line</th>
<th>Example of AAOGMExx parameters</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>GMEACT is set to YES</td>
<td>“Establishing a connection to other BMC products” on page 206</td>
</tr>
<tr>
<td>(2)</td>
<td>HOSTNAME specifies the SSID of the MainView AutoOPERATOR BBI-SS PAS</td>
<td>“Establishing a connection to other BMC products” on page 206</td>
</tr>
<tr>
<td>(3)</td>
<td>MVE_LINK specifies the host name of BBSYSC and a port number of 3941 for where the MainView Explorer server is running</td>
<td>“Establishing a connection to other BMC products” on page 206</td>
</tr>
<tr>
<td>(4)</td>
<td>TGTIP and TGTBIMCF specifies the MainView AutoOPERATOR BBI-SS PAS and the data set name of the BMC Impact Integration configuration file name. The value for TGTIP must match the HOSTNAME_Value</td>
<td>SSID specification as specified in “Establishing a connection to other BMC products” on page 206.</td>
</tr>
<tr>
<td>(5) through (7)</td>
<td>three BMC Event Manager cell names, HAGGAI, LUGGAGE, and RINCEWIN and the data set name of the BMC Impact Integration configuration file name</td>
<td>“Establishing a connection to other BMC products” on page 206 repeated 3 times for 3 BMC Event Manager cells</td>
</tr>
</tbody>
</table>

Configuring BBPARM member BBISSP00 to allow rules to send events to BMC Event Manager

MainView AutoOPERATOR Rules can send events and ALERTS to a BMC Event Manager cell.
To enable this feature, you must edit BBPARM member BBISSP00 and specify

\[ \text{PRODUCT=IIZ} \]

**Establishing a connection to other BMC products**

MainView AutoOPERATOR can connect to other BMC products that use the same communications protocol (cell protocol) as the BMC Event Manager product. The cell protocol transports Basic Recorder of Objects in C (BAROC) messages.

If you do not have the BMC Event Manager product installed, you can still receive and inspect BAROC messages by using the MainView AutoOPERATOR Rules Processor. You can also send BAROC messages with a Rule or through an EXEC by using the IMFEXEC BIM EVENT command.

While these other BMC products have a cell protocol adaptor (ADAPTOR) they cannot process MainView AutoOPERATOR ALERTs so MainView AutoOPERATOR does not send ALERTs to ADAPTORs.

The following section describes a parameter in BBPARM member AAOGME00 that provides support for these ADAPTOR connections.

**Table 14: Parameters in BBPARM member AAOGME\(\text{xx}\) for ADAPTORs**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGTTYPE=[CELL</td>
<td>ADAPTOR]</td>
</tr>
<tr>
<td></td>
<td>- CELL: is a BEM cell</td>
</tr>
<tr>
<td></td>
<td>- ADAPTOR: is an adaptor which does not have rules for managing synchronization with alerts.</td>
</tr>
</tbody>
</table>

The default is CELL.

For example, MainView AutoOPERATOR can connect and send BAROC messages to a BMC Atrium Orchestrator ADAPTOR (BAO1) without having an intermediary BMC Event Manager. The following example shows how this connection is specified in BBPARM member AAOGME00:

\[ \text{TGTIP=BAO1,TGTBIMCF=SYS2.SYSC.IIM.CONF,TGTTYPE=ADAPTOR} \]
See the *MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules* for more information about BRC events and Rules.
This chapter describes how to implement an interface between MainView AutoOPERATOR and the Control-O and Control-M Event Manager (CMEM) products.

By following the instructions in this chapter, you will be able to use the Set IOA Variable field on the Rule Processor Action Specification(s) panel. The Rule sends a request to set an IOA variable to all subscribing Control-O or CMEM regions on the local LPAR.

From there it can be sent to other INCONTROL products in the sysplex by using INCONTROL resources and facilities.

**Note**

You must be running version 6.2 or later of Control-O or CMEM with the following PTFs applied:

- PA16814
- PA16815
- PA16816
- PA16817
- PA16818

To support sending MainView AutoOPERATOR requests through CMEM, you must also apply the PTF described in the BMC APAR number IO10019. Without this PTF applied, MainView AutoOPERATOR cannot send requests to CMEM.

To allow Control-O or CMEM to process these requests, you must write one or more rules in Control-O to process the MainView AutoOPERATOR request event. You can
review an example of the Control-O rule in BBSAMP member AOSIVTBL and copy the data in this member into the appropriate Control-O or CMEM library. You might also need to modify it and activate it so that Set IOA Variable events from MainView AutoOPERATOR can be processed in Control-O.

Implementing the MainView AutoOPERATOR interface to Control-O and CMEM

The following high level outline shows additional implementation steps. Refer to the Control-O product manuals or your Control-O administrator for additional information.

1 Select the Control-O or CMEM address spaces to which you want to send the Set IOA Variable request.

2 Use the ICE tool that is provided by Control-O or CMEM to register the MainView AutoOPERATOR subsystem as a COMPONENT.

   If the ICE tool is unavailable, manually register the MainView AutoOPERATOR BBI-SS PAS name by editing the following members:

   ■ for Control-O, the CTOPARM parameter library member for Control-O
   ■ for CMEM, the CMMPARM parameter library member

   In the COMPONEN section of the parameter library member, add the following statements:

   ```
 COMPONEN . . .
 AOSUBSYS=ssss AutoOPERATOR Subsystem name to support
   ```

   See the INCONTROL for z/OS Installation Guide for more information about AOSUBSYS keyword.

3 Copy BBSAMP member AOSIVTBL to the '&OLPREFO..RULES' CTO or CMEM rule table library.

4 Add the AOSIVTBL table name to the list of rules that are loaded from the DACTMLST (for CMEM) or DARULLST (for CTO) DD when CTO or CMEM is started.

5 Restart the CTO or CMEM task or manually ORDER (or load) the table in the CTO or CMEM address space. To manually order a table, follow the instructions below for the product (CTO or CMEM) that you are using.
a For CTO, use the Rule Definition panel (the OR command from the IOA online system) to ORDER the table.

Use the O command in the OPT field on the Table List panel to order (activate) the table (and the rules it contains). You will receive a confirmation message that the table has been ordered. After the table has been ordered, you can check the status of the AOSIVRUL rule by using the Rule Status panel with the OS command. It should be marked Active.

b For CMEM, use the CMEM Rule Definition panel (the C command from the IOA online system) to order the table.

Use the O command in the OPT field on the Table List panel to order (activate) the table and the rules it contains. You should receive a confirmation message that the table has been ordered.
Implementing advanced JES support

The MainView AutoOPERATOR subsystem is always added to the subsystem vector table after the JES subsystem. Because the JES subsystem occurs in the vector table chain before MainView AutoOPERATOR, JES processes all commands and WTOs before MainView AutoOPERATOR.

However, this chapter describes what you need to do if you want to configure MainView AutoOPERATOR to

- modify or suppress JES commands
- modify or suppress WTOs on the JES job log

To accomplish this, you must edit and configure JESFLTR parameter in BBPARM member BBISSP00. When this parameter is used, MainView AutoOPERATOR installs a JES filter that allows MainView AutoOPERATOR to see message or command traffic before JES does.

**Note**

Editing and configuring the JESFLTR is required for both JES2 and JES3.

If you do not need to use MainView AutoOPERATOR to modify or suppress JES commands or WTOs, then BMC Software recommends that you omit entering this parameter in BBPARM member BBISSP00.

**Specifying JESFLTR parameter values**

Possible values for the JESFLTR parameter in BBPARM member BBISSP00 are as follows:
Specify the following to allow MainView AutoOPERATOR Rules to modify or suppress commands from JES consoles

**JESFLTR=CMD**

This specification affects all JES commands. JES commands are submitted to the Rules Processor with an event type of CMD.

Specify the following to allow MainView AutoOPERATOR Rules to modify or suppress messages from JES consoles

**JESFLTR=WTO**

JES messages are submitted to the Rules Processor with an event type of MSG before they are seen by JES.

Specify the following to allow MainView AutoOPERATOR Rules to modify or suppress both commands and messages from JES consoles

**JESFLTR=(CMD,WTO)**

### Implementing the JESFLTR parameter

You can implement the JESFLTR parameter by

- editing BBPARM member BBISSP00 and specify the JESFLTR= specification that you want

- using the BBI control command .SET to dynamically specify the option that you want; for example
  
  .SET JESFLTR=WTO
  
or
  
  .SET JESFLTR=CMD
  
or
  
  .SET JESFLTR=(CMD,WTO)

### Removing the JESFLTR setting

You can remove the JESFLTR setting whether the MainView AutoOPERATOR BBI-SS PAS is active or not.

To remove the JESFLTR setting, issue the MVS command UNHOOK prefixed with the BBI-SS PAS command character prefix defined by the CMDCHAR parameter in BBPARM member BBISSP00. The default command character is a period (.)

For example, issuing the MVS command:
.UNHOOK

removes the filter for this BBI-PAS. Messages are sent to the Log to show the filter has been removed.

Determining the status of the JESFLTR setting

To check the status of the JESFLTR hook at any time, use the following BBI control command:

.DECLAR JESFLTR

When you issue this command, messages are sent to the BBI Journal that display the current status of the WTO and CMD filters as either ACTIVE or INACTIVE.

After you determine the current status of the JESFLTR setting you can do one of the following actions to change the status:

■ Use the BBI control command .SET JESFLTR to activate or inactivate one or both of the filters.

■ Use the MVS UNHOOK command to disable the filters.

■ Perform a cold restart of the BBI-SS PAS.

A cold restart of the BBI-SS PAS resets the JESFLTR setting based on the value of the JESFLTR keyword in BBPARM member BBIPSxx.

Additional implementation considerations

Do not restart JES while the filter is installed. If you restart JES while the filter is installed, one of two situations might happen:

■ The JES restart might fail.

■ MainView AutoOPERATOR might not be able to issue any JES messages or commands.

To prevent this from happening

1. Issue the UNHOOK MVS command

2. Restart (or hotstart) JES
3 Reestablish the filter by either method described in “Implementing the JESFLTR parameter” on page 214.

You should note that this process affects only the current MainView AutoOPERATOR BBI-SS PAS and therefore must be completed for each MainView AutoOPERATOR BBI-SS PAS that has implemented the JESFLTR parameter.
Implementing Continuous State Manager

This chapter provides information to help you implement Continuous State Manager (CSM) and attain the best possible performance.

Performance considerations

For the best performance results, add both CSM EXEC libraries, prefix. BBPROC and prefix. BBCLIB, to the Virtual Lookaside Facility (VLF). Refer to the IBM publication TSO Customization Guide for more information about VLF.

Define CSM EXECs (CSMUP, CSMDOWN, CSMBUILD, and CSMINIT) as high-priority EXECs in BBPARM member AAOEXP00. See “Continuous operation with the Dynamic Parameter Manager” on page 55, for more information about AAOEXP00 and high-priority EXECs.

Initiating CSM

The following sections describe how to initiate CSM.

Overriding the default group when CSM is initiated

In CSM, a group list is a collection of objects designated to run on a particular CSM partner. When you are defining objects to CSM, you must identify the group to which the object will be a member.

By default, the object belongs to the group named after the subsystem ID (SSID) of the BBI-SS PAS where CSM runs. You can override the group by specifying a different group name on the CSMALTDB parameter in the z/OS start command for
the BBI-PAS. Refer to “Subsystem (SS) JCL parameter CSMALTDB” on page 218 for more information.

However, the default group cannot be overridden when CSM is initialized for the first time. To use a group other than the default, CSM must first be initialized with the default group. Subsequently, a group record must be created during a CSM terminal session. Once a group record is created, it can be specified on the CSMALTDB parameter to override the default group during future initializations.

**Subsystem (SS) JCL parameter CSMALTDB**

The SS JCL contains the CSMALTDB parameter. This parameter can be used to specify the name of a CSM group that is used by CSM when it initializes, or you can specify CSMALTDB=MINIMAL, which enables you to access the CSM TS to edit objects without CSM actually controlling the tasks.

**Note**

When you modify the CSMALTDB parameter, you must specify START=COLD,VPOOL=RESET for the change to take effect unless the new parameter value is the same as the CSMALTDB value from the previous start of MainView AutoOPERATOR. If the CSMALTDB parameter values are the same, and you have not IPL’d just prior starting MainView AutoOPERATOR address space, then you can specify a warm start: START=WARM,VPOOL=RESET.

An example of specifying the group name on the CSMALTDB parameter follows:

CSMALTDB=SYSB

where SYSB is the name of an SSID that is not local to the BBI-SS PAS that is starting CSM.

**End-of-Memory initiated CSM EXEC (CSMEOM)**

Normally, object termination can be monitored by using standard z/OS and JES messages. However, for some situations, monitoring based on these messages is not sufficient because an object might terminate without producing the expected messages.

Use the CSM EOM (CSM End-of-Memory) EXEC to ensure that critical objects do not terminate unnoticed. The CSMEOM EXEC allows CSM to monitor object termination regardless of how the object is terminated.

CSMEOM is designed to be called from an IMFEOM EXEC with the ASID and status being passed to the EXEC. CSM detects objects that terminate at End-of-Memory by using the CSMEOM EXEC.
See the *MainView AutoOPERATOR Advanced Automation Guide* for more information about EOM EXECs.

**Required security resources**

Because CSM processing uses several MainView SYSPROG Service commands, the MainView AutoOPERATOR PAS requires READ authorization to access MainView SYSPROG Services security resources.

CSM uses the following MainView SYSPROG Services:

- **PROGRESS**
- **STATUS**
- **ENQUEUES**

The following example shows these resource names. The asterisk (*) represents the one- to four-character subsystem ID of the BBI-SS PAS where the resource is secured:

```plaintext
BBM.*.RESOLVE.PROGRESS.LIST
BBM.*.RESOLVE.STATUS.LIST
BBM.*.RESOLVE.ENQUEUES.LIST
```

You must also ensure that the MainView AutoOPERATOR PAS has READ authority to the INIT.UPDATE resource if MainView SYSPROG Services security specifies INIT=YES on the TYPE=SYSPROG statement in the BBSEC data set member.

The following example shows this resource name:

```plaintext
BBM.*.RESOLVE.INIT.UPDATE
```

For more information about MainView SYSPROG Services security resources, see the *MainView Security Reference*.

**Accessing CSM for the first time**

This procedure describes accessing CSM for the first time.

1. Obtain and enter a valid key for the MainView AutoOPERATOR for z/OS option. Refer to the *Installation System User Guide* for information about how to install and activate passwords.
The MainView AutoOPERATOR for z/OS option is required for CSM processing, which includes issuing both z/OS commands and SYSPROG services.

2 In BBPARM member AAOPRM00, specify that the RULESET parameter includes the AAORULBC, AAORULBD, AAORULBE and AAORULBG Rule Set suffixes; for example:

```
RULESET=(BC,BD,BE,BG)
```

These Rule Sets are shipped with the high-level qualifier BBPARM and are required for CSM to function.

Do not use any of the Rule Sets from your previously installed version. Use only the AAORULBC, AAORULBD, AAORULBE, and AAORULBG Rule Sets that came with this release.

In addition, CSM also requires other Rule Sets to function that must be added to this parameter. CSM requires you to create at least one group and requires each group to have a Rule Set associated with it. Once the group Rule Sets are created, add the Rule Set suffix to the RULESET parameter.

3 In BBPARM member AAOPRM00, set the RULESCAN parameter to I for INDIVIDUAL.

The RULESCAN parameter controls the global automation strategy for all MainView AutoOPERATOR Rules. For more information about Rules and automation strategy, refer to the MainView AutoOPERATOR Basic Automation Guide, Volume 1: Using Rules.

4 In BBPARM member AAOEXP00, enter the names of all CSM EXECs and ensure that these EXECs are defined as High Priority. The names of the CSM EXECs are listed in the AAOEXP00 member.

5 Create a Shared Repository data set to contain all defined CSM objects and schedules.

If the IBM library for SAA REXX/370 (program number 5695-014) is not available, customize the BBREXALT JCL found in BBSAMP to run on your system. Submit BBREXALT to install the REXX/370 alternate library. Add the BBLINK to the STEPLIB concatenation of the INITCSM batch job. If you do not run this job, the compiled REXX object in INITCSM will fail.

Create the repository data set by running the batch job contained in BBSAMP member named INITCSM. For more information, refer to “Creating a shared repository data set for CSM” on page 222.

6 In BBPARM member BBIVARxx member, specify the name of the Shared Repository.
Use the BBPARM member BBIVARxx to define a preset shared variable for CSM. The SHARED variable that must be present for CSM to function properly is

\[
\text{CSMREPDS} = \text{hilevel.datasetname}
\]

where

- **CSMREPDS**: is the name of a shared variable that must be present for CSM to function correctly
- **hilevel.datasetname**: is the name of the Shared Repository data set created in “Accessing CSM for the first time” on page 219

**Note**

If you are implementing CSM in an environment where the MainView AutoOPERATOR subsystems have JESFLTR parameters specified in the BBISSPxx member, and you are running more than one CSM system on an LPAR, you need to add a line in the BBIVARxx member:  

\[
\text{CSMMDSPL = 'Y'}
\]

This action creates a shared variable that the CSM Rule Sets use to determine whether certain communications messages are suppressed or not.

7 Start the BBI-SS PAS and specify **START=COLD,VPOOL=RESET**

When the cold start is complete, the BBI Journal should contain the following message:

\[
\text{ACM003I CSM initialization complete}
\]

By completing these steps, CSM automatically initializes at BBI-SS PAS startup when message PM0010I is issued.

**Migrating from a previous version of MainView AutoOPERATOR**

If you are migrating from a previous version of MainView AutoOPERATOR (either MainView AutoOPERATOR 4.1 or 5.1) and you want to migrate your database repository, you must complete the following steps to convert your database:

1 Start the BBI-SS PAS and specify **START=COLD,VPOOL=RESET**.

2 Follow the instructions in “Migrating a CSM database from a previous release” on page 225.
Creating a group

Use the following procedure to create a group.

1. If you are not migrating from a previous release, log on to a terminal session and access CSM. You must add a group before you can begin adding object records. Refer to MainView AutoOPERATOR Solutions Guide for more information about adding groups and objects.

2. After you have either created a new group or converted all your MainView AutoOPERATOR 4.1 or 5.1 database repositories, enable the newly created groups with the Enable line command on the CSM Object Groups panel.

   **Note**

   When a converted group becomes enabled, the statistics about the objects are offloaded to the data set specified in the **Data set Name field**, as shown in Step 4 on page 227.

After the data is offloaded, it is available in comma-separated format. Figure 36 on page 222 shows an example of what the contents in the data set might look like:

**Figure 36: Example of Offloaded Data**

<table>
<thead>
<tr>
<th>Command</th>
<th>Line</th>
<th>Col</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROWSE</td>
<td>00001813</td>
<td>001</td>
<td>BAOKMZ.KMZ1.OFFLOAD</td>
</tr>
<tr>
<td>P,AAOCSM22,11:46:47.764226,20000725,SJSD,KMZ1,KMZ1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P,AAOCSM58,11:46:48.320489,20000725,SJSD,KMZ1,KMZ1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S,AAOCSM27,11:46:51.367131,20000725,SJSD,KMZ1,KMZ1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S,AAOCSM55,11:46:53.437561,20000725,SJSD,KMZ1,KMZ1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S,AAOCSM59,11:46:53.626765,20000725,SJSD,KMZ1,KMZ1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P,AAOCSM17,11:47:43.247170,20000725,SJSD,KMZ1,KMZ1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S,AAOCSM01,11:47:52.415915,20000725,SJSD,KMZ1,KMZ1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**************************************** Bottom of Data *****************************************</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data in a comma-separated format can be uploaded to popular spreadsheet applications, such as Microsoft Excel, where it can become input to a variety of reports.

Creating a shared repository data set for CSM

**Note**

The information contained in this section is part of Step 5 as described in “Accessing CSM for the first time” on page 219. This section contains a set of procedures that you must complete before using CSM for the first time.

Use the BBSAMP member INITCSM to create and initialize a Shared Repository data set that will contain all defined CSM objects and schedules.

---

MainView AutoOPERATOR Customization Guide
To customize this job stream

1. Modify the jobcard to installation standards.

2. Make the following global JCL and SYSIN changes:
   
   a. Change `*HILEVEL*` to the high-level qualifier for BMC Software product data sets.

   b. Change `*SSID*` to the four character subsystem (SSID) name.

   c. Change `*VOL*` to the volume serial number of the DASD volume on which the linear data set is to be allocated.

3. Submit the newly modified job stream.

   After the job stream has run successfully, check for zero return codes for both steps. Additionally, the SYSTSPRT DD should contain output messages. The message `CSM REPOSITORY SUCCESSFULLY INITIALIZED` should appear at the end of this data set.
**Note**

The space allocations shown in Figure 37 on page 224 should be enough for over 2,000 objects on most device types. For more details about space allocation, refer to “Calculating repository size for a 3390” on page 224 on page 249.

**Figure 37: BBSAMP member INITCSM Sample JCL**

```jcl
//INITCSM JOB ACCOUNT ** MODIFY JOB CARD TO INSTALLATION STANDARDS **
//*---*
//* *
//* THIS JCL CREATES AND INITIALIZES THE DATA REPOSITORY USED *
//* BY CSM. THE CSM REPOSITORY IS A KEYED VSAM DATASET WHICH *
//* CAN BE SHARED BY ALL MEMBERS OF A CSM-PLEX. *
//* *
//*---*
//*:DEF EXEC PGM=IDCAMS,REGION=3M
//SYSPRINT DD SYSOUT=&SYSOUT
//*:INIT EXEC PGM=IRXJCL,REGION=3M,
PARM='INITREP'
//:STEPLIB DD DISP=SHR,DSN=&HILEVEL..BBLINK
//:SYSEXEC DD DISP=SHR,DSN=&HILEVEL..BBPROC
//:CSMREPDS DD DISP=SHR,DSN=&HILEVEL..&SSID..BBIREPS
//:SYSTSPRT DD SYSOUT=&SYSOUT
//:PEND
//*:INITIT EXEC INITCSM
//:DEFINE SYIN DD *
DELETE (*HILEVEL*.SSID*.BBIREPS)
SET MAXCC=0
DEFINE CLUSTER(NAME(*HILEVEL*.SSID*.BBIREPS) -
KEYS(128 0) -
RECORDSIZE(14237 14237) -
SHAREOPTIONS(4)) -
DATA(NAME(*HILEVEL*.SSID*.BBIREPS.DATA) -
SPEED -
CISZ(14336) -
CYL(50,5) -
VOL(*VOL*)) -
INDEX(NAME(*HILEVEL*.SSID*.BBIREPS.INDEX) -
TRK(10,10) -
VOL(*VOL*))
LISTC ENT(*HILEVEL*.SSID*.BBIREPS) ALL
/*
```

**Calculating repository size for a 3390**

The repository has a CI size of 14,336. Each physical block of data is 7,168 bytes in length. Each track on a 3390 device can hold 7 physical blocks of data. Each record in the repository has a length of 14,237 bytes. Each cylinder on a 3390 device holds 15 tracks of data.
For example, if you have thirty groups, one master record and eighteen objects you would have 139 to store. The calculation is shown in Figure 38 on page 225:

**Figure 38: Calculating Repository Size**

\[
\begin{align*}
(30 \text{ groups} \times 4 \text{ records}) + (18 \text{ objects} \times 1 \text{ record}) + (\text{one master record}) &= 139 \\
\end{align*}
\]

where

- each group takes four repository records
- each object takes one repository record
- the master takes one repository record

It takes two physical blocks to hold one repository record. Therefore, each track can hold three and one half repository records. If you have three and one half repository records per track, you need 39.14 tracks to store 137 records. To store 39.14 tracks, you need 2.60 cylinders.

\[
\frac{39.14 \text{ tracks}}{15 \text{ tracks per cylinder}} \approx 2.60 \text{ cylinders of data}
\]

**Migrating a CSM database from a previous release**

This procedure is required only if you are migrating from MainView AutoOPERATOR version 5.1.xx or earlier. If you are migrating from MainView AutoOPERATOR 6.1.xx or later, you only need to use the REPRO command to copy the CSM repository to a new repository that the newer release of CSM PAS will use.

**Note**

The information contained in this section is part of the set of procedures described in “Accessing CSM for the first time” on page 219, which you must complete before using CSM for the first time.
To migrate a CSM database from a previous release

1 Log on to a terminal session and access the CSM Global Overview panel (as shown in Figure 39 on page 226).

Figure 39: CSM Global Overview panel

2 On the COMMAND line, enter the CONVERT primary command. The CSM Conversion panel is displayed (see Figure 40 on page 226).

Figure 40: CSM Conversion panel

3 Follow the instructions on the panel.
   a In the first Data Set Name field, enter the name of the CSM data set that you are replacing.
   b In the Member field, enter the member name (for example: CSM ssid).
   c In the second Data Set Name field, specify the name of a data set where the conversion process logs information that is related to the conversion.

Accessing CSM for the first time
The data set may be a preallocated RECFM=FB, LRECL=80 data set or the data set may be dynamically allocated with these DCB attributes: RECFM=FB, LRECL=80, BLKSIZE=23680.

d  In the **Disposition** field, specify one of the following choices:

- MOD causes the Routine to append data to the end of the sequential data set.
- SHR causes the Routine to write data at the beginning of the data set.
- The resulting Conversion Log contains information such as the conversion date and time, user ID, the input database name, the Group name, and a list of the converted objects and exceptions.
- After you enter this information, the Group Detail Control panel is displayed.

4  On the Group Detail Control panel, enter information related to the CSM group that is being converted.

**Note**
You must add the Rule Set ID that you specify in the **Rule Set ID** field on this panel to the RULESET parameter in BBPARM member AAOPRM00 (refer to Step 2 on page 226).

**Figure 41 on page 227** shows an example of a completed Group Detail Control panel.

**Figure 41: Completed Group Detail Control panel**

<table>
<thead>
<tr>
<th>BMC Software</th>
<th>COMMAND</th>
<th>Group Name</th>
<th>Command Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SYSB____</td>
<td>CSMKM__________</td>
</tr>
</tbody>
</table>

**Rule information:**

<table>
<thead>
<tr>
<th>Ruleset Dataset</th>
<th>Ruleset Id</th>
<th>Rule Prefix</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAOKMZ.AAO61.KMZ1.UBBPARM</td>
<td>G2</td>
<td>ACM1</td>
<td>0001</td>
</tr>
</tbody>
</table>

**Object Statistics:**

<table>
<thead>
<tr>
<th>Dataset Name</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAOKMZ.KMZ1.OFFLOAD</td>
<td>MOD</td>
</tr>
</tbody>
</table>

**Application information:**

<table>
<thead>
<tr>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAOKMZ2</td>
<td>GROUP LIST FOR SYSB</td>
</tr>
</tbody>
</table>

Enter END command to process and return or CANCEL to leave

The default name of the CSM group is created from the last four characters of the CSMssid member that is being converted. You can choose your own group name by typing over the default name. If the name that you choose already exists, a pop-up window is displayed, asking for a new Group Name.
5 Enter a new Group Name in the pop-up window (Figure 42 on page 228) or enter CANCEL to terminate the conversion.

**Figure 42: Pop-up window for new Group name**

BMC Software ---- CSM Conversion - Group name ------------------ AutoOPERATOR

COMMAND ===> 

Group name NS61 already exists. Specify new name for CSM Group.

   Group Name ===> ________

Enter END command to process or CANCEL to leave

6 As the conversion progresses, a pop-up window (Figure 43 on page 228) is displayed and as every five objects are converted, the counter is updated.

**Figure 43: CSM Conversion Status pop-up window**

BMC Software ----- CSM Conversion Status ----- AutoOPERATOR

CSM Conversion in Progress

15 of 164 objects converted

7 When the conversion is complete, the CSM Conversion Log is displayed (Figure 44 on page 228).

**Figure 44: CSM Conversion Log**

*************************************************************** Top of Data *****************************************************

BMC Software                  CSM Conversion Log

Input database .... BAONIS.NS61.BBPARM(CSMNEW)

Converted by ...... BAONIS2 at: 16:54 on: 10/05/2000

New Group ........ NEW

Objects processed . 50

Conversion status . Successful for group NEW. No exceptions.

<table>
<thead>
<tr>
<th>Objects</th>
<th>Exception Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAOCSMN1</td>
<td></td>
</tr>
<tr>
<td>AAOCSMN2</td>
<td></td>
</tr>
<tr>
<td>AAOCSMN3</td>
<td></td>
</tr>
<tr>
<td>AAOCSMN4</td>
<td></td>
</tr>
<tr>
<td>AAOCSMN5</td>
<td></td>
</tr>
<tr>
<td>AAOCSMN6</td>
<td></td>
</tr>
</tbody>
</table>

During conversion, you might encounter conflicts or mismatches with object definitions. For more information about resolving object-definition mismatches, refer to “Resolving object-definition conflicts after converting” on page 229.

8 Press **End** from the CSM Conversion Log.
The converted CSM objects and newly created Group are displayed on the CSM Global Overview panel (Figure 45 on page 229).

**Figure 45: Completed CSM data set conversion**

<table>
<thead>
<tr>
<th>BMC Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Overview</td>
</tr>
<tr>
<td>Conversion Successful</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRIMARY Commands</th>
<th>EXception</th>
<th>Group</th>
<th>SORT</th>
<th>SAVE</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALendar</td>
<td>CANCEL</td>
<td>UNsort</td>
<td>CONVERT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locate</td>
<td>CMDSHOW</td>
<td>Xref</td>
<td>SAVERULE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Line Command - Enter “/” to Select Action**

<table>
<thead>
<tr>
<th>LC</th>
<th>Object</th>
<th>Group-Id System</th>
<th>Actual</th>
<th>Desired</th>
<th>Ind</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>___</td>
<td>AAOAS01</td>
<td>NS61</td>
<td>UNKNOWN</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>AAONS61</td>
<td>NS61</td>
<td>UNKNOWN</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>CAS</td>
<td>NS61</td>
<td>UNKNOWN</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>CICS11</td>
<td>NS61</td>
<td>UNKNOWN</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>IMG71X</td>
<td>NS61</td>
<td>UNKNOWN</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>TSO</td>
<td>NS61</td>
<td>UNKNOWN</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>MVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

************** Bottom of data **********************

9 Repeat Step 2 on page 226 through Step 8 on page 228 for each version 4.1 or 5.1 CSM data set and member name to be converted.

**Resolving object-definition conflicts after converting**

The conversion process converts every object into one record in the Shared Repository data set.

Because each object can have only one record within the Shared Repository, but be a member of more than one group, you might encounter object-definition conflicts. If a conflict is encountered, it is identified on the CSM Conversion Log data set (“Migrating a CSM database from a previous release” on page 225).

An object-definition conflict can occur when an object already has a record in the Shared Repository and the object is being converted as a member of a different group with different definitions (see Table 15 on page 230).

**Table 15 on page 230** shows all possible definitions for an object. The first column contains the object definitions that can be different for each group. The second column contains the object definitions that must be identical for all groups containing this object.
### Table 15: Object definitions

<table>
<thead>
<tr>
<th>Do not have to match in the repository</th>
<th>Must match within the repository</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents</td>
<td>Object Type</td>
</tr>
<tr>
<td>Client</td>
<td>Restart Only</td>
</tr>
<tr>
<td>Server</td>
<td>Verify Force Down</td>
</tr>
<tr>
<td>Schedules</td>
<td>Start Command/EXEC</td>
</tr>
<tr>
<td></td>
<td>User Post Start EXEC</td>
</tr>
<tr>
<td></td>
<td>Stop Command/EXEC</td>
</tr>
<tr>
<td></td>
<td>User Post Stop EXEC</td>
</tr>
<tr>
<td></td>
<td>Cancel Command/EXEC</td>
</tr>
<tr>
<td></td>
<td>Recovery Command/EXEC</td>
</tr>
<tr>
<td></td>
<td>Start Command Time Out</td>
</tr>
<tr>
<td></td>
<td>Stop Command Time Out</td>
</tr>
<tr>
<td></td>
<td>Start Command Limit</td>
</tr>
<tr>
<td></td>
<td>Start Event Text ID and Type</td>
</tr>
<tr>
<td></td>
<td>Stop Event Text ID and Type</td>
</tr>
<tr>
<td></td>
<td>Abnormal Termination Events</td>
</tr>
<tr>
<td></td>
<td>TSO Send User ID</td>
</tr>
<tr>
<td></td>
<td>Pager Contact</td>
</tr>
<tr>
<td></td>
<td>Pager Info</td>
</tr>
<tr>
<td></td>
<td>Alert Queue</td>
</tr>
<tr>
<td></td>
<td>Rules Generation</td>
</tr>
</tbody>
</table>

You can resolve a conflict by starting CSM and by using the CSM Object Definition panel to edit each object and ensure that the object definitions for each object in
every group match exactly (with the exception of the object’s Parents, Clients, Servers and Schedules).

If you do not want each object in every group to have identical definitions, you can also resolve a conflict by using variables in CSM object definitions that can resolve to different values for the different groups on different BBI-SS PASs. The definition can contain MainView AutoOPERATOR SHARED variables. For more information, refer to the section "Using Variables in the Object Definition Fields" in the MainView AutoOPERATOR Solutions Guide.

Another way to resolve a conflicts is to place the new group into a different Shared Repository data set.

**Sample JCL for copying the shared repository**

The following figure shows an example of JCL that you can use to copy the Shared Repository data set into a new data set. You can use this sample JCL when you encounter the need to copy your Shared Repository data set into a larger data set.

Replace the data set names BAONIS.CSM.DATABASE and BAONIS.CSM.ALTDB with your data set names.

**Figure 46: JCL example for copying Shared Repository**

```plaintext
//JOBCARD
//COPY EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//F1 DD DSN=BAONIS.CSM.DATABASE,DISP=SHR <= Current Repository data set
//F2 DD DSN=BAONIS.CSM.ALTDB,DISP=SHR <= New Repository data set
//SYSIN DD *
/* REPRO IFILE(F1) OFILE(F2)
/*
```

**Using the AATWAIT program for testing Continuous State Manager or the MainView Total Object Manager**

MainView AutoOPERATOR distributes the AATWAIT program in hilevel.BBLINK that you can use to easily create test Started Tasks (STCs). This is a small program that consumes minimal resources.

Having the capability to easily and quickly create a set of test STCs can be helpful when you want to test proposed changes prior to making the changes to the Continuous State Manager or MainView Total Object Manager applications. By using the AATWAIT program, you can verify that your changes have the desired effect without affecting the production level objects.
After you invoke AATWAIT, it runs for a specified length of time; the default is forever. You can also control these aspects of the program:

- specify stopping the program after a specified number of minutes or seconds, which you set with the RUN(minutes) parameter (for minutes) or the RUS(seconds) parameter (for seconds)

- specify stopping the program after a specified number of minutes or seconds and issuing a specified abend code. To specify the abend code and the time span, use ABENDU(code) with either RUN(minutes) or RUS(seconds).

- stop the program prematurely by issuing the MVS Stop command for the address space; it will stop either normally or with the user abend code that you specified with the ABENDU(code) parameter.

- specify a number of seconds that simulates a task startup delay, after which a startup completed message (AA2107I) is issued to confirm that the task is ready

- specify a number of seconds that simulates a task shutdown delay (which issues message AA2113I), followed by message AA2108I to confirm that the task has shut down normally.

- issue a MVS Cancel command to cause this program to terminate with a system abend code such as abend S222

These capabilities allow you to make the test STCs simulate real-world conditions. When invoking the AATWAIT program, you can use any of the following optional parameters:

- RUN(minutes) specifies when to stop the program, in number of minutes. Replace minutes with any value from 0 through 999999. RUN(0), the default, tells the program to run without stopping. Valid values are 0 through 999999 minutes.

- RUS(seconds): specifies when to stop the program, in number of seconds. If not specified, the value of the RUN(minutes) is used. Replace seconds with 0 or with any value from 2 through 999999. RUS(0), the default, tells the program to run without stopping. You cannot specify 1 second.

**Note**
The RUN() and RUS() parameters are mutually exclusive; you can specify only one, or you can omit both.
- **ABENDU**(code) specifies that the program issues the specified abend code when stopped.
  Valid values for code are NONE or any abend code from 0 through 4095. The default, NONE, means the program ends normally.

- **WSTART**(seconds) specifies the number of seconds between when the task starts and when it issues the startup complete message (AA2107I).
  Replace seconds with any value from 1 through 999999.
  Choose a value that simulates the processing time for your task startup, after which the task is ready. If you omit this parameter, the task starts after a 5-second delay (the default) and does not issue message AA2107I. To receive AA2107I, you must specify this parameter.

- **WSTOP**(seconds) specifies the number of seconds between the start of task termination and its completion.
  Replace seconds with any value from 1 through 999999.
  Choose a value that simulates the shutdown processing time for a task.
  If you specify this parameter, the task issues message AA2113I when shutdown starts and AA2108I when it completes. In contrast, if you omit this parameter, the task stops immediately upon receipt of a STOP command, or when the time specified by RUN(minutes) or RUS(seconds) has elapsed; in this case, no messages are issued.

One STC procedure in PROCLIB should suffice no matter how many test objects you need to create. Customize the sample JCL shown in Figure 47 on page 233 with information from your installation environment.

**Figure 47: Sample JCL**

```
//WAIT PROC RUN=, run time (minutes)
// RUS=, run time (seconds)
// ABEND=, user ABEND code
// WSTART=, start delay (seconds)
// WSTOP= shutdown delay (seconds)
/**
* AutoOPERATOR 7.3.00
* Program for AutoOPERATOR CSM and TOM testing
/**
* RUN = default is zero; means run forever
* = RUN for 0 - 999999 minutes
* = RUN and RUS cannot both be specified at the same time
/**
* RUS = similar to RUN but specified in seconds
* = RUS(0) is 'run forever'
* = RUS(nnnnnnnn) supports a range of 2-999999 seconds
* = if not specified, the value for RUN is used
* = RUN and RUS cannot both be specified at the same time
/**
* ABEND = default is none; means terminate normally
* = specify a number to stop with user abend nnnn (0 - 4095)
/**
* WSTART = default is none; means no start up processing delay
* = valid values are 1-999999
* = when specified, message AA2107I is issued
/**
* WSTOP = default is none; means no shutdown processing delay
* = valid values are 1-999999
```
For example, assuming the PROCLIB member is called AAO, you can start multiple STCs with any desired jobnames as shown in these examples:

```
S AAO,RUN=100
S AAO.AAOTEST1,ABEND=0
S AAO.JOBNAME=TEST2
S AAO.JOBNAME=TEST3,RUN=3
S AAO.JOBNAME=TEST4,ABEND=5
S AAO.JOBNAME=TEST5,RUN=5,ABEND=6
```

In the example shown in Figure 48 on page 234, the option to terminate the program with user abend code 1 specified. WSTART and WSTOP simulate task startup and shutdown processing delays.

If WSTART is not specified, message AA2101I may be viewed as a typical 'ready for work' message. This message is issued 5 seconds after the program starts, to simulate a startup delay.

This STC was manually stopped with an MVS STOP command, and the resulting message is AA2102I. Because of the WSTOP value, the abend is delayed until after the AA2108I message is issued. If a value for WSTOP is not specified, the abend occurs immediately after the STOP command is received.

**Figure 48: Partial sample JES listing**

```
06.41.39 STC01251 ---- TUESDAY, 17 APR YYYY ----
06.41.39 STC01251 IEF695I START AAO DL WITH JOBNAME AAO DL TST IS ASSIGNED TO USER
06.41.39 STC01251 $HASP373 AAO DL TST STARTED
06.41.39 STC01251 IEF403I AAO DL TST - STARTED - TIME=06.41.39
06.41.39 STC01251 +AA2104I RUN FOR 3 MINUTES
06.41.39 STC01251 +AA2110I WSTART FOR 10 SECONDS
06.41.39 STC01251 +AA2110I WSTOP FOR 10 SECONDS
06.41.39 STC01251 +AA2101I ISSUE 'P AAO DL TST' TO STOP THIS STC (PTF: BPI0000)
06.41.49 STC01251 +AA2107I STARTUP OF AAO DL TST HAS COMPLETED; TASK READY
06.41.49 STC01251 +AA2105I STIMERM FOR 00000179 SECONDS
06.41.59 STC01251 +AA2102I STOP COMMAND ACCEPTED FROM CONSOLE BAODDL2
06.41.59 STC01251 +AA2113I SHUTDOWN OF AAO DL TST COMMENCING
06.42.09 STC01251 +AA2108I SHUTDOWN OF AAO DL TST HAS COMPLETED
06.42.09 STC01251 IEF450I AAO DL TST AAO DL TST - ABEND=S000 U0001 REASON=00000000
06.42.09 STC01251 -JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB SRB
06.42.09 STC01251 -AOODLTST STEP001 U0001 5 2 .00 .00
06.42.09 STC01251 IEF404I AAO DL TST - ENDED - TIME=06.42.09
06.42.09 STC01251 -AAODLTST ENDED. NAME-
06.42.09 STC01251 +HASP395 AAO DL TST ENDED
------ JES2 JOB STATISTICS ------
```

234  MainView AutoOPERATOR Customization Guide
Using the AATWAIT program for testing Continuous State Manager or the MainView Total Object Manager

1 //AODLTST JOB MSGLEVEL=1
2 //STARTING EXEC AODL,WSTART=10,WSTOP=10,Run=3,ABEND=1
Using the AATWAIT program for testing Continuous State Manager or the MainView Total Object Manager
This chapter contains the following information regarding specific MainView AutoOPERATOR parameters and JCL.

Enabling REXX support for EXECs

The REXX EXEC environment is disabled when MainView AutoOPERATOR is initially installed and activated. To enable REXX support, perform the following action and restart your BBI-SS PAS:

Add the following two additional DD statements to the BBI-SS PAS JCL:

```
//SYSTSIN DD DUMMY
//SYSTSPRT DD SYSOUT=s
```

where `s` is a SYSOUT class of your choice.

Detecting EXEC loops

Use the following parameters in BBPARM member AAOEXP00 to limit the CPU utilization and time that an EXEC may use. These parameters are effective only on MVS/SP2 systems and later.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMEXLIM=nnnn</td>
<td><em>(optional)</em> specifies the CPU time limit for an EXEC</td>
</tr>
<tr>
<td></td>
<td>If this time is exceeded, the EXEC is terminated with a USER 3001 abend code.</td>
</tr>
</tbody>
</table>

---

**Chapter 24  Specific MainView AutoOPERATOR parameters and JCL  237**
### Prioritizing and threading of EXECs

You can modify BBPARM member AAOEXP00 so your system

- allows multithreading of EXECs and allows EXECs to run concurrently
- gives priority to certain EXECs

You can modify the following BBPARM member AAOEXP00 parameters:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>EXEC=xxxxxxx</strong></td>
<td>enter the names of EXECs that you want to execute a high priority</td>
</tr>
</tbody>
</table>
| **MAXNORM=nn**  | enter the maximum number of normal priority EXECs that you want to execute concurrently  
                   A normal priority EXEC is any EXEC not in the high priority list. Range is 1 to 99.  
                   **Note:** This value is limited more by BBI-SS PAS memory requirements than by the 99 MAX range. |
| **MAXHIGH=n**   | enter the maximum number of priority EXECs to execute concurrently  
                   A high priority EXEC is any EXEC listed with the EXEC= keyword in AAOEXP00. Range is 1 to 99. |

Refer to “Continuous operation with the Dynamic Parameter Manager” on page 55 for information about using the Dynamic Parameter Manager application to change these parameters. In addition, refer to the *MainView AutoOPERATOR Advanced Automation Guide* for more information about performance issues and using EXECs.
Defining the message counter table

MainView AutoOPERATOR monitors and counts all messages from different sources in the Rule Processor application and displays the results on the Event Activity Statistics panel.

To determine the total number of unique messages to be displayed on the message activity statistics panel, specify in BBPARM member BBISSP00:

\[ \text{MCTSIZE=xxxx} \]

This action defines the size of the event counter table by specifying the number of event to be maintained in storage. The value range is from 1 to 99999; the default is 510. Specify 0 to disable all unique event counting. For each unique event, 128 bytes of ECSA are used to maintain information.

The difference between the total count of events and the unique count of event on the Event Activity Statistics panel is shown in the following example.

If you want to monitor three different types of events such as

- \$HASP309
- \$HASP310
- \$HASP311

the total number of unique events appears on the Event Activity Statistics panel in the UNIQUE field as

\[ \text{UNIQUE - 3} \]

Each unique event can have up to 20 different associated activities; for example:

<table>
<thead>
<tr>
<th>$HASP309</th>
<th>INIT</th>
<th>4</th>
<th>ACTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$HASP309</td>
<td>INIT</td>
<td>2</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>$HASP309</td>
<td>INIT</td>
<td>4</td>
<td>INACTIVE</td>
</tr>
</tbody>
</table>

The total number of the activities associated with the three events appears on the Event Activity Statistics panel as

Total messages: 60
Displaying MVS JES2 job numbers in address space application

If you have the MVS option for MainView AutoOPERATOR and you want to display JES2 job numbers and job class in the address space application, submit the JCL provided in BBSAMP member JES2MAO. This job reads the user’s SYS1.HASPSRC data set to retrieve relevant JES2 offsets.

If you do not run this job, the warning message AAO229W is issued at BBI-SS PAS startup and the address space application does not show JES2 job numbers or their classes.

Starting BBI-SS PAS before JES

If you want MainView AutoOPERATOR to automate functions that are normally performed before JES is operational, the MainView AutoOPERATOR subsystem must be started before JES.

To start the BBI-SS PAS before JES

1 Allocate a minimum of three dump data sets with RECFM=VBA and LRECL=125,BLKSIZE=1632,DSORG=PS. Make each one large enough to accommodate the largest dump you expect.

2 Add the following allocations to your BBI-SS PAS JCL, pointing to the dump data sets created in the previous step.

```
//BBDUMP01 DD DISP=SHR,DSN=dumpdsn1,VOLSER=....,UNIT=....
//BBDUMP02 DD DISP=SHR,DSN=dumpdsn2,VOLSER=....,UNIT=....
//BBDUMP03 DD DISP=SHR,DSN=dumpdsn3,VOLSER=....,UNIT=....
```

BBI-SS PAS opens the first DUMP data set when the BBI-SS PAS starts. This data set closes and the next one opens after an abend occurs. When the last one has been opened and used, it will be reopened and reused over and over until dumps are reset using the BBI control command .RESET DUMP. You can issue this command from a terminal session, the z/OS console, or an EXEC in the standard BBI command format.
These dump data sets are used when a BBI FORMATTED dump is taken that is controlled by the DUMPS= parameter in BBPARM member BBISSP00. If DUMPS=YES or DUMPS= BOTH is set in BBPARM member BBISSP00, a BBI FORMATTED dump is taken. If DUMPS=SDUMP is specified, a SVC dump is taken. These SYSUDUMP data sets are not used although they should always be allocated.

3 Catalog all data sets referenced in the SSJCL PROC in the master catalog or change all allocations to UNIT/VOLSER allocations.

4 Add a TIME= parameter to the EXEC statement in BBSAMP member SSJCL.

   Code the TIME= parameter as required for your installation.

   TIME=1440 is recommended.

5 Start the BBI-SS PAS with the command:

   S SSJCL.SSID, SUB=MSTR

6 Change the following two DD statements in the BBI-SS PAS JCL:

   //SYSTSIN DD dummy
   //SYSTSPRT DD dummy

   Note
   The terminal session (TS) can be started only after JES has initialized.

Restrictions

If the MainView AutoOPERATOR BBI-SS PAS is started before JES, you cannot use any command or program that attempts to allocate to a SYSOUT data set.

If you set JESCNCT=YES in BBPARM member BBISSP00, you can use the IMFEXEC commands JESALLOC and JESSUBM to allocate and submit jobs.

IMFJNUM option and seven-digit JES job numbers (z/OS version 1.2 and later)

On z/OS v1.2 and later, JES2 and JES3 can have job numbers greater than 65,534. JES2 and JES3 can operate in either the old "five-digit" mode or the new "seven-digit"
mode. With this support, you can have numbers up to 999,999 with room to expand one digit further.

For more information about JES2, refer to the $ACTIVATE and $T JOBDEF,RANGE=(xx,yy) commands. For more information about JES3, refer to the OPTIONS initialization statements and review the JOBNO= specification. More information is also available in the JES2 and JES3 migration manuals.

The following examples show the old five-digit format (representative, maximum, minimum):

- JOB12345
- STC65534
- TSU00001

The following examples show the new seven-digit format (representative, maximum, minimum):

- T0123456
- J0999999
- S0000001

You must set the AAOPRMxx option IMFJNUM=V to support job numbers greater than 99,999. The default is IMFJNUM=V. The new setting will be effective after the next warm start of the BBI-PAS. New customers should specify the AAOPRMxx option IMFJNUM=V immediately.

When the IMFJNUM option is not specified or is set to 5, the following statements are true:

- The variable IMFJNUM, which is available to both Rules and Rule-Initiated EXECs, is a fixed length five-digit field. The possible values are 1 to 99,999.
- IMFJNUM is set to null for events where the JES job number is greater than 99,999.
- A highlighted warning WTO (AU6020W) message is issued the first time MainView AutoOPERATOR detects a seven-digit mode job number that is between 1 and 99,999. This WTO message warns you that the seven-digit job number is incompatible with MainView AutoOPERATOR.
- A highlighted error WTO (AU6021E) message is issued the first time MainView AutoOPERATOR detects a job number greater than 99,999.
When the IMFJNUM option is set to V, the following statements are true:

- The variable IMFJNUM, which is available to both Rules and Rule-Initiated EXECs, is a variable length field without leading zeros.
- IMFJNUM=V supports all versions of JES.
- IMFJNUM=V supports both five-digit and seven-digit numbers.
IMFJNUM option and seven-digit JES job numbers (z/OS version 1.2 and later)
Accessing advanced SYSPROG services

MainView AutoOPERATOR is distributed with a set of basic SYSPROG commands (formerly called RESOLVE services). If you also own MainView for OS/390, you have the option to allow access to the Advanced SYSPROG services from MainView AutoOPERATOR and to execute the advanced early warning system (AEWS) in the MainView AutoOPERATOR address space.

The full set of Advanced SYSPROG services are available automatically to MainView AutoOPERATOR if you have MainView for OS/390 installed in the same SMP/E zones as MainView AutoOPERATOR or if you have the MainView for OS/390 data sets (both BBLINK and BBLOAD) defined in the linklist concatenation.

If neither of these conditions is met, you must make the following JCL modifications:

- Add the MainView for OS/390 BBLINK data set as the first data set on the STEPLIB DD statement in the SS JCL.
- Add the MainView for OS/390 BBLOAD data set as the first data set on the BBLOAD DD statement in the SS JCL.
- If you have combined the MainView for OS/390 BBLINK and BBLOAD data sets, make a reference to the combined data set on both STEPLIB and BBLOAD.

MainView AutoOPERATOR requires all data sets in the BBLOAD concatenation to be APF authorized. The MainView for OS/390 BBLOAD data set might not be authorized since MainView for OS/390 does not require this authorization. If the data set is not authorized, you must authorize the MainView for OS/390 BBLOAD data set before adding it to the BBLOAD concatenation.

Not all the Advanced RESOLVE commands function under MainView AutoOPERATOR. For example, the CONSOLE service does not function because it uses full screen support and the MainView AutoOPERATOR interface is based on line-mode.

The user security exit (ASTXA1UE) is invoked for each service invocation. Refer to the MainView AutoOPERATOR Options User Guide for more information about the user security exit.
Executing AEWS in the MainView AutoOPERATOR address space

To run the advanced early warning system (AEWS) in the MainView AutoOPERATOR address space, add the LIB DD statement (as described in the *MainView SYSPROG Services User Guide and Reference*) to the MainView AutoOPERATOR subsystem JCL.
Authorization for special MainView AutoOPERATOR functions

Depending on how a MainView AutoOPERATOR EXEC is scheduled, it is assigned a specific type of origin. The origin is checked against a matching USERID member before default security options are checked. Additional USERID members may be needed for the following origins:

<table>
<thead>
<tr>
<th>Target type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>target ID of the remote system</td>
<td>for an EXEC scheduled through a message from a target</td>
</tr>
<tr>
<td>subsystem ID of the remote BBI-SS PAS</td>
<td>for an EXEC scheduled from a BBI-SS PAS message or one that is time-initiated</td>
</tr>
<tr>
<td>jobname or RACF USERID</td>
<td>for an externally initiated EXEC</td>
</tr>
</tbody>
</table>

Command authorization

Users must be authorized to issue commands or use applications against a BBI-SS PAS target system. Command authorization is defined in user authorization members of the BBPARM data set.

A summary of authorization commands for MainView AutoOPERATOR follows:

For all MainView AutoOPERATOR options

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXEC</td>
<td>authority to schedule EXECs</td>
</tr>
</tbody>
</table>
Command | Description
--- | ---
MVSCMD | authority to issue MVS commands
RULEAUTH | Rules processor authorization which can be READ, UPDATE, or none

For the MainView AutoOPERATOR *for IMS* option only

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSCMD</td>
<td>authority to issue IMS commands</td>
</tr>
<tr>
<td>IMSMSG</td>
<td>authority to send IMS messages to LTERMs</td>
</tr>
<tr>
<td>IMSTRAN</td>
<td>authority to issue IMS transactions</td>
</tr>
</tbody>
</table>

For the MainView AutoOPERATOR *for z/OS* option only

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESAUTH</td>
<td>allowed to issue authorized SYSPROG commands</td>
</tr>
<tr>
<td></td>
<td>For more information about issuing Advanced SYSPROG commands and the security exit, refer to the <em>MainView AutoOPERATOR Options User Guide</em>.</td>
</tr>
<tr>
<td></td>
<td>A description of how to use these commands is in the <em>MainView Security Reference Guide</em>. The comment field of the USERID member of the BBPARM data set also describes the commands and their valid parameters.</td>
</tr>
</tbody>
</table>
Implementing MainView AutoOPERATOR for CICS function security

This chapter discusses function security for MainView for CICS and MainView AutoOPERATOR for CICS, how it is specified by assembling and linking the CMRSECU module using the CMRSECU macro.

The sample security member is distributed in BBSAMP member CMRUSECU. Use the following procedure to update this member:

1. Copy member CMRASM from `prefix.BBSAMP` to `prefix.UBBSAMP`. Make sure the new member name conforms to site naming conventions.

2. Edit the member created in step 1. Read the comments in the member and then modify the JCL accordingly.

   **Tip**
   You can dynamically reset the CMRSECU table with the command:
   `.RESET PARM CMRSECU`
   See the `MainView Administration Guide` for a description of the RESET control command and supported parameters.

3. Modify the sample invocations of the CMRSECU macro according to your site’s security requirements.

   The CMRSECU macro can contain up to three types of statements:

<table>
<thead>
<tr>
<th>TYPE=INITIAL</th>
<th>The CMRSECU TYPE=INITIAL statement defines security for each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• MainView for CICS function or action service</td>
</tr>
<tr>
<td></td>
<td>• MainView AutoOPERATOR for CICS action service</td>
</tr>
</tbody>
</table>
The CMRSECU TYPE=ENTRY statement further defines security per operator ID. (For example, a specific function may be accessed but only by a specific operator or operators.)

A single CMRSECU TYPE=FINAL statement ends the input. Multiple sets of CMRSECU TYPE=INITIAL and CMRSECU TYPE=ENTRY statements can be specified. Each statement and its parameters are described in the sections that follow.

4 Submit the newly created JCL; check the output to insure that all steps are completed with a return code of 0.

Note
S106 ABENDs can occur if the newly link-edited module causes the BBLINK data set to enter secondary extents and the active BBI-SS PAS attempts to load the module. If this situation happens, stop BBI-SS PAS and restart it.

CMRSECU TYPE=INITIAL statement (required)

The CMRSECU TYPE=INITIAL statement defines security for each

- MainView for CICS function or action service
- MainView AutoOPERATOR for CICS action service

To specify which target or targets the security definitions apply to, enter

```
TYPE=INITIAL,TARGET=[(targetname1,targetname2,...,targetnamen. | *)]
```

Note
The asterisk (*) indicates that security definitions apply to all nonspecified targets. If an * is not specified and a nonspecified target is referenced online, the first CMRSECU TYPE=INITIAL statement defines function security for that target. Refer to BBSAMP member CMRUSECU for an example.

To set function security, enter YES or NO for each function parameter:

- YES indicates that the function is protected. Only operator IDs with YES specified in the CMRSECU TYPE=ENTRY statement are allowed to access that function (see “CMRSECU TYPE=ENTRY statement by operator ID” on page 255).
- NO indicates that the function is not secured. All operator IDs allowed access to MainView for CICS or MainView AutoOPERATOR for CICS are also allowed access to the function.
If the function is protected and an unauthorized operator tries to access it, an error message is issued to the operator and logged.

Display parameters apply to MainView for CICS services; if you do not have MainView for CICS installed, the parameters in the Display Parameter list do not apply. Action parameters apply to MainView for CICS functions and MainView AutoOPERATOR for CICS IMFEXEC CICS commands. For IMFEXEC CICS syntax requirements, refer to the MainView AutoOPERATOR Advanced Automation Guide.

**Note**

For MainView for CICS, functions that display information and allow actions to be taken, two function parameters are listed: one to secure access to the display; the other to secure actions taken from the display. For example, the TASK function is both a display and an action screen. Specifying TASK=NO allows unlimited access to the TASK statistics and MEMORY displays only. Specifying ALTTASK=YES secures the action services related to tasks.

for the CMRSECU TYPE=INITIAL statement, the action parameters are listed in Table 17 and the display parameters are listed in Table 17 on page 253.

The default for each parameter is NO.

### Table 16: Action parameters for the CMRSECU TYPE=INITIAL and TYPE=ENTRY statements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MainView for CICS service description</th>
<th>Applicable Rule command or IMFEXEC CICS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTAID=NO</td>
<td>YES</td>
<td>specifies whether to secure the change capability for the Automatic Initiate Descriptor statistics display</td>
</tr>
<tr>
<td>ALTCLAS=NO</td>
<td>YES</td>
<td>specifies whether to secure the change capability for the classes display</td>
</tr>
<tr>
<td>ALTCONN=NO</td>
<td>YES</td>
<td>specifies whether to secure the status change capability in the CONNECT service The expanded displays are included.</td>
</tr>
<tr>
<td>ALTDEST=NO</td>
<td>YES</td>
<td>specifies the status change capability for the DEST service</td>
</tr>
<tr>
<td>ALTER=NO</td>
<td>YES</td>
<td>specifies whether to secure the change capability for the virtual storage address display</td>
</tr>
<tr>
<td>Parameter</td>
<td>MainView for CICS service description</td>
<td>Applicable Rule command or IMFEXEC CICS command</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| ALTFILE=NO | YES | specifies whether to secure the status change capability in the FILE, DDIR, DSNames, and DATATABL services | ALLOC  
CLOSE FILE  
DISABLE FILE  
ENABLE FILE  
FREE  
OPEN FILE  
RECOVERDB  
STARTDB  
STOPDB |
| ALTICES=NO | YES | specifies whether to secure the change capability in the ICE display | PURGE ICE |
| ALTPROG=NO | YES | specifies whether to secure the status change capability in the PROGRAM and REMOTES services | DISABLE PROGRAM  
DROP  
ENABLE PROGRAM  
LOAD PROGRAM  
NEWCOPY PROGRAM |
| ALTTASK=NO | YES | specifies whether to secure the task kill capability in the TASK, ENQUEUE, TERMINAL, CONSOLES, and CONNXPND services | KILL |
| ALTTERM=NO | YES | specifies whether to secure the status change capability in the TERMINAL and CONSOLES services | ACQUIRE  
INVERSE  
OUTSERVE  
RELEASE  
SPURGE |
| ALTTRAN=NO | YES | specifies whether to secure the status change capability in the TRAN display | ENABLE TRAN  
DISABLE TRAN |
<p>| ALTTSUT=NO | YES | specifies whether to secure the status change capability in the TSUT display | PURGE TSUT |
| SETTCLA=NO | YES | specifies whether to secure the alteration of the attributes of a transaction class | ALTER TCLASS |
| SETDMPD=NO | YES | specifies whether to secure the alteration of the attributes of a dump data set | ALTER DUMPDS |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>MainView for CICS service description</th>
<th>Applicable Rule command or IMFEXEC CICS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETSYS=NO</td>
<td>YES</td>
<td>specifies whether to secure the alteration of the CICS system attributes</td>
</tr>
<tr>
<td>SETTCPS=NO</td>
<td>YES</td>
<td>specifies whether to secure the alteration of a TCP/IP service</td>
</tr>
<tr>
<td>SETJVMP=NO</td>
<td>YES</td>
<td>specifies whether to secure the alteration of the status of the JVM pool</td>
</tr>
<tr>
<td>SETDMPC=NO</td>
<td>YES</td>
<td>specifies whether to secure the alteration of CICS SYSTEM and TRANSACTION DUMPCODES</td>
</tr>
</tbody>
</table>

Table 17: Display parameters for CMRSECU TYPE=INITIAL and TYPE=ENTRY statements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MainView for CICS Service Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABEND=NO</td>
<td>YES</td>
</tr>
<tr>
<td>AID=NO</td>
<td>YES</td>
</tr>
<tr>
<td>CLASS=NO</td>
<td>YES</td>
</tr>
<tr>
<td>CONNECT=NO</td>
<td>YES</td>
</tr>
<tr>
<td>The expanded displays are included.</td>
<td></td>
</tr>
<tr>
<td>DB2SYSPP=NO</td>
<td>YES</td>
</tr>
<tr>
<td>DB2TASK=NO</td>
<td>YES</td>
</tr>
<tr>
<td>DEST=NO</td>
<td>YES</td>
</tr>
<tr>
<td>DLI=NO</td>
<td>YES</td>
</tr>
<tr>
<td>DUMP=NO</td>
<td>YES</td>
</tr>
<tr>
<td>ENQUEUE=NO</td>
<td>YES</td>
</tr>
<tr>
<td>EXITS=NO</td>
<td>YES</td>
</tr>
<tr>
<td>FILE=NO</td>
<td>YES</td>
</tr>
<tr>
<td>HISTORY=NO</td>
<td>YES</td>
</tr>
<tr>
<td>Parameter</td>
<td>MainView for CICS Service Description</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>ICES=NO</td>
<td>YES</td>
</tr>
<tr>
<td>JOURNAL=NO</td>
<td>YES</td>
</tr>
<tr>
<td>MONITOR=NO</td>
<td>YES</td>
</tr>
<tr>
<td>NUCLEUS=NO</td>
<td>YES</td>
</tr>
<tr>
<td>PLAN=NO</td>
<td>YES</td>
</tr>
<tr>
<td>PPST=NO</td>
<td>YES</td>
</tr>
<tr>
<td>PROBLEM=NO</td>
<td>YES</td>
</tr>
<tr>
<td>PROGRAM=NO</td>
<td>YES</td>
</tr>
<tr>
<td>PSB=NO</td>
<td>YES</td>
</tr>
<tr>
<td>REVIEW=NO</td>
<td>YES</td>
</tr>
<tr>
<td>SHARE=NO</td>
<td>YES</td>
</tr>
<tr>
<td>SUBPOOL=NO</td>
<td>YES</td>
</tr>
<tr>
<td>SUFFIX=NO</td>
<td>YES</td>
</tr>
<tr>
<td>SUMMARY=NO</td>
<td>YES</td>
</tr>
<tr>
<td>TASK=NO</td>
<td>YES</td>
</tr>
<tr>
<td>TEMP=NO</td>
<td>YES</td>
</tr>
<tr>
<td>TERM=NO</td>
<td>YES</td>
</tr>
<tr>
<td>TIOT=NO</td>
<td>YES</td>
</tr>
<tr>
<td>TRAN=NO</td>
<td>YES</td>
</tr>
<tr>
<td>TSUT=NO</td>
<td>YES</td>
</tr>
<tr>
<td>VTAM=NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
CMRSECU TYPE=ENTRY statement by operator ID

The CMRSECU TYPE=ENTRY statement and its parameters are used to qualify access to each

- MainView for CICS function or action service
- MainView AutoOPERATOR for CICS action service

that has been secured through the CMRSECU TYPE=INITIAL statement.

One CMRSECU TYPE=ENTRY statement is required for each operator ID that requires access to the previously secured function or service.

If the function is protected and an unauthorized operator tries to access it, an error message is issued to the operator and logged.

Specify YES or NO for each of the functions or action services that has been secured by CMRSECU TYPE=INITIAL where

- YES indicates that the operator can access the function or service that has been secured
- NO indicates that the operator cannot access the function or service that has been secured

Parameters for the CMRSECU TYPE=ENTRY statement are

OPID= xxxxxxxx | *

<table>
<thead>
<tr>
<th>OPID</th>
<th>specifies an operator ID, where xxxxxxxx is</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>■ TSO user ID for access through a terminal session</td>
</tr>
<tr>
<td></td>
<td>■ EXCP user ID for access through an EXCP session</td>
</tr>
<tr>
<td></td>
<td>■ VTAM user ID for access through a VTAM session</td>
</tr>
<tr>
<td>*</td>
<td>is a generic qualifier for an operator ID; for example AB*</td>
</tr>
</tbody>
</table>

The display and action parameters are the same as the CMRSECU TYPE=INITIAL parameters.
For the CMRSECU TYPE=INITIAL statement, action parameters are listed Table 17 and the display parameters are listed in Table 18 in “CMRSECU TYPE=INITIAL statement (required)” on page 250.

**CMRSECU TYPE=FINAL statement (required)**

The CMRSECU TYPE=FINAL statement has one parameter and ends this option generation; for example:

```
CMRSECU TYPE=FINAL
```
Authorizing EXECs scheduled by an operator or the Rule Processor

EXECs can be scheduled from one BBI-SS PAS to another BBI-SS PAS in the following ways:

- using the MVS MODIFY command, a terminal operator on one BBI-SS PAS can schedule an EXEC on another BBI-SS PAS
- a Rule responding to an event can schedule an EXEC that schedules to run an EXEC on a different BBI-SS PAS

In both cases, the BBI-SS PAS where the EXEC is scheduled to run must be authorized by a BBPARM member. The BBPARM member name is the subsystem ID (SSID) of the BBI-SS PAS that sent the EXEC.

For example, if a terminal operator on BBI-SS PAS SS01 issues this command:

```
F SS01,%execname
```

and EXEC named `%execname` starts an EXEC on a BBI-SS PAS named SS02, the SS02 BBI-SS PAS must have a BBPARM member SS01.

Also, if the EXEC `%execname` issues an EXEC from SS02 to be scheduled on SS01, SS01 must have a BBPARM member SS02. This is because MainView AutoOPERATOR sends the ORIGIN of each step in an EXEC to the receiving BBI-SS PAS to verify authorization.

If the required BBPARM authorization member does not exist, MainView AutoOPERATOR issues error message AM3119W and does not schedule the EXEC.
Issuing commands from terminal sessions

MainView AutoOPERATOR allows IBM z/OS, IMS, and DBCTL commands to be issued from a terminal session (TS) command line.

Issuing z/OS commands

z/OS commands may be issued from the TS either with or without response. When issued with response, the TS enters a wait and can perform no other functions while waiting for the response. If the response is received within three seconds, it is recorded in the TS user’s local log and an automatic switch to this display occurs.

If the response is not received within three seconds, the short message

Response not available

is displayed on the current screen.

When commands are issued without response, the short message

Command issued

is displayed on the current screen.

If the MainView AutoOPERATOR for z/OS (MAO) key is active in the subsystem, MainView AutoOPERATOR attempts to issue the command with response, which requires the availability of a console. If a console is not immediately available, the command is issued without response.

Using consoles to issue z/OS commands
MainView AutoOPERATOR consoles are either subsystem consoles or Extended MCS (X-MCS) consoles. Refer to “MVS console considerations” on page 109 to determine which type of consoles are used in your environment and how they are allocated by the subsystem.

Commands issued without response are issued from a special no-response X-MCS console named SSID0000. Commands issued with response are issued using one of the Extended MCS consoles allocated to the subsystem. If a console is not immediately available, the command is issued without response from the special no-response X-MCS console named SSID0000.

The z/OS Modify command and commands that begin with a subsystem command character are issued with response from consoles that have migration IDs (MIGIDs) associated with them. All other commands can be issued from any console. If a console is not immediately available, the command is issued without response and cannot be issued from a console that has a migration ID.

### Issuing BBI commands

A terminal session user may record BBI commands and responses in the local log by specifying BBIRESP=LOCAL in the BBITSP00 member of the BBPROF data set.

When this option is used, the TS enters a wait and can perform no other functions while waiting for the response. If the response is received within three seconds, an automatic switch to the local log occurs.

If the response is not received within three seconds, the short message

Response not available

is displayed on the current screen.

BBI command responses are recorded in the subsystem log regardless of the user’s BBIRESP= specification.

### Issuing IMS commands

A terminal session user may record IMS commands and responses in the local log by specifying IMSRESP=LOCAL in the BBITSP00 member of the BBPROF data set.

When this option is used, the TS enters a wait and can perform no other functions while waiting for the response. If the response is received within three seconds, an automatic switch to the local log occurs.
If the response is not received within three seconds, the short message
Response not available

is displayed on the current screen.

IMS command responses are not recorded in the subsystem log unless a Rule records it, regardless of the user’s IMSRESP= specification.

**Issuing DBCTL commands**

DBCTL commands are issued from a terminal session the same way as IMS commands. For example to stop database ABC, issue the following command:

/STO DATABASE ABC
Changing the use of CICS recoverable temporary storage

BMC Software occasionally starts a CICS transaction by using interval control services. This type of transaction must complete processing because of existing recoverable temporary storage definitions in the CICS Temporary Storage Table (TST).

If a conflict exists between the BMC Software temporary storage prefix and an existing temporary storage definition, the prefix that is used by BMC Software (CMRI) must be changed by applying the following ZAP:

<table>
<thead>
<tr>
<th>NAME</th>
<th>CMRINT2</th>
<th>CMRINT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VER</td>
<td>00BC</td>
<td>C3D4D9C9</td>
</tr>
<tr>
<td>REP</td>
<td>00BC</td>
<td>xxxxxxxx (any nonrecoverable prefix)</td>
</tr>
</tbody>
</table>

For information about how to determine whether a conflict exists between the BMC Software temporary storage prefix and an existing temporary storage definition, refer to

- “Implementation considerations” on page 150 when implementing MainView AutoOPERATOR for CICS only
- "Implementation Considerations" in the chapter "Standard Implementation Procedures" in the MainView for CICS Customization Guide.
CICS transaction and program names

This appendix describes the transaction and program names generated by MainView for CICS and MainView AutoOPERATOR for CICS.

Transaction entries for MainView for CICS and MainView AutoOPERATOR for CICS

The following table describes the transaction IDs used by MainView for CICS and MainView AutoOPERATOR for CICS.

Table 19 on page 267 lists ZAPs that may be applied to change these IDs.

Table 18: Transaction IDs

<table>
<thead>
<tr>
<th>Tran ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMCE</td>
<td>is started by the CICS External Interface on behalf of a request from the BBI-SS This transaction is not created dynamically.</td>
</tr>
<tr>
<td>BCRT</td>
<td>processes GET and SET requests that require CICS SPI commands to collect data and process modifications (for CICS 4.1 and later) For CICS Transaction Server 2.x and later, it also handles, on an interval basis, the queues that control the allocation and reuse of the MainView for CICSTIE (Task Interface Element) space used by the data extractor. For user security purposes and other monitoring exits, BCRT should be handled like transaction JNL2.</td>
</tr>
<tr>
<td>FCD2</td>
<td>performs an action request that uses CICS services for completion It is scheduled once for each request to ensure proper serialization.</td>
</tr>
<tr>
<td>FCM1</td>
<td>routes messages to terminals through BMS for MainView AutoOPERATOR for CICS message broadcast</td>
</tr>
<tr>
<td>Tran ID</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>FIC2</td>
<td>captures and records MainView for CICS statistical data It runs once each minute.</td>
</tr>
</tbody>
</table>
| FST2   | controls the communications, the data collection and other agent functions within the CICS. The following functions are available if the appropriate product is installed:  
- QON: starts BBI-SS communications; MainView AutoOPERATOR; MainView for CICS data collection extractor  
- QOFF: stops the MainView for CICS data collection extractor  
- SYSM ON: starts MainView AutoOPERATOR for CICS  
- SYSM OFF: stops MainView AutoOPERATOR for CICS  
- LON: starts the MainView for CICS BCRT control task (should be used only under the direction of MainView for CICS support)  
- LOFF: stops the MainView for CICS BCRT control task (should be used only under the direction of MainView for CICS support)  

The following functions are available when automatic maintenance is active:  
- INIT: build and initialize the MainView for CICS agents  
- TERM: terminate and remove MainView for CICS from the CICS  
- KON: activate the MainView for CICS task kill function  
- KOFF: deactivate the MainView for CICS task kill function  
- KRLD: reload the MainView for CICS task kill function  

The FST2 transaction is not created dynamically. **Note**: On commands start BBI-SS communications if not already started. |
| JNL2   | monitors the status of the BBI-SS and starts transaction FCD2 when CICS action requests are processed  
JNL2 is always shown as active on the TASK display, but most of that time is spent waiting (user ECB). When JNL2 starts, it remains active because it must be present in the system at all times once communication with the BBI-SS is established. JNL2 is assigned a very high internal dispatching priority. |
| SMN2   | allows manual starting of communications and data collection components  
It also allows manual stopping of data collection (communications, however, remain active once started). It schedules FST2 (FST2 QON, FST2 QOFF) to perform a service and reports on the status of the components. Its use is required if the PLT is not used to start data collection and communications automatically. |
If your site has existing transaction IDs that are the same as those used by MainView for CICS or MainView AutoOPERATOR for CICS, or your site has standards that preclude the use of these IDs, you need to change them. To change these IDs, apply the following ZAPs:

Table 19: ZAPs for transaction ID changes

<table>
<thead>
<tr>
<th>Tran ID</th>
<th>ZAP Required if Transaction ID Is Changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCRT</td>
<td>NAME CMRINT2 CMRINT2</td>
</tr>
<tr>
<td></td>
<td>VER 0080 C2C3D9E3</td>
</tr>
<tr>
<td></td>
<td>REP 0080 xxxxxxxx</td>
</tr>
<tr>
<td>BMCE</td>
<td>NAME CMRINT2 CMRINT2</td>
</tr>
<tr>
<td></td>
<td>VER 00AC C2D4C3C5</td>
</tr>
<tr>
<td></td>
<td>REP 00AC xxxxxxxx</td>
</tr>
<tr>
<td>FCD2</td>
<td>NAME CMRINT2 CMRINT2</td>
</tr>
<tr>
<td></td>
<td>VER 00C0 C6C3C4F2</td>
</tr>
<tr>
<td></td>
<td>REP 00C0 xxxxxxxx New Transaction ID</td>
</tr>
<tr>
<td>FCM1</td>
<td>NAME CMRINT2 CMRINT2</td>
</tr>
<tr>
<td></td>
<td>VER 00A8 C6C3D4F1</td>
</tr>
<tr>
<td></td>
<td>REP 00A8 xxxxxxxx New Transaction ID</td>
</tr>
<tr>
<td>FIC2</td>
<td>NAME CMRINT2 CMRINT2</td>
</tr>
<tr>
<td></td>
<td>VER 00B8 C6C9C3F2</td>
</tr>
<tr>
<td></td>
<td>REP 00B8 xxxxxxxx New Transaction ID</td>
</tr>
<tr>
<td>FST2</td>
<td>NAME CMRINT2 CMRINT2</td>
</tr>
<tr>
<td></td>
<td>VER 00B0 C6E2E3F2</td>
</tr>
<tr>
<td></td>
<td>REP 00B0 xxxxxxxx New Transaction ID</td>
</tr>
<tr>
<td>JNL2</td>
<td>NAME CMRINT2 CMRINT2</td>
</tr>
<tr>
<td></td>
<td>VER 00B4 D1D5D3F2</td>
</tr>
<tr>
<td></td>
<td>REP 00B4 xxxxxxxx New Transaction ID</td>
</tr>
<tr>
<td>SMN2</td>
<td>(No ZAP required)</td>
</tr>
</tbody>
</table>

**Note**

While the transaction IDs may change in CICS, the original transaction IDs still appear in online Help.
Program entries for MainView for CICS and MainView AutoOPERATOR for CICS

This section provides a descriptive list of program entries generated for MainView for CICS and MainView AutoOPERATOR for CICS. The lists are grouped by release-independent and release-dependent programs.

Release-independent programs

The programs listed in the following table can operate under any CICS release.

Table 20: Release-independent programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMRINT2</td>
<td>CICS products internal table</td>
</tr>
<tr>
<td>CMRLOGM</td>
<td>CICS products message logging program</td>
</tr>
<tr>
<td>CSLOAD</td>
<td>CICS products common services program</td>
</tr>
<tr>
<td>CMRTMON</td>
<td>CICS products interactive startup program</td>
</tr>
<tr>
<td>CMRTMAP</td>
<td>CICS products interactive startup BMS mapset</td>
</tr>
<tr>
<td>CBQCMD</td>
<td>MainView AutoOPERATOR for CICS broadcast program</td>
</tr>
<tr>
<td>CMRxTFG</td>
<td>MainView for CICS verification program</td>
</tr>
<tr>
<td>OLTSCAO</td>
<td>start and stop MainView AutoOPERATOR for CICS</td>
</tr>
<tr>
<td>OLTVCAO</td>
<td>CSD program that initially called for CAO startup</td>
</tr>
<tr>
<td>OLTCORL</td>
<td>checks for valid CICS release</td>
</tr>
<tr>
<td>OLTFSSET</td>
<td>CICS products PLTPI and initialization program</td>
</tr>
<tr>
<td></td>
<td>This program is not dynamically created.</td>
</tr>
<tr>
<td>OLTCNTL</td>
<td>CICS products release and product verification program</td>
</tr>
<tr>
<td>OLTVER</td>
<td>determines the OLTP release level</td>
</tr>
<tr>
<td>OLTCRE</td>
<td>common resource definition create program</td>
</tr>
<tr>
<td>BALPUTLV</td>
<td>PUT maintenance level verification</td>
</tr>
<tr>
<td>CMRVCMR</td>
<td>verify presence of MainView for CICS</td>
</tr>
<tr>
<td></td>
<td>This program is not created dynamically.</td>
</tr>
<tr>
<td>CMR9RLSE</td>
<td>release identification table</td>
</tr>
<tr>
<td>BBK1CCRE</td>
<td>MainView for CICS resource definition create program</td>
</tr>
</tbody>
</table>
**Program entries for MainView for CICS and MainView AutoOPERATOR for CICS**

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBK1CRTR</td>
<td>EXEC CICS and TIE space control program</td>
</tr>
<tr>
<td>BBK1TE3</td>
<td>CTCPXRV function processor</td>
</tr>
</tbody>
</table>

**Release-dependent programs**

These programs operate under a specific CICS release. The release dependency is indicated by the following suffixes that are used with the program name.

Table 21 on page 269 is a descriptive list of the programs.

<table>
<thead>
<tr>
<th>Suffix</th>
<th>CICS Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>CICS Transaction Server 3.1</td>
</tr>
<tr>
<td>8</td>
<td>CICS Transaction Server 3.2</td>
</tr>
<tr>
<td>4</td>
<td>CICS Transaction Server 4.1</td>
</tr>
<tr>
<td>7</td>
<td>CICS Transaction Server 4.2</td>
</tr>
<tr>
<td>6</td>
<td>CICS Transaction Server 5.1</td>
</tr>
<tr>
<td>3</td>
<td>CICS Transaction Server 5.2</td>
</tr>
</tbody>
</table>

Table 21 on page 269 is a descriptive list of the CICS release-dependent programs.

**Table 21: Release-dependent programs**

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMRFSETx</td>
<td>CICS Products initialization programs</td>
</tr>
<tr>
<td>OLTFSETx</td>
<td>CICS products general agent command processor and initialization program</td>
</tr>
<tr>
<td>CMRFCMDx</td>
<td>CICS products action service program</td>
</tr>
<tr>
<td>CMRTDPXx</td>
<td>MainView AutoOPERATOR for CICS transient data exit program</td>
</tr>
<tr>
<td>CMRCMPXx</td>
<td>MainView for CICS monitoring task-related user exit program</td>
</tr>
<tr>
<td>CMRKCPXx</td>
<td>data collection global exit program</td>
</tr>
<tr>
<td>CMRTRUEx</td>
<td>task related user exit program stub</td>
</tr>
<tr>
<td>CMRROLLx</td>
<td>statistics output program</td>
</tr>
<tr>
<td>CMRSLOGx</td>
<td>statistics gathering program</td>
</tr>
<tr>
<td>Program</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>CMRXEIOx</td>
<td>task kill function processor</td>
</tr>
<tr>
<td>BBK1TE9x</td>
<td>TSQUECF function processor</td>
</tr>
<tr>
<td>BBK1RE5x</td>
<td>CJVMPL function processor</td>
</tr>
</tbody>
</table>
Manual activation of BBI-SS to CICS communication

If BBI-SS to CICS communication has already been implemented, but is not started automatically through the CICS PLTPI table, it can be started manually either from an z/OS console that has been defined to CICS, or from a CICS terminal.

For instructions on implementing BBI-SS to CICS communication, refer to

- “Implementing BBI-SS PAS to CICS Communication” in the MainView Customization Reference when implementing MainView AutoOPERATOR for CICS only
- “Standard Implementation Procedures” in the MainView for CICS Customization Guide (when implementing MainView for CICS or MainView AutoOPERATOR for CICS or both)

Manual activation from a CICS terminal

To start BBI-SS to CICS communication from a CICS terminal:

1. Invoke the SMN2 transaction.

2. In the ESTABLISH COMMUNICATIONS field, type YES.

3. Press Enter.
Manual activation from a z/OS console that is defined to CICS

To start BBI-SS to CICS communication from an z/OS console which has been defined to CICS:

Use the MODIFY command to invoke the FST2 transaction in the CICS region. For example:

```
F CICSPROD, FST2 INIT
```

invokes the FST2 transaction in the CICS region with the z/OS job name of CICSPROD.
BBPARM data set members for MainView AutoOPERATOR

This section describes BBPARM data set members that you can use as samples to set up and customize MainView AutoOPERATOR.

Table 22 on page 273 describes all of the BBPARM members that are specific to MainView AutoOPERATOR. Documentation for other BBPARM members (such as BBISSP00) or that are shared among several products can be found in the MainView Customization Reference.

Table 22: BBPARM data set members: MainView AutoOPERATOR only

<table>
<thead>
<tr>
<th>BBPARM member name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAOALS00</td>
<td>defines limits for extended storage for MainView AutoOPERATOR ALERTs and ALERT parameters on your system</td>
</tr>
<tr>
<td></td>
<td>This member supports system variables substitution and the following control card:</td>
</tr>
<tr>
<td></td>
<td>**PROCESS [SYM=YES</td>
</tr>
<tr>
<td></td>
<td>Keywords can be specified in any order but when both keywords are used, they must be separated by a comma. Refer to “System variables substitution in parameter library members” on page 275 for more information.</td>
</tr>
<tr>
<td>AAOARP00</td>
<td>used by the MainView AutoOPERATOR Automation Reporter application to activate and control collection intervals for offline data collection</td>
</tr>
<tr>
<td></td>
<td>This member supports system variables substitution and the following control card:</td>
</tr>
<tr>
<td></td>
<td>**PROCESS [SYM=YES</td>
</tr>
<tr>
<td></td>
<td>Keywords can be specified in any order but when both keywords are used, they must be separated by a comma. Refer to “System variables substitution in parameter library members” on page 275 for more information.</td>
</tr>
<tr>
<td>BBPARM member name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>AAOEXP00</td>
<td>defines thread values and high-priority EXEC names and limits the CPU time that EXECs can use. This member supports system variables substitution and the following control card: PROCESS [SYM={YES</td>
</tr>
<tr>
<td>AAOGME00</td>
<td>used by MainView AutoOPERATOR to create General Messages Exchange (GME) connections to allow applications to communicate. This member supports system variables substitution and the following control card: PROCESS [SYM={YES</td>
</tr>
<tr>
<td>AAOMQL00</td>
<td>used to specify which MQSeries queues will be made eligible for automation. This member supports system variables substitution and the following control card: PROCESS [SYM={YES</td>
</tr>
<tr>
<td>AAONCD00</td>
<td>used for the MainView AutoOPERATOR Access NV option. This member supports system variables substitution and the following control card: PROCESS [SYM={YES</td>
</tr>
<tr>
<td>AAOPRM00</td>
<td>defines Operator Request parameters for the Operator Request application. This member supports system variables substitution and the following control card: PROCESS [SYM={YES</td>
</tr>
<tr>
<td>BBPARM member name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| AAORUL00          | contains Rule Set definitions  
This member does not support system variables substitution, but does support the LIST option on the PROCESS control card. Refer to “System variables substitution in parameter library members” on page 275 for more information. |
| AAOTRN00          | contains the identification of IMS transactions that can be submitted from a MainView AutoOPERATOR EXEC or from a terminal session  
This member does not support system variables substitution, but does support the LIST option on the PROCESS control card. Refer to “System variables substitution in parameter library members” on page 275 for more information. |
| AAOTSP00          | used for the TapeSHARE for MainView AutoOPERATOR option  
This member supports system variables substitution and the following control card:  
PROCESS [SYM=YES|NO,] [LIST=YES|NO]  
Keywords can be specified in any order but when both keywords are used, they must be separated by a comma. Refer to “System variables substitution in parameter library members” on page 275 for more information. |
| BBIVAR00          | defines any number of preset SHARED variables and their values to be set in the SHARED pool at the COLD start of the BBI-SS PAS COLD when VPOOL=RESET is specified  
This member supports system variables substitution and the following control card:  
PROCESS [SYM=YES|NO,] [LIST=YES|NO]  
Keywords can be specified in any order but when both keywords are used, they must be separated by a comma. Refer to “System variables substitution in parameter library members” on page 275 for more information. |

# System variables substitution in parameter library members

Some MainView AutoOPERATOR BBPARM members support system variables substitution. (Refer to Table 22 on page 273 for a brief description of each BBPARM member.) With symbolic substitution, you can reduce the number of parameter libraries that you maintain. When the member is read, the value of the symbol is substituted for the symbol. The symbol must begin with an ampersand, followed by one to eight characters, and can optionally end with a period. You can define your own symbols by placing them in the IBM PARMLIB member IEASYMxx.
Symbolic names can be concatenated as a string, and names can be added at the beginning, middle or end of the string. See the following example:

\[ \text{DSN}=\text{VAM3.}\&\text{SYSPLEX.}\&\text{SYSNAME.}\&\text{OFFLOAD} \]

If \&\text{SYSPLEX}=\text{BMC1} and \&\text{SYSNAME}=\text{SJSD}, the preceding string converts to

\[ \text{DSN}=\text{VAM3.}\text{BMC1.SJSD.OFFLOAD} \]

**Note**

A period at the end of a symbolic name is assumed to be a delimiter and is omitted in the conversion. If you want to generate the string \text{BMC1SJSD}, you would code \&\text{SYSPLEX}\&\text{SYSNAME}.

For more information about symbolic substitution, refer to "System Symbols and Symbolic Substitution" in the IBM Initialization and Tuning Reference.

You can control substitution on a member-by-member basis by adding a control card (a PROCESS statement) at the beginning of each member. The PROCESS statement is described in Table 23 on page 277.
### Table 23: PROCESS statement

<table>
<thead>
<tr>
<th>Control Card</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS [SYM=YES|NO,][LIST=YES|NO]</td>
<td>indicates whether system variables substitution is allowed When present, the PROCESS statement must be the first statement in the member and must begin in column 1. Possible keywords are as follows</td>
</tr>
<tr>
<td>■ SYM=YES|NO</td>
<td>— YES is the default and indicates that symbols are replaced by their value if the calling program has enabled symbol substitution. — NO indicates that symbolic substitution is suppressed for this member even if the calling program has enabled substitution.</td>
</tr>
<tr>
<td>■ LIST=YES|NO</td>
<td>This keyword indicates whether the contents of the member being processed (all statements following the PROCESS statement) are written to the job log, one statement at a time as the member is read.</td>
</tr>
<tr>
<td>■ YES causes the entire contents of the member (except the PROCESS statement) to be written to the job log. If substitution is performed, two WTO messages are displayed for each statement where substitution is performed. The first message contains the statement with the symbol, and the second message contains the same statement with the substituted value of the symbol. The second statement is also prefixed with &lt; &gt; to indicate that the statement is modified.</td>
<td></td>
</tr>
<tr>
<td>■ NO is the default and indicates that the contents of this member are not written to the job log or displayed as WTO messages.</td>
<td></td>
</tr>
</tbody>
</table>

You can use the Dynamic Parameter Manager (DPM) to display and alter specific parameters in members AAOEXP\(xx\), AAOAL\(Sxx\), AAOAR\(Pxx\), and AAOTSP\(xx\). For more information about DPM, see “Continuous operation with the Dynamic Parameter Manager” on page 55.

### BBPARM member AAOALS00 parameters

BBPARM member AAOALS00 is used by all MainView AutoOPERATOR products to define limits for extended storage for ALERTs on your system.
Note
This member supports system variables substitution. For more information, see “System variables substitution in parameter library members” on page 275.

For information about using the ALERTs application, refer to the MainView AutoOPERATOR Basic Automation Guide, Volume 2; for information about using the MainView AutoOPERATOR Dynamic Parameter Manager application to update the parameters in AAOALS00, refer to “Modifying ALERT thresholds in AAOALSxx” on page 60.

Table 24 on page 278 lists the parameters for AAOALS00.

Table 24: BBPARM member AAOALS00

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| ALERTLOG=[YES | NO]  | *(optional)* specifies whether MainView AutoOPERATOR logs all ALERT activity to MainView Logger so that it can be used for review or auditing purposes
If this keyword is set to YES then the ALRTLOG view will be available in windows-mode for viewing the alert log.
The MVLOGSS parameter in BBPARM member BBISSP00 specifies the SSID of the MainView Logger for the ALERT log records. |
| ALERTXCF=[YES | NO]  | *(optional)* specifies if MainView AutoOPERATOR uses XCF connectivity to pass ALERT actions to remote targets when XCF connectivity exists, and therefore only uses BBI-SS PAS VTAM communication links when XCF connectivity is not available
ALERT actions are sent to a remote PAS through XCF connectivity only when the remote BBI-SS PAS is in the same SYSPLEX and XCFGROUP. Use the BBPARM member BBISSPxx parameter XCFGROUP=xxxx to specify the XCFGROUP used by the BBI-SS PAS. ALERTs directed to a remote BBI-SS PAS that is not in the same XCFGROUP and SYSPLEX continue to use the BBI-SS VTAM communication links.
The default is YES. When this statement is not specified, MainView AutoOPERATOR uses XCF connectivity.
Specify ALERTXCF=NO to use BBI-SS PAS VTAM communication links as defined in BBPARM members BBIJNTxx and BBINODxx. |

Note: If you are running a version of MainView AutoOPERATOR earlier than release 6.5.00, the BBI-SS PAS of these earlier releases will receive ALERT actions through XCF connectivity from MainView AutoOPERATOR version 6.5.xx (and later) BBI-SS PASs. You do not have to make any changes. However, versions of MainView AutoOPERATOR earlier than version 6.5.xx will continue to send ALERT actions to remote BBI-SS PASs through a VTAM communication link.
### Parameter Description

**AUDIT=[NONE | ALL | ADD | ESCAL | DELETE]**

specifies options for auditing the life cycle of an ALERT

The default is NONE. Valid values are as follows

- **ALL**: All stages of an ALERT’s life cycle will be audited.
- **NONE**: No auditing will be performed.
- **ADD**: Generate an audit message when an ALERT is created with the ADD keyword.
- **ESCAL**: Generate an audit message when an ALERT’s priority escalates.
- **DELETE**: Generate an audit message when an ALERT is deleted with the DELETE keyword.

Audit messages are generated into the BBI Journal.

**MAXSTOR=[0 | nnnnn]**

maximum amount of BBI-SS PAS private virtual storage to be allocated to ALERTs

Storage is allocated in kilobytes. The default is 0, which means ALERTs are allocated without regard to the amount of virtual storage they occupy. BMC Software strongly recommends that you set this number to a value greater than 0.

For example, a value of 2000 K means that you can store about 7800 ALERTs. Use the MainView AutoOPERATOR ALERT Statistics panel to estimate the average size of an ALERT on your system.

Possible values range from 0 to 99999. A value of 0 means that no checking is done.

**WARNLVL1=[60 | nn]**

first warning threshold level for queued ALERTs when the MAXSTOR parameter is set to a value greater than 0 K

The default is 60%, which means that if MAXSTOR=1000, the warning message (AU6100W) is issued when the amount of virtual storage that is allocated to queued ALERTs reaches 600 K.

Possible values range from 0 to 99.

**WARNLVL2=75 | nn**

second warning threshold level for queued ALERTs when the MAXSTOR parameter is set to a value greater than 0 K

The default is 75%, which means that if MAXSTOR=1000, the warning message (AU6100W) is issued when the amount of virtual storage allocated to queued ALERTs reaches 750 K.

Possible values range from 0 to 99.

Important ALERTs are not generated when ALERT storage usage reaches 100%.
Parameter	Description
ALERTNV=[YES | NO] | default setting for the RETAIN keyword for MainView AutoOPERATOR ALERTs
ALERTs that are retained are written and saved to disk and therefore, exist across BBI-SS PAS restarts and system z/OS IPLs.
When you are creating ALERTs (using the IMFEXEC ALERT statement, the Rules Processor ALERT panels, the AOEXEC ALERT statement, and so on) and you do not explicitly specify a setting for the RETAIN keyword, the ALERTNV parameter allows you to specify whether the default setting should be RETAIN(NO) or RETAIN(YES).
For example, for ALERTs that do not specify the RETAIN keyword:
- when the ALERTNV parameter is not specified or is specified as NO, RETAIN(NO) is used as the default.
- when ALERTNV=YES is specified, RETAIN(YES) is used as the default.
Regardless of which setting you specify for the ALERTNV parameter, you can override the setting when you create a specific ALERT, where the RETAIN=YES or RETAIN=NO keyword is explicitly set. When you override this setting, only that ALERT is retained across BBI-SS PAS restarts and z/OS IPLs.

Note: When an ALERT is targeted to a different BBI-SS PAS, by default, the ALERT retains the ALERTNV setting of the target BBI-SS PAS.
Changing the ALERTNV setting takes effect only after a BBI-SS PAS warm or cold start.
The default is NO.

PUBLISH=[ADD | REPLACE | NO] | default for the PUBLISH parameter when creating/deleting MainView AutoOPERATOR ALERTs
Specifies whether an ALERT is published and how it is published to connected PATROL Enterprise Manager workstations or to BMC Impact Manager cells that have been customized to receive ALERTs through the General Message Exchange (GME). Settings for GME are defined in BBPARM member AAOGME00.
Possible values are as follows:
- ADD: Send ALERTs but do not override previously published ALERTs; does not apply to ADAPTOR connections
- REPLACE: Send ALERTs but delete previously published ALERTs that had the same Key and Queue before new ALERT is published; does not apply to ADAPTOR connections
- NO: Do not send ALERTs
The default is ADD.
BBPARM member AAOARP00 parameters

BBPARM member AAOARP00 is used by the MainView AutoOPERATOR Automation Reporter application to activate and control the collection intervals for the offline data collection portion of the Automation Reporter.

**Note**
This member supports system variables substitution. For more information, see “System variables substitution in parameter library members” on page 275.

For documentation about how to use the Automation Reporter, refer to the *MainView AutoOPERATOR Basic Automation Guide, Volume 2*; for documentation about using the MainView AutoOPERATOR application Dynamic Parameter Manager to update the AAOARP00 member, refer to “Accessing the Dynamic Parameter Manager” on page 56.

Table 25 on page 281 lists the parameters for AAOARP00.

**Table 25: BBPARM member AAOARP00**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AROPTS=ALL</td>
<td>activates all, one, or more Automation Reporter data collectors The default is ALL; the following lists the possible valid values:</td>
</tr>
<tr>
<td></td>
<td>■ ACT: Actions</td>
</tr>
<tr>
<td></td>
<td>■ ALT: Alerts</td>
</tr>
<tr>
<td></td>
<td>■ AUS: Automation Stats</td>
</tr>
<tr>
<td></td>
<td>■ CPU: CPU usage by Program</td>
</tr>
<tr>
<td></td>
<td>■ EVT: Events</td>
</tr>
<tr>
<td></td>
<td>■ EXE: EXECs</td>
</tr>
<tr>
<td></td>
<td>■ EXC: EXEC Commands</td>
</tr>
<tr>
<td></td>
<td>■ HTH: Health Metrics</td>
</tr>
<tr>
<td></td>
<td>■ RES: Resource Usage</td>
</tr>
<tr>
<td></td>
<td>■ RST: Rule Sets</td>
</tr>
<tr>
<td></td>
<td>■ RUL: Rules</td>
</tr>
<tr>
<td></td>
<td>■ TSL: TapeShare - Local</td>
</tr>
<tr>
<td></td>
<td>■ TSP: TapeShare - Plex</td>
</tr>
<tr>
<td></td>
<td>ALL is mutually exclusive with all of the other options.</td>
</tr>
<tr>
<td>DSN=[data set name]</td>
<td>name of a user-allocated data set where collected data is offloaded This data set must be allocated or no data collection occurs. Data Set Requirements: This user-allocated data set should be a fixed block sequential data set and the maximum record length should be 580 bytes.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| DISP=[SHR | MOD]    | disposition (shared or modify) of the user-allocated data set  
The default is SHR.  
Specifying SHR causes the Automation Reporter to overwrite existing data; specifying MOD causes the collected data to be appended to the end of the data set. |
| INTVL=[0 | 10 -- 1440] | time interval (in minutes) at which data is collected  
The default is 10 minutes; specifying 0 means no data collection is performed.  
The minimum interval is 10 minutes and the maximum is 1440 (once a day). |
| IRHIST=[NO | YES]    | specifies whether the windows mode Automation Reporter will collect interval data that allows you to perform short-term and long-term analysis of automation processes and performance  
This parameter also enables the windows-mode Automation Reporter views that show real-time data collected by interval and allows for local or SSI summarization of the automation information.  
For more information about the windows-mode version of the Automation Reporter, refer to the *MainView AutoOPERATOR Basic Automation Guide, Volume 2.*  
**Note:** BMC recommends that you migrate your automation data collection processes to use the MainView AutoOPERATOR version 7.1 windows-mode Automation Reporter application instead of using the Automation Reporter, available with MainView AutoOPERATOR version 6.5.xx and earlier. In a future release, BMC Software plans to discontinue supporting the MainView AutoOPERATOR version 6.5.xx (and earlier) version of the Automation Reporter application.  
The default is NO; valid values are YES or NO. |
| OFFINTVL=[60 --1440] | data offload interval in minutes  
The default is 1440 minutes (once a day).  
You can specify any value from 60 minutes (once an hour) to 1440 minutes.  
**Note:** The greater the frequency of offloading collected data, the faster the user-allocated data set is filled. |
| QUEUE=[MainView AutoOPERATOR ALERT queue name] | one- to eight-character MainView AutoOPERATOR ALERT queue name to which any ALERTs generated by the Automation Reporter are routed  
The default queue name is ARALEART.  
The queue specified here will be created, if it does not already exist, when the first Automation Reporter ALERT is created. |
BBPARM member AAOEXP00 parameters

BBPARM member AAOEXP00 is used by all MainView AutoOPERATOR products to define thread values, priority EXEC names, EXEC loop parameters, data set allocation, and abend count parameters.

**Note**
This member supports system variables substitution. For more information, see “System variables substitution in parameter library members” on page 275.

For information about MainView AutoOPERATOR EXECs, refer to the *MainView AutoOPERATOR Advanced Automation Guide*; for documentation about using the MainView AutoOPERATOR application Dynamic Parameter Manager to update the parameters in AAOEXP00, refer to the *MainView AutoOPERATOR Customization Guide*.

Table 26 on page 283 lists the parameters for AAOEXP00.

### Table 26: BBPARM member AAOEXP00

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| APIAUTH = [RACF|ORIGIN] | specifies the user ID that will be used when MVAPI calls are invoked from MainView AutoOPERATOR EXECs  
Valid values are  
ORIGIN specifies that the EXEC origin is used as user ID for MVAPI calls. For ALERT-initiated EXECs, the origin is the origin of the ALERT. For Rule-initiated EXECs, the origin is the SSID of the BBI-SS PAS started task.  
RACF specifies that the user ID associated with the BBI-SS PAS started task is used for MVAPI calls. |
| AUDITMSG=[YES|NO] | specifies whether to record in the BBI-SS PAS Journal all occurrences of BLDLs against the SYSPROC data set and all user-initiated EXEC requests |
| AUDITRES=[YES|NO] | specifies whether BBI Journal message EM0715I is written to the log when an EXEC issues IMFEXEC RES  
Use the messages to help identify which of your automation EXECs use IMFEXEC RES command. This can be especially helpful when the MainView SYSPROG Services product releases new versions that introduce changes to SYSPROG commands or services that might impact your automation. |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDITEXE=[YES</td>
<td>NO]</td>
</tr>
<tr>
<td>CICSECID=[ORIGIN</td>
<td>RACF ]</td>
</tr>
<tr>
<td>ELAPSLIM=[0</td>
<td>nnnn ]</td>
</tr>
<tr>
<td>EMLOG=[YES</td>
<td>NO]</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| EXHMC=[YES | NO]    | specifies whether the IMFEXEC HMC command can be used in EXECs  
Valid values are YES or NO. The default is NO.  
Refer to “Describing the fields” on page 78 for more information about the implication of using IMFEXEC HMC. |
| EXABCNT=[5 | nn]    | is the maximum number of abends that a single EXEC can sustain before it is disabled  
Valid values range from 1 to 99. The default is 5.  
For example, if you specify EXABCNT=10 and an EXEC abends 10 times, the EXEC is disabled after the tenth abend. |
| EXEC=[name]    | specifies the names of EXECs that are to be executed as high priority EXECs  
A high priority EXEC is any EXEC that is listed with the EXEC= keyword. This parameter can be repeated. |
| MAXTPUT=[0 | nnnnn] | is the maximum number of TSO TPUTs allowed for each execution of an EXEC  
Valid values range from 0 to 32767  
The default is 0, which means no checking is done.  
TPUTs for EXECs scheduled with the WAIT=YES parameter are counted separately from the scheduling EXEC. |
| MAXHIGH=[5 | nn]    | is the maximum high priority EXECs to execute concurrently  
A high priority EXEC is any EXEC that is listed with the EXEC= keyword. |
| MAXHIGHQ=[0 | nnn]   | is the maximum number of high priority EXECs that may be queued for execution  
Valid values range from 0 to 999. The default is 0, which means no checking is done. |
| MAXHOTQ=[0 | nnn]   | is the maximum number of First or Hot priority EXECs that can be queued  
When the maximum is reached, no more EXECs with First or Hot priority specified are scheduled until the queue level drops below the maximum level set.  
Valid values range from 0 to 999. The default is 0, which means no checking is done and all Hot or First priority EXECs are queued. |
| MAXNORM=[1 | nn]    | is the maximum normal priority EXECs to execute concurrently  
A normal priority EXEC is any EXEC not in the high priority list. |
| MAXNORMQ=[0 | nnn]   | is the maximum number of normal priority EXECs that may be queued for execution  
Valid values range from 0 to 999. The default is 0, which means no checking is done. |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| OSPINUM=\[0 \ | nnn\] | is the maximum number of OSPI ACBs defined  
If 0, the request for a session is aborted upon encountering the first ACB that cannot be opened due to a reason other than that it is in use. Specifying the correct number of ACB definitions here helps bypass problems where ACBs have become unusable due to some other reason. |
| OSPIPRFX=\[Ospi | name\] | is a four-character prefix to use when selecting an OSPI ACB from the pool of available ACBs                                                                                                             |
| PEREXLIM=\[0 \ | nn\] | specifies an optional CPU percentage usage for an EXEC  
If an EXEC’s CPU usage exceeds this percentage during any interval of 15 seconds after the EXEC begins, the EXEC is automatically terminated. With the default value of 0, no percentage limit is assigned.  
The CPU percentage is calculated based on the total CPU time available on 1 CPU within that 15 second interval. For example, 20% means 20% of 15 seconds. If the CPU time exceeds 3 seconds with any given 15 second interval, the EXEC will be terminated. |
| PREFIX=\[SSID | name\] | specifies a prefix to be used when allocating a data set in an EXEC if the data set name is not enclosed within quotation marks  
This prefix also serves as the user ID associated with jobs submitted by EXECs. If the default is not specified, it will be the same as the BBI-SS PAS ID. |
| RESAUTH=\[ORIGIN | RACF\] | specifies the user ID that will be used when SYSPROG Services are invoked from MainView AutoOPERATOR EXECs  
Valid values are as follows:  
**ORIGIN** specifies that the EXEC origin is used as user ID for Sysprog Services. For ALERT-initiated EXECs, the origin is the origin of the ALERT. An exception occurs when the EXEC origin contains the BBI-SS PAS SSID or the jobname of the BBI-SS PAS. In this case, the user ID that is associated with the BBI-SS PAS started task is used.  
**RACF** specifies that the user ID associated with the BBI-SS PAS started task is used for SYSPROG Services. |
| SELLIM=\[0 \ | nn\] | is the maximum number of active EXECs on a single thread  
Valid values range from 0 to 99. The default is 0, which means *no checking is done.*  
This parameter is designed to control recursive calls (where EXEC A schedules EXECB, that schedules EXECC, and so on) that run out of control, potentially filling up the private storage in the BBI-SS PAS and causing automation to stop. |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBXAUTH= [DEFER</td>
<td>DEFER: (default) the decision for using JOBNAME or user ID for the security check is deferred to the batch job (IMFSUBEX) execution time</td>
</tr>
<tr>
<td>JOBNAME</td>
<td>JOBNAME: the JOBNAME is used for the IMFSUBEX security checks. This parameter overrides the origin specified on the batch job</td>
</tr>
<tr>
<td>RACF</td>
<td>RACF: the user ID is used for the IMFSUBEX security checks. This parameter overrides the origin specified on the batch job</td>
</tr>
<tr>
<td>USER</td>
<td>USER: same as RACF</td>
</tr>
<tr>
<td>TIMEXLIM=[00</td>
<td>specifies an optional CPU time limit for an EXEC</td>
</tr>
<tr>
<td>nnnn]</td>
<td>If the time limit is exceeded, the EXEC is terminated automatically. With the default value of 0, no time limit is assigned.</td>
</tr>
<tr>
<td>TSOTIME=[1200</td>
<td>specifies the time-out value (in seconds) for attached TSO commands</td>
</tr>
<tr>
<td>nnnn]</td>
<td>A value of 0 disables timing.</td>
</tr>
<tr>
<td>UCPARMS=[YES</td>
<td>specifies whether EXEC parameters are translated to uppercase</td>
</tr>
<tr>
<td>NO]</td>
<td></td>
</tr>
<tr>
<td>UNITNAME=[SYSALLDA</td>
<td>specifies an esoteric unit name to be used when you allocate a data set in an EXEC and the unit parameter is omitted</td>
</tr>
<tr>
<td>name]</td>
<td>If not specified, the default shown is used.</td>
</tr>
<tr>
<td>WARNLVL1=[60</td>
<td>specifies a preliminary percentage of EXECs in a queue that, when met, causes a warning message (EM6100W) to be issued</td>
</tr>
<tr>
<td>nn]</td>
<td>Valid values range from 0% to 99%. The default is 60%. Use this threshold to set the first percentage that triggers sending a warning message.</td>
</tr>
<tr>
<td>WARNLVL2=[75</td>
<td>specifies a secondary percentage of EXECs in a queue that, when met, causes a warning message (EM6100W) to be issued</td>
</tr>
<tr>
<td>nn]</td>
<td>Valid values range from 0% to 99%. The default is 75%. Use this threshold to set a second percentage that triggers sending a warning message.</td>
</tr>
</tbody>
</table>

**BBPARM member AAOGME00 parameters**

BBPARM member AAOGME00 is used by the MainView AutoOPERATOR General Messages Exchange (GME) to

- identify which GME nodes receive messages from and send messages to MainView AutoOPERATOR
- define the local GME node
- control which instrumentation events are traced
This member supports system variables substitution. For more information, see “System variables substitution in parameter library members” on page 275.

Table 27 on page 288 lists the parameters for AAOGME00.

**Table 27: BBPARM member AAOGME00**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| CONAUDIT=[YES | NO]            | optional parameter that activates or deactivates WTO for messages that indicate cell connection status Specifying YES causes the following messages to be issued as a single multiline WTO in addition to Journal messages:  
  - GI0712I  
  - GI0702I  
  - GI0684I  
  The default is NO. |
<p>| DEBUGMSG=[YES | NO]            | optional parameter that specifies whether to display GME debug messages in the BBI Journal and in WTO format Valid values are YES and NO. The default value is NO. |
| EVENTS=[YES | NO]            | optional for the Server BIM connection that specifies whether the connection sends incoming events to the Rules Processor Valid values are YES and NO. The default is YES. If you specify NO, there will be no BAROC events sent sent to the Rules Processor to drive BRC initiated Rules. This parameter is valid only on the server definition that is the TGTIP statement for the HOSTNAME definition. |
| EXEC=Yes | NO ]            | optional parameter that specifies whether to allow the launching of EXECs from a BMC Impact Manager cell to run in the MainView AutoOPERATOR BBI-SS PAS. The default is YES. |
| GMEACT=[YES | NO ]            | when used in conjunction with the RESET PARM AAOGMEnn, RESYNC | RECYCLE command, activates or deactivates the GME facility Valid values are YES and NO. The default value is NO. |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| HOSTNAME=        | optional parameter that specifies the name of the local GME node and is used to identify this node to other nodes  
The default value is the SSID of the BBI-SS PAS. The value can consist of numeric and alphabetic characters, underscores ( _ ), and periods ( . ), but the name must begin with an alphabetic character. The value cannot contain blanks and the maximum length is 48 characters. |
| MVE_LINK=HOST:PORT | optional parameter that specifies the host name where the MainView Explorer server is running and the port it is listening on  
Modify this parameter only if you plan to launch MainView Explorer from BMC Impact Explorer and you are using MainView Alarm Manager.  
The default is the IP address where MainView AutoOPERATOR is running and port 3940.  
You can specify the HOST address as a DNS name or an IP address. If HOST is specified, you must also specify the PORT. Valid values can be 3- to 48-characters in length. |
| TGTBIMCF=[data set name] | when defining BMC Impact Manager connections, a required parameter that specifies the data set name of the BMC Impact Manager configuration file  
The maximum length is 44 characters; do not use quotation marks.  
For more information about how to specify this parameter when configuring MainView AutoOPERATOR to BMC Impact Manager, refer to the section “Establishing a connection to a BMC Event Manager” on page 200 and see Steps 6 and 7. |
| TGTHB=[0 | nnn ] | specifies the heartbeat interval of the remote GME in minutes and if this amount of time passes without any messages being received, the local node closes the connection  
Valid values are 0-999. The default value is 0, which disables the connection checking.  
This parameter is not applicable for connections to BMC Impact Manager. |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGTIP=[network address]</td>
<td>required parameter for BMC Impact Manager connections where you specify the BMC Impact Manager cell name that is also specified in the BIM server directory data set. The BIM server directory data set is specified by the ServerDirectoryName= parameter in the BMC Impact Manager configuration file. For more information refer to Chapter 4, “Configuring BMC Impact Integration for MainView” in the <em>MainView AutoOPERATOR BMC Impact Integration for z/OS User Guide</em>. The cell name specified both here and in the BMC Impact Manager server directory data set must be specified in uppercase even though the actual cell name may contain mixed case characters. MainView AutoOPERATOR must be defined as a target when using BMC Impact Manager connections. This means that a TGTIP=xxxx,TGTBIMCF=yyyyy specification is required for BMC Impact Manager connections; xxxx must be the same value that the HOSTNAME= parameter is using. For more information about this parameter when configuring MainView AutoOPERATOR to BMC Impact Manager, refer to the section “Establishing a connection to a BMC Event Manager” on page 200 and see Steps 6 and 7.</td>
</tr>
<tr>
<td>TGTMXMSL=[32768 | nnnnn]</td>
<td>optional parameter that specifies the maximum message length accepted from the remote GME node Valid values are 0-32768. The default value is 32768. This parameter is not applicable for connections to BMC Impact Manager.</td>
</tr>
<tr>
<td>TGTNAME=[name]</td>
<td>is a 1 to 16 character name assigned to a BMC Impact Manager (BMC IM) connection The TGTNAME can be shared by multiple BMC IM connections and is used by MainView AutoOPERATOR Rules or EXECs to send events or publish ALERTs to a specific target system. In Rules and EXECs, you may use wildcards when specifying the target name for events and ALERTs. There is no default value.</td>
</tr>
<tr>
<td>TGTRTC=[9999 | nnnn]</td>
<td>number of connection retries allowed if a failure occurs Valid values are 0-9999. A value of 0 disables the reconnection processing. A value of 9999 instructs GME to attempt to reconnect until it is successful. The default value is 9999. Certain platforms have a TCP/IP parameter that delays the closing of TCP/IP connections. In Solaris, this parameter is named tcp_close_wait_interval. GME/MVS cannot reconnect while the connection is in this close_wait state, because connectAAO sees it as a duplicate connection. For information regarding this parameter, refer to your platform-specific documentation. For BMC Impact Manager connections, this parameter affects the initial startup retry attempts. Subsequent retries after a failure do not check this parameter’s setting.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| TGTRTI=[3 | nnn ]  | interval in minutes between connection retry attempts  
Valid values are 0-999. A value of 0 disables the reconnection attempt. The default value is 3.  
Certain platforms have a TCP/IP parameter that delays the closing of TCP/IP connections. In Solaris, this parameter is named tcp_close_wait_interval. GME/MVS cannot reconnect while the connection is in this close_wait state, because connectAAO sees it as a duplicate connection. For information regarding this parameter, refer to your platform-specific documentation. |
| TGTTYPE=[CELL | ADAPTOR]  | optional for each BEM connection that specifies whether the ADAPTOR connection is to a BEM cell or to another BMC adapter  
The following values are valid:  
■ CELL: is a BEM cell  
■ ADAPTOR: is an adaptor that does not have rules for managing synchronization with alerts  
The default is CELL. The parameter is valid only for TGTIP definitions for the client cell definitions. |
| TRACEAPP=ERROR  | minimum severity of application trace records to create  
Valid values are NONE, ERROR, WARN, INFO, or DEBUG and are specified separately for both the local and remote GME nodes. The default value is ERROR. |
| TRACEBUF=[50 | nnnnn ]  | amount of storage, in thousands of bytes, to allocate for the in-storage wraparound trace buffer  
The maximum value is 99999. The default value is 50. |
| TRACEGME=[NONE | ERROR | WARN | INFO | DEBUG]  | minimum severity of GME trace records to create  
Valid values are NONE, ERROR, WARN, INFO, or DEBUG and are specified separately for both the local and remote GME nodes. The default value is ERROR. |
| TRACELK=[YES | NO ]  | specifies whether to perform a DNS lookup when logging IP addresses in the Trace Table  
Valid values are YES and NO. Specifying TRACELK=YES may lengthen the response times because a DNS lookup involves a network communication. The default value is NO. |
| TRACESEC=[NONE | ERROR | WARN | INFO | DEBUG]  | minimum severity of security trace records to create  
Valid values are NONE, ERROR, WARN, INFO, or DEBUG and are specified separately for both the local and remote GME nodes. The default value is WARN. |
| TRACEZN=[LOCAL | GMT]  | time zone to use for time stamps in the Trace Table  
Valid values are GMT and LOCAL. The default value is LOCAL. |
BBPARM member AAOMQL00 parameters

Use the BBPARM member AAOMQL00 parameters TYPE, QMGR, and QUEUE to specify WebSphere MQ queues that are eligible for automation.

A fourth optional parameter, OPEN, indicates how the queue should be processed. These parameters must all be typed on one line; the syntax is

```
TYPE(INCL|EXCL) QMGR(queuemanagername) QUEUE(queuename) OPEN(S,I)
```

**Note**
This member supports system variables substitution. For more information, see “System variables substitution in parameter library members” on page 275.

Table 28: BBPARM member AAOMQL00

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTO=[Y</td>
<td>N]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>T [INCL</td>
</tr>
</tbody>
</table>

Possible values are

[INCL | I]: specifies that MainView AutoOPERATOR should make this queue eligible for possible automation. This setting is the default. The abbreviation is I.

[EXCL | E]: specifies that MainView AutoOPERATOR should not make this queue eligible for automation. The abbreviation is E.

Abbreviations can be used; for example you can specify any of the following:

T(I) or TYPE(I) or TYPE(INCL)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMGR</td>
<td>M (queue manager name)</td>
</tr>
<tr>
<td>QUEUE</td>
<td>U(queue name)</td>
</tr>
</tbody>
</table>
BBPARM member AAONCD00 parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN</td>
<td>specifies how a queue is opened and what happens to the messages in the queue after it is opened; possible values are as follows:</td>
</tr>
<tr>
<td>[EXCLUSIVE</td>
<td>E]: specifies that the queue should be opened with the MQOO_INPUT_EXCLUSIVE open option. Other applications are unable to open the queue while MainView AutoOPERATOR has it open. It also means that if another application has the queue opened already, MainView AutoOPERATOR cannot open it. The abbreviation is E.</td>
</tr>
<tr>
<td>[SHARED</td>
<td>S]: specifies that the queue should be opened with the MQOO_INPUT_SHARED option. This subparameter is the default for option 1. The abbreviation is S.</td>
</tr>
<tr>
<td>[PROCESSOLD</td>
<td>P]: specifies that all messages found on the queue when it is opened should be routed through the Rule Processor to allow automation to take place. This option is useful for processing messages that were put on the queue while the queue was not opened by MainView AutoOPERATOR. The abbreviation is P.</td>
</tr>
<tr>
<td>[IGNOREOLD</td>
<td>I]: specifies that MainView AutoOPERATOR does not process the existing messages on the queue and no automation takes place for those messages. The abbreviation is I. This subparameter is the default for option 2.</td>
</tr>
</tbody>
</table>

Abbreviations can be used; for example:

OPEN(EXCLUSIVE,PROCESSOLD) or O(E,P)

indicates that the queue opened with the MQOO_INPUT_EXCLUSIVE option, and that all existing messages found on the queue at open time will be routed through the Rule Processor for automation.

OPEN(SHARED,IGNOREOLD) or O(S,I)

indicates that the queue is opened with the MQOO_INPUT_SHARED option, and that all existing messages found on the queue at open time will be ignored.
BBPARM member AAONCD00 is the Access NV BBPARM member. Table 29 on page 295 lists the parameter that is supported by AAONCD00.

Note
This member supports system variables substitution. For more information, see “System variables substitution in parameter library members” on page 275.

Table 29: BBPARM member AAONCD00

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBUG=YES</td>
<td>the only supported parameter</td>
</tr>
<tr>
<td></td>
<td>For normal operations, leave this parameter to the default setting of NO.</td>
</tr>
</tbody>
</table>

BBPARM member AAOPRM00 parameters

BBPARM member AAOPRM00 is used by all MainView AutoOPERATOR products as a general purpose member for defining Operator Request parameters and specifying which WebSphere MQ queues MainView AutoOPERATOR will monitor.

Note
This member supports system variables substitution. For more information, see “System variables substitution in parameter library members” on page 275.

Table 30 on page 295 lists the parameters for AAOPRM00.

Table 30: BBPARM member AAOPRM00

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOLOGACT=NO</td>
<td>specifies whether the actions taken by a Rule will be sent to the Automation Logger application</td>
</tr>
<tr>
<td></td>
<td>To send all actions taken by a Rule to the Automation Logger application, specify YES.</td>
</tr>
<tr>
<td></td>
<td>Default value is NO; valid values are YES or NO.</td>
</tr>
<tr>
<td>AOLOGEV=NONE</td>
<td>specifies one or more types of events that will be sent to the Automation Logger application</td>
</tr>
<tr>
<td></td>
<td>Default value is NONE; valid values are ALL (all events are logged), ALRM, ALRT, BRC, CICS, CMD, DB2, EOM, EOS, EXT, IMS, JRNL, MQS, NVC, NVM, TIME, TLM, VAR.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>AOOPTION=xxx</td>
<td>(optional) allows you to limit the licensed MainView AutoOPERATOR product components that are started during BBI-SS PAS initialization. When this parameter is not specified, all MainView AutoOPERATOR components with valid BMC passwords are activated at the time of BBI-SS PAS start up.</td>
</tr>
<tr>
<td></td>
<td>The format of the statement to activate one component is AOOPTION=xxx. To activate more than one component: AOOPTION=(xxx,yyy) For example: AOOPTION=(IAO,CAO) For best results, perform a cold start of the BBI-SS PAS after you make changes to the AOOPTION parameter.</td>
</tr>
<tr>
<td></td>
<td>The MainView AutoOPERATOR component abbreviations that are valid for this parameter are:</td>
</tr>
<tr>
<td></td>
<td>■ ANV - MainView AutoOPERATOR Access NV</td>
</tr>
<tr>
<td></td>
<td>■ TSH - MainView AutoOPERATOR TapeShare</td>
</tr>
<tr>
<td></td>
<td>■ CAO - MainView AutoOPERATOR for CICS</td>
</tr>
<tr>
<td></td>
<td>■ IAO - MainView AutoOPERATOR for IMS</td>
</tr>
<tr>
<td></td>
<td>■ QAO - MainView AutoOPERATOR for WebSphere MQ</td>
</tr>
<tr>
<td></td>
<td>■ MAO - MainView AutoOPERATOR for z/OS</td>
</tr>
<tr>
<td></td>
<td>Note: You must specify the PRODUCT=AAO parameter in BBPARM member BBISPxx to be able to activate any MainView AutoOPERATOR component.</td>
</tr>
<tr>
<td>AOREPLAY = [NO</td>
<td>YES]</td>
</tr>
<tr>
<td></td>
<td>The MVLOGSS parameter in BBPARM member BBISP00 specifies the SSID of the MainView Logger for the EMLOG records.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| BIIZJRNL=[Y | N]   | specifies that messages that describe BMC Impact Integration for z/OS product (BiiZ) events are automatically sent to the BBI Journal. The default is N (no). Specifying YES means that multiple diagnostic messages are written to the BBI Journal for events and MainView AutoOPERATOR ALERTs that are sent and published to a BMC Impact Manager (BMC IM) cell. The messages show diagnostic information about the event such as target, CLASS, severity, and other event information. It is also possible to write messages to the BBI Journal for individual events or ALERTs by specifying one of the following values:   
    - Y (for YES) in the Journal Detail field of the Rule definition   
    - JOURNAL(Y) in the following commands:
      - IMFEXEC BIM EVENT
      - AOEXEC ALERT
      - IMFEXEC ALERT

Note: BMC warns that by setting this parameter to YES that the volume of messages sent to the BBI Journal might be large.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| DBCTLCMD= [IMS | MVS] | when specifying IMS (default value), requires the MainView AutoOPERATOR for IMS product to be active in the PAS, and the PAS is connected to IMS DBCTL.  
With this setting, DBCTL commands (issued from the Command line or from EXECs or Rules) are processed as IMS commands and you do not need to specify a target. Generic DBCTL commands are also supported.  
You must specify DBCTLCMD=MVS when you want to issue commands to IMS DBCTL and the MainView AutoOPERATOR for IMS product is not active within the PAS.  
With this setting, DBCTL commands must be issued from EXECs using the IMFEXEC CMD TYPE(IMS) statement and in addition:  
  - the DBCTL keyword is required to identify the target  
  - commands are issued as MVS commands using the DBCTL command character  
When issuing DBCTL commands from Rules, you must specify the commands as MVS commands.  
You can also specify DBCTLCMD=MVS for compatibility with automation written earlier than MainView AutoOPERATOR version 7.2. This setting ensures that responses to IMFEXEC CMD statements are returned to the EXEC in the same format as earlier than version 7.2. You should try to migrate your EXECs to use the current settings as time permits.  
**Note:** Specifying DBCTLCMD=MVS will disable some product functionality as described in the following list:  
  - Commands issued from the Journal command line require a target and their response is returned to the Local Log.  
  - Responses to commands issued with IMFEXEC CMD (with response) within an EXEC are returned in a different format. For more information, refer to the *MainView AutoOPERATOR Advanced Automation Guide*.  
  - DBCTL commands issued with IMFEXEC CMD requires the use of the DBCTL parameter to specify the target.  
  - IMS generic commands issued against DBCTL will fail.  
  - Any Rules written with an action to issue DBCTL commands must issue those commands as MVS-type commands with the DBCTL command recognition character. |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCTLORG=[NO</td>
<td>YES]</td>
</tr>
<tr>
<td></td>
<td>■ NO: (the default) the Journal logs IMS DBCTL commands with only the origin of the DBCTL job name.</td>
</tr>
<tr>
<td></td>
<td>■ YES: the Journal logs IMS DBCTL commands with the origin as the name of the command issuer, in addition to logging the commands with the originating DBCTL job name.</td>
</tr>
<tr>
<td></td>
<td>For commands that are issued from the User Address Space (UAS), the origin is the TSO user ID. For automation-issued commands, such as Rules and Rule-initiated EXECs, the origin is the event-originating job name.</td>
</tr>
<tr>
<td></td>
<td>This parameter applies to the following types of IMS DBCTL commands that are:</td>
</tr>
<tr>
<td></td>
<td>■ Issued from the Journal</td>
</tr>
<tr>
<td></td>
<td>■ Line commands issued from IMS OPERATOR displays</td>
</tr>
<tr>
<td></td>
<td>■ Issued by Rules and EXECs</td>
</tr>
<tr>
<td></td>
<td>■ Issued from MainView for IMS views</td>
</tr>
<tr>
<td>D ZDSN=[VSAM data set name]</td>
<td>specifies the name of the VSAM data set generated by the BMC product BMC Discovery for z/OS. The VSAM data set name contains the Configuration Alias names that are discovered on the z/OS image by the BMC Discovery for z/OS product. The BMC Impact Integration for z/OS product uses these names to populate SHARED variables such as the following where sssssssss resolves to the name of the server address space:</td>
</tr>
<tr>
<td></td>
<td>■ QCIA.QSERVER.sssssssss resolves to the configuration item (CI) alias value.</td>
</tr>
<tr>
<td></td>
<td>■ QCIN.QSERVER.sssssssss resolves to the CI name which is the same as CI alias.</td>
</tr>
<tr>
<td></td>
<td>■ QCIO.QSERVER.sssssssss resolves to the CI object class.</td>
</tr>
<tr>
<td></td>
<td>The BMC Impact Integration for z/OS product attempts to read the DZDSN value every hour.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>HONORMPF=[YES</td>
<td>NO]</td>
</tr>
</tbody>
</table>
| IMFDATE | specifies the format of the IMFDATE variable. The following lists shows valid formats and an example of each:  
- YYYY/MM/DD; 2050/10/23  
- YYYYMMDD; 20501023  
- DD/MM/YYYY; 23/10/2050  
- DDMYYYYY; 23102050  
- MMDDYYYY; 10232050  
- MM/DD/YYYY; 10/23/2050  
- MMMDDYYYY; OCT232050  
- DDMMMYYYY; 23OCT2050 |
<p>| IMFJNUM=[V | 5] | specifies whether the variable IMFJNUM will be 5 digits in length with leading zeros or a variable length number without leading zeros. You must specify IMFJNUM=V to support JES job numbers greater than 99,999. Default value is V; possible values are 5 or V. Refer to “IMFJNUM option and seven-digit JES job numbers (z/OS version 1.2 and later)” on page 241 for more information. |
| IMFORGN=[LTERM | xxxxxxxx] | specifies that the LOCAL variable IMFORGN is set to the IMS LTERM name for IMS command and response. Default is the VTAM node name. Note: The value of IMFORGN is sometimes used by security applications to check whether actions that are specified within an EXEC are allowed. Most actions within an EXEC are not individually checked for explicit authorization. Note that there are some exceptions such as SYSPROG Services commands, which are checked for proper authority before the SYSPROG Services commands can be issued. BMC recommends that you explicitly define the users who have authorization to schedule EXECs. |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSAUTH=[NONE</td>
<td>USER]</td>
</tr>
<tr>
<td></td>
<td>- NONE: (default) the user ID is not passed with IMS commands</td>
</tr>
<tr>
<td></td>
<td>- USER: the user ID will be passed to IMS</td>
</tr>
<tr>
<td></td>
<td>Standard IMS command security rules will be applied. For commands that are issued from the User Address Space (UAS), the user ID is the issuer of the command. For commands that are issued from automation such as Rules and EXECs, the user ID value is the user ID associated with the MainView AutoOPERATOR PAS.</td>
</tr>
<tr>
<td></td>
<td>This parameter applies to:</td>
</tr>
<tr>
<td></td>
<td>— Type-2 (IMSpelix) commands</td>
</tr>
<tr>
<td></td>
<td>— Type-1 for IMS DBCTL with DBCTLCMD=MVS</td>
</tr>
<tr>
<td></td>
<td>— commands issued from the Journal</td>
</tr>
<tr>
<td></td>
<td>— line commands from IMS OPERATOR displays</td>
</tr>
<tr>
<td></td>
<td>— commands issued by Rules and EXECs</td>
</tr>
<tr>
<td></td>
<td>This parameter does not apply to IMS commands:</td>
</tr>
<tr>
<td></td>
<td>■ Type-1 for IMS DBCTL with DBCTLCMD=IMS</td>
</tr>
<tr>
<td></td>
<td>■ Type-1 for IMS DB/DC region</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This parameter is not related to MainView windows-mode or full-screen mode security.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| IMSCMDCN=[NO | YES] | specifies whether a confirmation panel is displayed when an IMS action command is manually entered from MainView AutoOPERATOR views or from the Journal. Valid values are NO and YES.  
  - **NO**: (default) no confirmation panel is displayed  
  - **YES**: specifies that a confirmation panel is displayed for all IMS action commands that are manually issued from MainView AutoOPERATOR views or from the Journal.  
    A confirmation panel is displayed for both Type-1 and Type-2 commands.  
    A confirmation panel is not displayed for non-action commands such as /DISPLAY and QUERY or for commands issued by automation (such as Rules or EXECs).  
    You must ensure that the User Address Space (UAS) is locally connected to the MainView AutoOPERATOR PAS where this parameter is specified. |
| IMSPLAUD=[NO | YES] | specifies whether MainView AutoOPERATOR and MainView for IMS version 5.1 and later issues audit messages to the Journal for all IMSplex (type-2) commands. Valid values are NO and YES:  
  - **NO**: (the default) audit messages are not issued.  
  - **YES**: audit messages, containing the user ID, are issued to the Journal for all IMSplex commands. For commands that originate from the user address space (UAS), the user ID is the issuer of the command. For commands that MainView AutoOPERATOR automation (such as Rules and EXECs) issues, the user ID is the MainView AutoOPERATOR PAS user ID. |
| IMSOMEX=[NO | YES] | *(optional)* indicates whether this PAS should receive IMSplex (type-2) commands from the AutoOPERATOR IMS OM Input user exit. Valid values are NO and YES:  
  - **NO**: The AutoOPERATOR IMS OM Input user exit does not broadcast IMS Type-2 commands to this PAS. IMP event type Rules do not fire.  
  - **YES**: (the default) when the MainView AutoOPERATOR for IMS product is active, the MainView AutoOPERATOR IMS OM Input user exit broadcasts IMS Type-2 commands to this PAS and IMP event type Rules will capture and automate these commands. |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSPLTIM=[30</td>
<td>5 - 9999]]</td>
</tr>
<tr>
<td>IMSROUTE=[ALL</td>
<td>LOCAL]</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| IMSMSTIM=[5 | 1 - 999] | (optional) specifies the maximum time to wait between receiving segments of IMS multisegment messages. Arrival of the final segment terminates the wait and the message is processed by the Rules processor. If the time is exceeded without receiving a final segment from IMS, the wait is terminated and any future segments are ignored. The delay may occur due to system heavy workloads, a lower dispatching priority of the IMS issuing the message, or other IMS processing. The default timeout limit is 5 seconds. Possible values range from 1 to 999 seconds. Specify this parameter when:  
  - Rules automation is not processing the complete IMS multisegment message(s). For example, if only the first message segment is logged on the Journal.  
  - EXECs do not receive the complete IMS command response and IMFCC is set to 8.  
  | Note: Increasing the default value might create a delay of Rules-based automation for IMS multisegment messages. |
| IMSSHTIM=[2 | 1 - 999] | (optional) specifies the internal time to wait for termination of the MainView AutoOPERATOR tasks in the IMS control region address space during IMS shutdown. The default timeout limit is 2 seconds. Possible values range from 1 to 999 seconds. Specify this parameter only if your IMS control region takes unusually long to terminate or frequently experiences abend sA03 at shutdown.  
<p>| Note: Increasing the default value reduces the possibility of sA03 abends, but might delay the time it takes for IMS to shut down. |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXDLYQ=[100</td>
<td>(optional) specifies the maximum concurrent number of delayed requests from Rules. A delayed request can be specified for a command or message. The default is 100; valid values are 0 to 999. Specifying zero means no maximum is set. The maximum value is 999 or half the value of the MAXPQE parameter specified in the BBPARM member BBISSPxx member, whichever is lower. When the number of concurrent DELAYED requests reaches 60 percent of the MAXDLYQ threshold, the following message is issued: DY6160W xxxxxx Delayed Requests queued When the number of concurrent DELAYED requests reaches 75 percent of the MAXDLYQ threshold, the following message is issued: DY6175W xxxxxx Delayed Requests queued If the MAXDLYQ value is reached, no additional requests can be queued until the number drops below the specified threshold and the following message is issued: DY6199E Maximum Delay Request queued The MAXDLYQ threshold calculations are re-adjusted when the AAOPRMxx member is reset. The threshold is calculated every time a DELAYED request is queued. Delayed actions are not retained over a warm or cold restart of the BBI-SS PAS. Therefore if outstanding delayed actions exist when the BBI-SS PAS is restarted, those delayed actions are lost and are not re-queued when the BBI-SS PAS restarts. You can use the BBI command .DISPLAY DLY before you restart the BBI-SS PAS to review any delayed actions that have not yet been completed. Determine whether you should delay restarting the BBI-SS PAS or, restart the BBI-SS PAS but note that you need to reissue the delayed actions when the BBI-SS PAS restarts.</td>
</tr>
<tr>
<td>0</td>
<td>nnnn]</td>
</tr>
<tr>
<td>MAXORSTG=[0</td>
<td>specifies the maximum amount (in kilobytes) of BBI-SS PAS private virtual storage to be allocated for tracking Operator Request (OR) messages. The storage is allocated above the 16Mb line. The default is 0. Possible values range from 0 to 999999. A value of 0 means that no checking is done. For example, a value of 100 means that you can store about 730 messages. <strong>Note</strong>: BMC Software recommends that you consult with your MainView AutoOPERATOR customer support representative before implementing this keyword.</td>
</tr>
<tr>
<td>nnnn]</td>
<td></td>
</tr>
</tbody>
</table>
### Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| MPFFILTR=(AUTO=YES | NO | token,SUP=YES | NO) | specifies whether MainView AutoOPERATOR checks WTOs for the MPF settings for the AUTO and SUP keywords.  
**Note:** This parameter cannot be used when HONORMPF is set to HONORMPF=YES. For information about how this parameter is set and how it affects automating WTOs, refer to “Implementing support for MPF” on page 123. |
| MQALTUSR=[RACF | user ID] | specifies an AlternateUserid to be specified when issuing MQSC or PCF MQ commands from MainView AutoOPERATOR.  
The user ID is used when MQ commands are issued from an EXEC or from a Rule.  
There is no default; valid values are as follows:  
**RACF** specifies that the security ID of the BBI-SS PAS is used as the AlternateUserid for commands.  
**user ID** specifies that a valid user ID is used as the AlternateUserid.  
This global parameter can be overridden with the ALTUSER() | AU() parameter of the IMFEXEC CMD TYPE(MQS) command or as an action from a MQ-initiated Rule. When you use this parameter the MQ PUT1 options will include MQOO_ALTERNATE_USER_AUTHORITY, MQPMO_DEFAULT_CONTEXT and MQPMO_ALTERNATE_USER_AUTHORITY and the AlternateUserid will be placed in the object descriptor.  
Refer to the MainView AutoOPERATOR for WebSphere MQ Installation and User Guide for more information about the IMFEXEC CMD TYPE(MQS) and issuing MQ commands from Rules. |
| MQAUPRMS=[Y | N] | specifies whether individual MQSC or PCF MQ commands that are issued from EXECs or Rules can use the ALTUSER parameter to override the global parameter MQALTUSR (when specified) and specify an AlternateUserid.  
When no value is specified for the MQALTUSR parameter, this parameter allows or denies the use of AlternateUserid for MQ command.  
Default value is NO, which means that the ALTUSER value is ignored. |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| MQEV=[YES | NO | or any combination of SLIPRFMCVB] | specifies that MainView AutoOPERATOR for WebSphere MQ should automatically enable instrumentation events for a queue manager during connection if it is not already enabled. You can specify that all the events are enabled, that none of the events are enabled, or that selected event types are enabled. When you specify multiple event types, you must code them consecutively, without using blanks or commas (does not apply if you are specifying Y or N). Valid values are as follows:  
- N: do not enable any events  
- Y: enable all events  
- S: enable start/stop (strstpev) events  
- L: enable local (localev) events  
- I: enable inhibit (inhibtev) events  
- P: enable performance (perfmev) events  
- R: enable remote (remoteev) events  
- F: enable configuration (configev) events  
- M: enable command (cmdev) events  
- C: enable channel (chlev) events  
- V: enable ssl (sslev) events  
- B: enable bridge (bridgeev) events  
The default value is NO. |
<p>| MQEVLPRC= xxxxxxxx          | specifies the name of the WebSphere MQ Event Listener PROC. Do not use this parameter if the WebSphere MQ Event Listener is not required. Refer to the MainView AutoOPERATOR for WebSphere MQ Installation and User Guide for more information about the WebSphere MQ Event Listener and coexistence of MainView AutoOPERATOR and other BMC Software products that require the WebSphere MQ event queues. |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQGINHIB=</td>
<td>specifies the action MainView AutoOPERATOR should take when MainView AutoOPERATOR attempts to listen to a queue which is defined as GET(DISABLED) Possible settings are</td>
</tr>
<tr>
<td>[ xxxxxxxx ]</td>
<td>JRNL: Issue a message to the BBI Journal stating that MainView AutoOPERATOR cannot listen to the queue.</td>
</tr>
<tr>
<td></td>
<td>WTO: Issue a write-to-operator (WTO) message stating that MainView AutoOPERATOR cannot listen to the queue.</td>
</tr>
<tr>
<td></td>
<td>IGNORE: Take no action.</td>
</tr>
<tr>
<td></td>
<td>ALTER: Alter the queue to GET(ENABLED).</td>
</tr>
<tr>
<td></td>
<td>The default value is JRNL.</td>
</tr>
<tr>
<td>MQNSHARE=</td>
<td>specifies the action MainView AutoOPERATOR should take when MainView AutoOPERATOR attempts to listen to a queue which is defined as NOSHARE Possible settings are</td>
</tr>
<tr>
<td>[ xxxxxxxx ]</td>
<td>JRNL: issue a message to the BBI Journal stating that MainView AutoOPERATOR cannot listen to the queue.</td>
</tr>
<tr>
<td></td>
<td>WTO: issue a write-to-operator (WTO) message stating that MainView AutoOPERATOR cannot listen to the queue.</td>
</tr>
<tr>
<td></td>
<td>IGNORE: take no action.</td>
</tr>
<tr>
<td></td>
<td>ALTER: alter the queue to share.</td>
</tr>
<tr>
<td></td>
<td>The default value is JRNL.</td>
</tr>
<tr>
<td>MSGJOBNM=</td>
<td>specifies how MainView AutoOPERATOR should derive batch, Started Task, and TSO job names for MSG events</td>
</tr>
<tr>
<td>[ACTUAL]</td>
<td>ORIGIN: The job name or the IMFOJOB variable can be used in the Rule Processor Selection Criteria panel while defining Rules. The following values are valid:</td>
</tr>
<tr>
<td></td>
<td>ACTUAL: Use the job name as it is derived from the address space that creates the event. There are situations where this value might not match the address space that initiated the event (WTO). For example some JES3 messages will have a value of &quot;CONSOLE&quot;.</td>
</tr>
<tr>
<td></td>
<td>ORIGIN: Use the job name as it is derived from the MVS control block (WQE). Specifying ORIGIN would result in a more accurate name of the issuer of the WTO.</td>
</tr>
<tr>
<td></td>
<td>The default value is ACTUAL.</td>
</tr>
</tbody>
</table>
### Parameter: MVIMSDB=[MSG | CMD]

*(optional)* specifies whether IMS DBCTL commands issued from MainView for IMS windows mode views will result in a Journal message or actual command.

The following values are valid:
- **MSG**: IMS DBCTL commands from MainView for IMS views sends the BBFPAC0XI message to the Journal. You must enable the RULIPX00 Rule set to detect this message and issue the IMS DBCTL command as an MVS command.
- **CMD**: MainView AutoOPERATOR issues the actual IMS DBCTL commands when they are entered from MainView for IMS views. All applicable AAOPRMxx parameters (such as DBCTLCMD) will apply.

**Note**: Changing the value of the MVIMSDB parameter requires that you restart the IMS DBCTL region.

The default value is MSG.

### Parameter: OR=[Y | N]

specifies whether the operator request should be active

The default is **N** (no), which stops the operator request application from showing any data. Specify **Y** to activate the operator request application to show data.

### Parameter: ORAPPL=[NODELETE | DELETE]

allows you to limit the use of the line commands on the Operator Request panel

When you specify ORAPPL=DELETE (the default setting) or when the ORAPPL parameter is not specified, terminal session (TS) users have full use of the Cancel and Delete line commands on the MVS OPERATOR REQUESTS panel. You can use the Cancel line command to cancel jobs and the Delete line command to delete all message types from the application display, including write-to-operator with reply messages (WTORs) that are still waiting for a response.

When you specify ORAPPL=NODELETE, MainView AutoOPERATOR version 6.5 (and later) TS users will not be able to use the Cancel line command and they will have limited access to the Delete line command. The TS user cannot cancel any jobs and can only delete non-WTOR messages from the display.

In addition, when NODELETE is specified, the Cancel line command does not appear on the OPERATOR REQUESTS panel and the Delete request line command appears as Delete WTO.

**Note**: If you are using a MainView AutoOPERATOR version 6.4.xx (or earlier) TS that is targeting a MainView AutoOPERATOR 6.5.xx (or later) TS, the ORAPPL=NODELETE setting does not affect your ability to issue the Cancel or Delete commands. This parameter only applies when to users who are using MainView AutoOPERATOR 6.5 terminal sessions. For more information about the OPERATOR REQUESTS application, refer to the MainView AutoOPERATOR Options User Guide. The default setting for this parameter is DELETE.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| ORDESC=[1,2,11]   | specifies the WTO descriptor codes for messages eligible for the Operator Request application  
                           To not check descriptor codes (or, to accept all messages), specify ORDESC=0. The default is 1,2,11.  
                           Messages must meet both ORROUT and ORDESC criteria to be accepted by Operator Request.  
                           Possible values are 0 through 16.                                                                                                                   |
| OREXC=[operator_message_to_16_chars] | *(optional)* identifies operator messages that will be excluded from Operator Request (OR) tracking  
                           The value specified is compared to the first word of the message. The first word of the message is delimited by the first blank or comma.  
                           A maximum of 16 characters can be specified. You can use generics by specifying asterisks (*) or positional wildcard characters by using plus signs (+) in the value. You can also repeat this parameter.  
                           For example: OREXC=BBA*  
                           This specification causes all message that begin with the characters BBA to be excluded from OR tracking.  
                           **Note:** BMC Software recommends that you consult with your MainView AutoOPERATOR customer support representative before implementing this parameter. |
| ORROUT=[0--128]   | identifies the WTO route codes for messages eligible for the Operator Request application  
                           The default is 0 and specifies that the OR application accept all messages regardless of the route code. A setting of 2,5 specifies that the OR application accepts messages of a 2 route code or a 5 route code.  
                           Messages must meet both ORROUT and ORDESC criteria to be accepted by Operator Request.  
                           Possible values are 0 through 128.                                                                                                                   |
| QALIAS=[Y | N]   | specifies whether MainView AutoOPERATOR for WebSphere MQ should open and listen for messages on QALIAS type queues  
                           Note that if you specify an alias queue name in BBPARM AAOMQL00, in addition to specifying a base queue, any Rules that you have written for the same message for the base queue might also fire for the alias queue.  
                           For example, if the selection criteria for a Rule for messages going to the base queue does not specifically contain the queue name then the Rule might fire twice; once for the base queue and once for the alias queue. |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| RULEPROT      | activates serialization on a Rule when it is edited, preventing multiple users from updating the same Rule, in the same BBI-SS PAS at the same time  
When the parameter is not specified, the default is NO.  
The following values are valid:  
- **NO**: no serialization is performed when a Rule is edited  
- **YES**: serialization is performed within the scope of each PAS to ensure only one user is updating a Rule in that PAS as the same time |
| RULESAVE      | specifies what happens when a Rule Set is saved from the Rule Processor Detail Control panel  
Valid options are as follows:  
- **FIRST** (default): the Rule Set is automatically saved in the first data set of the BBIPARM DD concatenation, regardless of where it was read from  
- **ORIGINAL**: the Rule Set is automatically saved in the data set that it was originally read from in the BBIPARM DD concatenation  
- **PROMPT**: specify the data set (FIRST or ORIGINAL) to which to save the Rule Set |
| RULESCAN=[F | A | I] | specifies the automation strategy of F (FIRST), A (ALL), or I (INDIVIDUAL) to determine how Rule Sets and Rules are searched to match events  
- **F | FIRST**: indicates only the first Rule with matching selection criteria is fired.  
- **A | ALL**: indicates Rules with matching selection criteria are fired.  
- **I | INDIVIDUAL**: indicates that each Rule Set can have its own (individual) automation strategy. Each Rule Set can be set with First, or All.  
The automation strategy specified here is used when the BBI-SS PAS is either warm or cold started.  

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RULESET= xx or</td>
<td>specifies one or more RULESETs to become active upon initialization of the BBI-SS PAS</td>
</tr>
<tr>
<td>RULESET=( xx,yy,...,zz)</td>
<td>Format of the statement is RULESET= xx for one set, or RULESET=(xx,yy,...,zz) for multiple sets. The two-character code is appended to AAORUL.</td>
</tr>
<tr>
<td></td>
<td>You also can use the 5-character suffix (where the prefix is RUL); for example, RULESET=RUL xxxxx or RULESET=(RULxxxxx, RULyyyyy, RULzzzzz ).</td>
</tr>
<tr>
<td></td>
<td>You can specify a long list of Rule Set names by continuing to the next line. Separate each Rule Set name with a comma.</td>
</tr>
<tr>
<td>SPLXVARS=[Y</td>
<td>N]</td>
</tr>
<tr>
<td></td>
<td>Default values is N; valid values are Y(yes) or N(no).</td>
</tr>
<tr>
<td>SPLXPREF=[sysplex variable prefix]</td>
<td>specifies the prefix that denotes that the SHARED variable name is a sysplex variable</td>
</tr>
<tr>
<td></td>
<td>Default value is AOSPLX_; valid values are 1 to 16 alphanumeric characters long.</td>
</tr>
<tr>
<td></td>
<td>If you use the default setting, an example of a sysplex variable name would be AOSPLX_DB2STATUS.</td>
</tr>
<tr>
<td>SPLXSTR=[structure name]</td>
<td>specifies the name of the XCF Structure that stores the sysplex variables</td>
</tr>
<tr>
<td></td>
<td>The XCF Structure resides in a Coupling Facility.</td>
</tr>
<tr>
<td></td>
<td>Valid values can be 1 to 8 alphanumeric characters long.</td>
</tr>
<tr>
<td></td>
<td>SPLXSTR uses the default value of the XCFGROUP option in BBISSPxx.</td>
</tr>
<tr>
<td></td>
<td>BMC recommends that you avoid coding user-specified values for the XCFGROUP and SPLXSTR parameters and use the default values. The default value for XCFGROUP is BMCAB and the default XCF Structure name is MVAO_BMCAB.</td>
</tr>
<tr>
<td>SUPREPLY=[NO</td>
<td>YES]</td>
</tr>
<tr>
<td></td>
<td>Specifying YES changes the text of the command issued by a terminal session (TS) user or EXEC. For example, if an EXEC issues the command R 33,XYZ</td>
</tr>
<tr>
<td></td>
<td>the BBI-SS PAS Journal shows the command as R 33,<em>SUPPRESSED</em></td>
</tr>
<tr>
<td></td>
<td>Therefore, specify YES when you want to conceal text in the BBI-SS PAS Journal (such as the use of a password). The local Journal shows the original message.</td>
</tr>
<tr>
<td></td>
<td>The default is NO.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| UCVARS=[NO|YES]  | specifies whether the Rules Processor should convert variable names to uppercase before resolving  
|                  | The following values are valid:  
|                  | **NO**: do not convert variable names to uppercase before resolving the variable value  
|                  | **YES**: convert the variable name to uppercase before resolving  
|                  | Specify UCVARS=YES if you want the Rules Processor to convert variable names to uppercase.  
|                  | Two passes are made when resolving compound variables, which might result in a mixed case name. If the variable name is mixed case, you must specify UCVARS=YES for that variable to be resolved.  
|                  | **Note**: When creating Rules that allow you to send events from MainView AutoOPERATOR to a BMC Impact Manager cell, be aware that the slot fields on the Event Action (BA) or Alert Action (AE) panels are case sensitive. Variable names specified on this panel are converted to uppercase before they are resolved when UCVARS=YES is specified. |

### BBPARM members AAORUL00 parameters

BBPARM members AAORUL00 contain sets of distributed MainView AutoOPERATOR Rule Sets for use with Rules. These Rule Set names are therefore reserved for use to distribute Rules.

The distributed members include

<table>
<thead>
<tr>
<th>Member name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAORULBA</td>
<td>contains a set of Rules that can be used to automate the startup and shutdown of IMS, DB2, and CICS</td>
</tr>
<tr>
<td>AAORULBB</td>
<td>contains a set of Rules that can be used to initialize multiple variables or functions in response to the PM0010I message</td>
</tr>
<tr>
<td>AAORULBC</td>
<td>contains a starter set of Rules that is used for and implemented by the MainView AutoOPERATOR application Continuous State Manager (CSM)</td>
</tr>
<tr>
<td>AAORULBx</td>
<td>contains sample Rules for the MainView AutoOPERATOR product where x is a predefined variable</td>
</tr>
<tr>
<td>AAORULCS</td>
<td>contains a starter set of Rules that can be used for the implementation of the MainView AutoOPERATOR application CSM</td>
</tr>
<tr>
<td>Member name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>AAORULC1</td>
<td>contains sample Rules that intercept CICS and MainView for CICS messages</td>
</tr>
<tr>
<td>AAORULD1</td>
<td>contains sample Rules for DB2 solutions</td>
</tr>
<tr>
<td>AAORULD2</td>
<td>contains sample Rules for DB2 solutions</td>
</tr>
<tr>
<td>AAORULD3</td>
<td>contains sample Rules for DB2 solutions</td>
</tr>
<tr>
<td>AAORULD5</td>
<td>contains sample Rules for DB2 solutions</td>
</tr>
<tr>
<td>AAORULD6</td>
<td>contains sample Rules for DB2 solutions</td>
</tr>
<tr>
<td>AAORULD8</td>
<td>contains sample Rules for DB2 solutions</td>
</tr>
<tr>
<td>AAORULI1</td>
<td>contains sample Rules that generate ALERTs for IMS messages</td>
</tr>
<tr>
<td>AAORULJV</td>
<td>contains sample Rules to intercept messages and commands</td>
</tr>
<tr>
<td>AAORULM1</td>
<td>contains sample Rules for MainView Sample Solutions</td>
</tr>
<tr>
<td>AAORUL00</td>
<td>contains sample Rules for MainView AutoOPERATOR Rule Processor application</td>
</tr>
</tbody>
</table>

For more information about these Rule Set members, refer to the section about Rules in the *MainView AutoOPERATOR Basic Automation Guide, Volume I: Using Rules.*

## BBPARM member AAOTRN00 parameters

The following table lists the IMS transaction parameters for BBPARM member AAOTRN00.

### Table 31: BBPARM member AAOTRN00

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLTERM=[MASTER</td>
<td>LTERM name]</td>
</tr>
</tbody>
</table>
The transaction names define a list of IMS transactions that can be submitted through the MainView AutoOPERATOR for IMS terminal session or from an EXEC.

A plus sign (+) can be used as a positional qualifier and an asterisk (*) can be used as a generic qualifier. When the plus sign and asterisk are used together, the asterisk must be the last character.

Use the optional parameter USERID to request that MainView AutoOPERATOR submits the transaction to IMS with the SAF user ID that is associated with the MainView AutoOPERATOR PAS.

Valid values for USERID are as follows:
- LTERM: MainView AutoOPERATOR submits the IMS transaction without a user ID. IMS uses the input lterm value as the user ID.
- AAOPAS: MainView AutoOPERATOR submits the IMS transaction with the SAF user ID that is associated with the MainView AutoOPERATOR PAS. If the MainView AutoOPERATOR PAS does not have a SAF user ID, MainView AutoOPERATOR submits the transaction to IMS using the PAS subsystem ID (SSID) as the user ID.

Example:

TRAN=PROD*,USERID=AAOPAS

### BBPARAM member AAOTSP00 parameters

BBPARAM member AAOTSP00 is used by the TapeSHARE for MainView AutoOPERATOR component.

**Note**

This member supports system variables substitution. For more information, see “System variables substitution in parameter library members” on page 275.

For information about using the TapeSHARE for MainView AutoOPERATOR component, refer to the *MainView AutoOPERATOR Options User Guide*; for documentation about how to use the MainView AutoOPERATOR application Dynamic Parameter Manager to update the parameters in AAOTSP00, refer to the *MainView AutoOPERATOR Customization Guide*.

Table 32 on page 316 lists the parameters for the MainView AutoOPERATOR TapeSHARE component.
### Table 32: BBPARM member AAOTSP00

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTION=[DEFAULT</td>
<td>CANCEL</td>
</tr>
<tr>
<td>■ DEFAULT: allows the installation’s default action to occur</td>
<td></td>
</tr>
<tr>
<td>■ CANCEL: cancels the job</td>
<td></td>
</tr>
<tr>
<td>■ WTOR: issues a WTOR to the operator</td>
<td></td>
</tr>
<tr>
<td>If the site does not have a defined default action, this action is the default.</td>
<td></td>
</tr>
<tr>
<td>■ NOHOLD: enables the job to wait without holding resources</td>
<td></td>
</tr>
<tr>
<td>■ HOLD: enables the job to wait while holding resources</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> ACTION=WTOR</td>
<td></td>
</tr>
</tbody>
</table>

<p>| FREE=[DEALLOC | deallocation procedure name] | For use with MVS SP4.x only. Enables you to specify the one- to eight-character name of a deallocation procedure that starts after TapeSHARE issues the VARY OFFLINE command to GIVE a device to another image. Scheduling the procedure triggers deallocation processing in the system GIVING the device and places the device in an OFFLINE state. |
| <strong>Example:</strong> FREE=RELEASE |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOGIVE=<em>device address</em></td>
<td></td>
</tr>
<tr>
<td>Default value is none.</td>
<td>list of device addresses (or a range of addresses) that should not be GIVEN to other partners within the TapeSHARE plex when they request devices to TAKE (in other words, a list of device addresses that are dedicated to this image)</td>
</tr>
</tbody>
</table>

**Note:** This parameter does not prevent you from manually GIVING a NOGIVE device.

If a device address is not associated with this parameter, TapeSHARE assumes no devices are dedicated to this image.

**Example:**

```plaintext
NOGIVE=0123
NOGIVE=0120-012F
```

You also can use this parameter in conjunction with the NOTAKE parameter. By specifying a device address on both these parameters, the device will be a NOGIVE-NOTAKE device and it will be excluded completely from TapeSHARE control.

**Example:**

```plaintext
NOGIVE=0123
NOTAKE=0123
```

If the device addresses 0123 is specified on both the NOGIVE and NOTAKE parameters, the 0123 is completely excluded from TapeSHARE control. TapeSHARE does not attempt to GIVE or TAKE this device.
### Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTAKE=\textit{device address}</td>
<td>list of device addresses (or a range of addresses) that this image should not TAKE when a request for resources is made. TapeSHARE on this image will not accept (TAKE) the devices specified. If a value is not associated with this parameter, TapeSHARE assumes that it can accept any tape devices when a request for resources is made. <strong>Example:</strong></td>
</tr>
</tbody>
</table>
|                 | NOGIVE=0123  
|                 | NOTAKE=0120-012F                                                                                                                       |
|                 | You also can use this parameter in conjunction with the NOGIVE parameter. By specifying a device address on both these parameters, the device will be a NOGIVE-NOTAKE device and it will be excluded completely from TapeSHARE control. **Example:** |
|                 | NOGIVE=0123  
|                 | NOTAKE=0123                                                                                                                             |
|                 | If the device address 0123 is specified on both the NOGIVE AND NOTAKE parameters, the 0123 device is completely excluded from TapeSHARE control. TapeSHARE does not attempt to GIVE or TAKE this device. |
| PARTNER=\textit{subsystem name} | BBI-SS PAS name (that can be associated with either one or a range of tape devices) that is a TapeSHARE PLEX partner. You also can include with the BBI-SS PAS name the device address (or a range of device addresses) that TapeSHARE cannot give to the named partner. (See examples below.)  
|                 | If no values are associated with this parameter, TapeSHARE assumes that any BBI node defined in BBINOD00 member is a partner within a TapeSHARE PLEX. **Example:** PARTNER=SYSA  
|                 | SYSA is a partner to this image. **Example:** PARTNER=SYSC,0123  
|                 | SYSC is a partner to this image and the device whose address is 0123 cannot be given to partner SYSC. **Example:** PARTNER=SYSB,0120-0127  
<p>|                 | SYSB is a partner to this image and the devices whose addresses fall between 0120 and 0127 cannot be given to partner SYSB. |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREF=[YES</td>
<td>NO</td>
</tr>
<tr>
<td>PREFDEV= device address</td>
<td>specifies a tape device address (or a range of tape device addresses) followed by either an I (for input-only) or O for (output-only) that are identified to TapeSHARE on this image that are allocated to perform input-only or output-only functions&lt;br&gt; Default value is none.&lt;br&gt; This parameter should be used in conjunction with the PREF parameter.&lt;br&gt; With the PREF activated, when a device is needed for an output-only operation, TapeSHARE attempts to choose from those devices identified by this parameter output-only.&lt;br&gt; If a value is not associated with this parameter, TapeSHARE does not invoke device preferencing.&lt;br&gt; <strong>Example:</strong>&lt;br&gt; <code>&lt;br&gt; PREFDEV=01A0-01A3,I&lt;br&gt; PREFDEV=0130,O&lt;br&gt; PREFDEV=0150-015F,O&lt;br&gt; </code></td>
</tr>
<tr>
<td>RETRYCNT=(0</td>
<td>2 through 10)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| RETRYINT=(0 | 30 through 300) | number of seconds TapeSHARE waits for devices between attempts after an initial attempt has failed For example, suppose  
  - RETRYCNT= parameter is set to 3 retries
  - RETRYINT= parameter is set to 45 seconds

  If this system’s request for devices is not satisfied, TapeSHARE waits 45 seconds after the initial attempt fails and retries to satisfy the request (retry attempt 1). If this attempt fails, TapeSHARE waits another 45 seconds and retries (attempt 2). If this attempt also fails, TapeSHARE waits another 45 seconds and retries (attempt 3).

  Should all three attempts fail, an Allocation Failed Event occurs and the specified action is taken.

  **Example:** RETRYCNT=3  
  Possible values are 0 - 300. |
| TIMEOUT=(0 | 120 through 999) | amount of time (in seconds) to wait for the partners to respond to a request for devices  

  When this time is reached and a successful give has not been completed, an Allocation Failed Event occurs unless you have specified a number of retries on the retrycnt parameter.  

  **Example:** TIMEOUT=20  
  Possible values are 0 - 999. |
| TRACE=[YES | NO] | writes diagnostic information to BBITST DD statement  

  **Example:** TRACE=NO  

  If YES is specified, the BBITST DD statement must appear in the BBI-SS PAS startup JCL for information to be written to it (see BBSAMP member SSJCL). |

**BBPARM member BBIVAR00 parameters**

This BBPARM member defines any number of preset SHARED variables and their values to be set in the SHARED pool at the COLD start of the BBI-SS PAS COLD when VPOOL=RESET is specified.

**Note**  
This member supports system variables substitution. For more information, see “System variables substitution in parameter library members” on page 275.
Table 33: BBPARM member BBIVAR00

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYVAR999=ACTIVE</td>
<td>contains any number of variables that are to be set at BBI-SS PAS startup when VPOOL=RESET is specified with the startup parameters (VPOOL=RESET requires a COLD start)</td>
</tr>
<tr>
<td>MYVAR999 = active</td>
<td>These SHARED variables are set before the MainView AutoOPERATOR Rules processor is initialized. Therefore, Rules for the event type VAR will not match when these SHARED variables are initialized. However, these variables are available to be used in all other Rules.</td>
</tr>
</tbody>
</table>

Note

Sysplex variables are not supported in BBPARM member BBIVAR00. Do not specify sysplex variables in BBPARM member BBIVAR00 or unpredictable results might occur.

You can create more than one BBIVARxx member (where xx is the suffix for member) and the following rules apply to determine which BBIVARxx member is processed.

- You can request multiple BBIVARxx members with the BBPARM member BBICFG.

  The name of the member is constructed from the literal BBIVAR and a suffix. The default suffix is 00. An alternative suffix member can be specified through configuration of the BBI-SS PAS with a BBCFG DD statement in the PAS JCL.

  - If a BBCFG DD statement is present and it contains a valid BBIVAR=xx statement, the BBIVAR= xx statement is processed.
  
  - If no valid BBIVAR= xx statement is found in the BBCFG configuration member, a suffix of 00 is assumed.

    An example of specifying a specific BBIVARxx member in the BBCFG member is
    
    \[ BBIVAR=(99) \]
    
    where 99 is the suffix for BBPARM member BBIVAR99.

    To specify multiple BBIVARxx members
    
    \[ BBIVAR=(99,23,12,15) \]
    
    where 99, 23, 12 and 15 are suffixes for BBPARM members BBIVAR99, BBIVAR12, BBIVAR12 and BBIVAR15.
When the BBCFG configuration member has multiple BBIVAR= statements specified, the last one is the one that the system starts with. For example, if the BBCFG member contains

BBIVAR=(99,12)
BBIVAR=(99,12,13)

the specification BBIVAR=(99,12,13) is the one the system will start up with.

- Error or warning messages are issued for the following possible situations:
  - BBCFG contains a valid BBIVAR= xx statement but the member was not found.
  - BBCFG contains syntax errors. Syntax errors in the configuration member might cause the default BBIVAR00 to be processed.
  - The BBIVAR xx member contains syntax errors.

The following syntax rules apply to processing within the BBIVARxx member:

- Any number of entries can be specified.
- Each line is restricted to 72 characters and entries cannot be continued over multiple lines.
- Variables names can have a maximum length of 32 characters.
- An asterisk in column one indicates a comment line and causes the line to be ignored.
- An assignment statement can be in either of the following formats:
  
  VARIABLE = 'VALUE'
  VARIABLE = value

  The first format must be used if the variable value contains blanks; otherwise, blank spaces are ignored. For example:

  MYVAR = A B C - MYVAR is set to A
  MYVAR = 'A B C' - MYVAR is set to A B C

- Variable names are always translated to uppercase letters.
- Variable names must conform to TSO/E REXX syntax.
- Variables are created in the variable pool exactly as specified. REXXX stem variables do not experience any form of substitution. For example, the following specification creates a variable called A and a variable called I.A, not I.0:

  A = 0
  I.A = 5
- Variables beginning with the letter Q cannot be assigned. Q-variables are BBI-SS PAS internal and have read-only access.

- If the variable itself is to contain a single quotation mark (‘), enclose the string in double quotation marks ("'). If the variables is to contain double quotation marks, enclose the string in single quotation marks (‘).

If any of the preceding conditions are not met, an error or warning message is issued, accompanied by an additional message that identifies the invalid line. Invalid entries are skipped, and processing continues.

Examples of valid entries:

```
TEST1 = 25
test2 = 15
end_of_day = TRUE
COMMENT = 'SHIFT CYCLE'
TEST1.A = 5
```

Examples of invalid entries:

```
'TEST1' = 25
TEST1* = 255
COMMENT = 'SHIFT CYCLE (End quotation mark is missing)
QSMID = SYSB (Q-variables are reserved and read-only)```
The BBSAMP data set contains sample members that you can edit for your site’s use.

Sample members for MainView AutoOPERATOR only

The following table describes BBSAMP members used only for MainView AutoOPERATOR.

<table>
<thead>
<tr>
<th>BBSAMP member name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$EXECJOB</td>
<td>indicates the EXEC testing batch job</td>
</tr>
<tr>
<td>$EXECTST</td>
<td>indicates the EXEC testing CLIST</td>
</tr>
<tr>
<td>$TESTDAT</td>
<td>indicates the EXEC testing sample test case</td>
</tr>
<tr>
<td>AOALRTDF</td>
<td>defines resources to RACF for MainView AutoOPERATOR ALERT queue name resources that control a TS-user’s authority to delete ALERTs and ALERT queues through the ALERT Detail and Stats panels</td>
</tr>
<tr>
<td>AOALRTPE</td>
<td>permits users to MainView AutoOPERATOR ALERT queue name resources that control a TS-user’s authority to delete ALERTs and ALERT queues through the ALERT Detail and Stats panels</td>
</tr>
<tr>
<td>AOAPPLDF</td>
<td>defines all MainView AutoOPERATOR application resources to RACF</td>
</tr>
<tr>
<td>AOAPPLPE</td>
<td>permits users to MainView AutoOPERATOR application resources</td>
</tr>
<tr>
<td>AOCMDDDF</td>
<td>defines all MainView AutoOPERATOR command-level resources to RACF</td>
</tr>
<tr>
<td>AOCMDPE</td>
<td>permits users to MainView AutoOPERATOR command-level resources</td>
</tr>
<tr>
<td>BBSAMP member name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>AOEXECDF</td>
<td>defines all MainView AutoOPERATOR EXEC name resources to RACF</td>
</tr>
<tr>
<td>AOEXECPE</td>
<td>permits users to MainView AutoOPERATOR EXEC name resources</td>
</tr>
<tr>
<td>AOANYDF</td>
<td>defines all MainView AutoOPERATOR AOAnywhere functions to RACF</td>
</tr>
<tr>
<td>AOANYPE</td>
<td>permits users to MainView AutoOPERATOR AOAnywhere functions</td>
</tr>
<tr>
<td>AOPARMDF</td>
<td>defines all MainView AutoOPERATOR DPM member name resources that control a TS-user’s authority to update, read, add, or activate a DPM member through the Dynamic Parameter Manager application</td>
</tr>
<tr>
<td>AOAPPLPE</td>
<td>permits users to all MainView AutoOPERATOR DPM member name resources that control a TS-user’s authority to update, read, add, or activate a DPM member through the Dynamic Parameter Manager application</td>
</tr>
<tr>
<td>AOSIVTBL</td>
<td>contains sample Control-O rules that you can copy into the appropriate Control-O / CMEM library and activate so that Set IOA Variable events from MainView AutoOPERATOR can be processed in Control-O</td>
</tr>
<tr>
<td>CAODTABU</td>
<td>contains macro to generate the CAODTAB table that allows specific Transient Data queues to be included or excluded</td>
</tr>
<tr>
<td>CAODTAB</td>
<td>contains examples of how to specify the CAODTAB macro in DTABJCL depending on what you want to accomplish</td>
</tr>
<tr>
<td>CAOTTAB</td>
<td>contains a macro used to generate the list of terminal types supported by the MainView AutoOPERATOR for CICS Broadcast application</td>
</tr>
<tr>
<td>CICSTART</td>
<td>contains a sample EXEC used to automate the start up of the CICS environment</td>
</tr>
<tr>
<td>CICSTERM</td>
<td>contains a sample EXEC used to automate the shut down of the CICS environment.</td>
</tr>
<tr>
<td>DB2START</td>
<td>contains a sample EXEC used to automate the start up of the DB2 environment</td>
</tr>
<tr>
<td>DB2TERM</td>
<td>contains a sample EXEC used to automate the shut down of the DB2 environment</td>
</tr>
<tr>
<td>DIVDEF</td>
<td>creates the linear data set used by MainView AutoOPERATOR to store a variety of data, including nonvolatile ALERTs and data recorded by the Automation Reporter. The subsystem must be down prior to submitting this job stream.</td>
</tr>
<tr>
<td>DIVUTIL</td>
<td>copies the BBIDIV data set to a newly allocated data set or produces a report of space utilization in the BBIDIV</td>
</tr>
<tr>
<td>BBSAMP member name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>IMSSTART</td>
<td>contains a sample EXEC used to automate the start up of the IMS environment</td>
</tr>
<tr>
<td>IMSTERM</td>
<td>contains a sample EXEC used to automate the shut down of the IMS environment</td>
</tr>
<tr>
<td>DTABJCL</td>
<td>contains sample JCL to assemble and link CAODTAB</td>
</tr>
<tr>
<td>JES2MAO</td>
<td>contains sample JCL to assemble with the user version of SYS1.HASPSRC</td>
</tr>
<tr>
<td>NAICMDS</td>
<td>defines NAIEXEC and NAISTUB to NetView</td>
</tr>
<tr>
<td>NAIINIT</td>
<td>initializes an Access NV controlled OST</td>
</tr>
<tr>
<td>NAIOPT00</td>
<td>defines the BBI-SS PAS that communicates with NetView and OSTs used by that BBI-SS PAS</td>
</tr>
<tr>
<td>NAIPROF</td>
<td>contains a sample OST initialization profile</td>
</tr>
<tr>
<td>NAISVAR</td>
<td>sets global variables for Access NV tasks</td>
</tr>
<tr>
<td>NAITASK</td>
<td>defines NATASK as a NetView optional subtask (OPT)</td>
</tr>
<tr>
<td>QAOCTMCO</td>
<td>calls the CTMAPI in conversational mode to request the RBA of a job</td>
</tr>
<tr>
<td>QAOCTMNC</td>
<td>calls the CTMAPI in non-conversational mode to request the RBA of a job</td>
</tr>
<tr>
<td>RVARTST</td>
<td>contains an EXEC that shows settings of variables</td>
</tr>
<tr>
<td>TTABJCL</td>
<td>contains sample JCL to assemble and link CAOTTAB</td>
</tr>
</tbody>
</table>

Sample members for MainView AutoOPERATOR for CICS and MainView for CICS

The following table describes BBSAMP members used by both MainView AutoOPERATOR for CICS and MainView for CICS.
Table 35: BBSAMP data set members for MainView AutoOPERATOR for CICS and MainView for CICS

<table>
<thead>
<tr>
<th>BBSAMP member name</th>
<th>Description</th>
</tr>
</thead>
</table>
| CMRASM | sample JCL to assemble and link-edit any of the following modules:
 - CMRPRBT: MainView for CICS
 - CMRRAPM: MainView for CICS
 - CMRSECU: MainView for CICS and MainView AutoOPERATOR for CICS
 - CMRSOPT: MainView for CICS
 Note: Descriptions for each of these modules can be found in this appendix. |
<p>| CMRCSDAL | JCL used to create the CSD resource groups used by MainView for CICS or MainView AutoOPERATOR |
| CMRCSDEL | JCL used to delete resources from the BOOLEPPT and BOOLEPCT resource groups |
| CMRCSDES | sample JCL containing RDO definitions for CICS and CICS Transaction Server regions |
| CMRCSDLA | JCL used to modify the group list that contains the resource groups installed at CICS initialization MainView AutoOPERATOR only |
| CMRCSDLB | JCL used to modify the group list that contains the resource groups installed at CICS initialization MainView AutoOPERATOR and MainView for CICS |
| CMRCSDLM | JCL used to modify the group list that contains the resource groups installed at CICS initialization MainView for CICS only |
| CMRPLT | macro used to generate valid PLT entries for CICS and CICS Transaction Server regions |
| CMRSECU | security for CICS option of MainView AutoOPERATOR and MainView for CICS |
| CMRUSECU | sample for defining function security |
| CSDOLTDF | contains the DEFINE statements required for the program and transaction resources used by the MainView for CICS and MainView AutoOPERATOR for CICS common OLT component (all releases of CICS) |
| CSDOLT41 | contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 410 release |</p>
<table>
<thead>
<tr>
<th>BBSAMP member name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSDOLT51</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 510 release</td>
</tr>
<tr>
<td>CSDOLT52</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 520 release</td>
</tr>
<tr>
<td>CSDOLT53</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 530 release</td>
</tr>
<tr>
<td>CSDOLT61</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 610 release</td>
</tr>
<tr>
<td>CSDOLT62</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 620 release</td>
</tr>
<tr>
<td>CSDAAO4DF</td>
<td>contains the DEFINE statements required for the program and transaction resources used by MainView AutoOPERATOR for CICS (all releases of CICS)</td>
</tr>
<tr>
<td>CSDAAO41</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 410 release</td>
</tr>
<tr>
<td>CSDAAO52</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 520 release</td>
</tr>
<tr>
<td>CSDAAO53</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 530 release</td>
</tr>
<tr>
<td>CSDAAO61</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 610 release</td>
</tr>
<tr>
<td>CSDAAO62</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 620 release</td>
</tr>
<tr>
<td>CSDCMR41</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 410 release</td>
</tr>
<tr>
<td>CSDCMR51</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 510 release</td>
</tr>
<tr>
<td>CSDCMR52</td>
<td>contains the DELETE statements used to remove program and transaction resource definitions from the CSD for the CICS 520 release</td>
</tr>
</tbody>
</table>
Sample members for MainView AutoOPERATOR for IMS, MainView for IMS, and MainView for DBCTL

The following table describes BBSAMP members used only for MainView AutoOPERATOR for IMS, MainView for IMS, and MainView for DBCTL.

Table 36: BBSAMP data set members for MainView AutoOPERATOR for IMS, MainView for IMS, and MainView for DBCTL

<table>
<thead>
<tr>
<th>BBSAMP Member Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICOPY7</td>
<td>sample installation JCL that is used to copy BMC Software modules to IMS.RESLIB data set available to the IMS 4.1 control region</td>
</tr>
<tr>
<td>ICOPY8</td>
<td>sample installation JCL that is used to copy BMC Software modules to IMS.RESLIB data set available to the IMS 5.1 control region</td>
</tr>
<tr>
<td>ICOPY9</td>
<td>sample installation JCL that is used to copy BMC Software modules to IMS.RESLIB data set available to the IMS 6.1 control region</td>
</tr>
<tr>
<td>IMRUVTF</td>
<td>interface from MainView for IMS / AO to the BMC Software Delta IMS virtual terminal If this module is present, MainView for IMS / AO can access all Delta IMS lines, nodes, and LTERM (CLB, CTB, and CNT).</td>
</tr>
<tr>
<td>LINKNUC</td>
<td>sample JCL that is used to link BMC Software AOI exit IBAQUE3 into the IMS nucleus (IMS version 4.1 and earlier)</td>
</tr>
</tbody>
</table>
Expanding the PROFILE pool data set

This appendix discusses the XTLOAD utility that is located in BBSAMP member XTJCL. You use this utility to expand the PROFILE pool data set.

The PROFILE variables are stored in the PROFILE pool data set. When this data set becomes full, you must allocate and initialize a new, larger data set.

You can use the XTLOAD utility to copy all the PROFILE variables from the old data set into the new data set. You can identify a full PROFILE pool data set if requests to the data set from IMFEXEC VPUT or IMFEXEC VPUTL fail with return codes of 20 or 8 respectively.

Note

Do not use IEBGENER to copy the smaller data set into the new, larger data set. You must use the XTLOAD utility for MainView AutoOPERATOR to recognize the additional space.

Using the XTLOAD utility

To expand the PROFILE pool data set, use the XTLOAD utility. You must bring down MainView AutoOPERATOR before you can use this utility.

XTLOAD copies the content of the existing BBIVARS data set into a larger data set. After successful execution of XTLOAD, the new data set can be specified on the BBIVARS DD statement. Alternatively, the new data set can be renamed to match the original data set name on the BBIVARS DD statement.

Use the following sample JCL to execute XTLOAD.

Figure 49: Sample JCL to execute XTLOAD

```
//STEP1 EXEC PGM=XTLOAD
//STEPLIB DD
DSN=hilevel.????.BBLINK,DISP=SHR
//BBIVARS DD DSN=old.bbivars.dataset,DISP=OLD
```
To modify the sample JCL

1. Provide a valid job card.

2. On the STEPLIB DD statement, specify the BBLINK load library containing XTLOAD.

3. On the BBIVARS DD statement, specify the name of the existing PROFILE pool data set.

4. On the NEWVARS DD statement, specify the name of the new PROFILE pool data set. The NEWVARS data set must be larger than the BBIVARS data set; otherwise, XTLOAD will terminate and write an appropriate error message to the SYSPRINT DD.

The XTLOAD return codes are

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NEWVARS, BBIVARS, or SYSPRINT DD statement is missing</td>
</tr>
<tr>
<td>8</td>
<td>NEWVARS DD data set is not larger than the BBIVARS DD data set</td>
</tr>
<tr>
<td></td>
<td>If the BBIVARS data set is full, the IMFEXEC VPUTL command receives a return code of 8</td>
</tr>
<tr>
<td>8</td>
<td>BBIVARS data set is full</td>
</tr>
</tbody>
</table>
OSPI terminal definitions for CICS and IMS

The following sections provide information about defining OSPI virtual terminals to CICS and IMS and includes the following sections:

IMS terminal definitions

IMS requires all terminals to be defined in the IMS SYSGEN. If an attempt is made to log on with an OSPI ACB that has not been defined to IMS, the session is not accepted. The following example shows the IMS terminal definitions required for OSPI ACBs:

```
TERMINAL MODEL=2,
FEAT=(NOCD,NOPEN),
FPBUF=256,OPTIONS=(TRANRESP),
NAME=OSPI0000 ** OSPI ACB name **
NAME
OSPI0000 ** Any LTERM name **
** (subject to IMS security) **
```

CICS terminal definitions

The terminal definitions required by CICS depend on which features of CICS are used.

If the CICS autoinstall feature is used, local terminal definitions are not required. However, the appropriate terminal models must be defined prior to logon. See "Autoinstall terminals" for information about defining OSPI terminals to CICS.

If the CICS autoinstall feature is not used, each terminal must be defined prior to logon. See “Explicit terminal definitions” on page 334 for information about defining OSPI terminals to CICS.
Autoinstall terminals

If the CICS autoinstall feature is used, terminals need not be defined but the appropriate models must be defined prior to logon. If a model terminal definition that matches the logmode data associated with the OSPI ACB is not available, CICS issues an error message to the transient data queue.

Explicit terminal definitions

If the CICS autoinstall feature is not used, each terminal must be defined before you logon using RDO. If an attempt is made to logon with an OSPI ACB that has not been defined to CICS, the session is not accepted and error messages are written to the transient data queue.

Figure 50 on page 335 provides an example of how to use Resource Definition Online to define an OSPI virtual terminal.
RDO macro

The following figure is an example of using a Resource Definition Online macro.

Figure 50: Example of using Resource Definition Online

```
OVERTYPE TO MODIFY
CEDA ALTER
  Type term : OSPI
  Group : TEST
RESOURCES TYPE
  DEVICE = LUTYPE2
  TERMINMODE = 2
  SESSIONTYPE =
  LDCLIST :
  SHippable = No
MAPPING PROPERTIES
  PAGESIZE = 000 . 000
  ALTPAGE = 000 . 000
  ALTSUFFIX =
  FMHPARM = No
  OBOPERID = No
PAGING PROPERTIES
  AUTOPAGE = No
DEVICE PROPERTIES
  DEFScreen = 024 . 080
  ALTSCREEN = 000 . 000
  APLKEYBD = No
  APLTEXT = No
  AUDIBLEALARM = No
  COLOR = No
  COPY = No
  DUALCASEKEYBD = No
  EXTENDEDDDS = No
  HIILIGHT = No
  KATAKANA = No
  LIGHTPEN = No
  MRCONTROL = No
  OBFORMAT = No
  PRT TITLES = No
  PRINTERADAPTER = No
  PROGSYMBOLS = No
  VALIDATION = No
  FORMFEED = No
  HORIZFORM = No
  VERTICALFORM = No
  TEXTKB = No
  TEXTPRINT = No
  QUERY = No
  OUTLINE = No
  SOCI = No
  BACKTRANS = No
  CGCSGID = 00000 . 00000
SESSION PROPERTIES
  ASCII = No
  SENDSIZE = 00000
  RECEIVESIZE = 00000
  BRACKET = Yes
  LOGMODE = D6327802
```
Figure 51: Example of using Resource Definition Online

<table>
<thead>
<tr>
<th>DIAGNOSTIC DISPLAY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ERRLastLine ==> No</td>
<td>No</td>
</tr>
<tr>
<td>ERRIntensify ==> No</td>
<td>No</td>
</tr>
<tr>
<td>ERRColor ==> NO</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRHilight ==> No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATIONAL PROPERTIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOConnect ==> No</td>
<td>No</td>
</tr>
<tr>
<td>ATi</td>
<td>Yes</td>
</tr>
<tr>
<td>Tti</td>
<td>Yes</td>
</tr>
<tr>
<td>Createsess ==> No</td>
<td>No</td>
</tr>
<tr>
<td>RELreq</td>
<td>No</td>
</tr>
<tr>
<td>Discreq</td>
<td>Yes</td>
</tr>
<tr>
<td>Nepclass</td>
<td>000</td>
</tr>
<tr>
<td>Signoff</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESSAGE RECEIVING PROPERTIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Routedmsgs ==> All</td>
<td>All</td>
</tr>
<tr>
<td>LOGOnmsg</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPLICATION FEATURES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildchain</td>
<td>Yes</td>
</tr>
<tr>
<td>Userarealen ==> 000</td>
<td>0-255</td>
</tr>
<tr>
<td>Ioarealen</td>
<td>02000</td>
</tr>
<tr>
<td>UCtran</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECOVERY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RECOVOption ==> Sysdefault</td>
<td>Sysdefault</td>
</tr>
<tr>
<td></td>
<td>Uncondrel</td>
</tr>
<tr>
<td>RECOVNotify</td>
<td>None</td>
</tr>
</tbody>
</table>

CICS terminal definitions

MainView AutoOPERATOR Customization Guide
Implementing Print LOGJRNL records

To print or write journal message information that is collected in the MainView Logger when you specify MVLOG=JRNL in BBPARM member BBISSPxx, use the BBSAMP member PLOGJRNL to set up a started task. You can schedule the started task on a regular basis such as printing all the journal messages for a specific time period to a flat file that can be retained and searched as needed.

Printing LOGJRNL records

Use the following procedure to set up a started task procedure for MainView Logger.

To create the started task procedure

1. Copy BBSAMP member PLOGJRNL to SYS1.PROCLIB to a JES PROCLIB data set and make the following changes to the JCL in the PROC statement:
 - change PLOGJRNL to a name you want to use for the procedure
 - change the PREFIX parameter to the high-level qualifier that you used to load the product to DASD.

2. Refer to Table 37 on page 338 which describes the additional parameters you can use with the START PLOGJRNL command.
Table 37: Valid parameters for the START command

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required</th>
<th>Specified as one of the following options</th>
<th>Description</th>
</tr>
</thead>
</table>
| SSID= | no | ■ a substitution value for the PROC statement
 | | ■ directly in the PARM= value of the JCL step card as the first positional parameter; do not include the characters "SSID=" | specifies the SSID of the MV Logger SSID (if you do not want the default) to connect to. If no value is specified, the SSID of the default MainView Logger in the LPAR is used. |
| STRT= | yes | ■ a substitution value for the PROC statement
 | | ■ directly in the PARM= value of the JCL step card as the second positional parameter; do not include the characters "STRT=" | specifies the time and date where the search begins
This parameter is required and you must enclose the value in single quotation marks if it is passed to the PROC statement from a START command. You do not need to use single quotation marks if you specify the value with the PARM statement in the JCL.
Valid formats are as follows:
■ \textit{hh:mm:ss/yyyyymmdd}
■ \textit{YESTERDAY}
When you are not using the value YESTERDAY, the value you specify must be 17 characters long; for example:
\texttt{12:39:21/20111201}
\texttt{16:00:00/20110305}
\texttt{05:15:36/20111205}
When you specify YESTERDAY for the STRT value, the system computes yesterday's date and creates a STRT value string in the form: "00:00:00/yesterday's date". You can use this when you want to run the job daily and dump all of "yesterday's" data using a DURA value of 1D. |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required</th>
<th>Specified as one of the following options</th>
<th>Description</th>
</tr>
</thead>
</table>
| RECS= | no | ■ a substitution value for the PROC statement
■ directly in the PARM= value of the JCL step card as the third positional parameter (do not include the characters "RECS=") | specifies the number of records to be printed
Specify a numeric value between 1 to 7-numbers long between 1-9999999; for example:
■ 100
■ 10
■ 50000
You must specify either the RECS= or the DURA= parameter.
When you specify both RECS and DURA parameters, whichever criteria completes first will end the output. For example, if you specify RECS=100 and DURA=1D, either 100 records or 1 day of records will be output, whichever comes first. |
| ORIG= | no | ■ a substitution value for the PROC statement
■ directly in the PARM= value of the JCL step card as the fourth positional parameter (do not include the characters "ORIG=") | specifies an origin value that is used to filter the records
Specify a 1-8 alphanumeric value. An asterisk (*) is supported as a wild card character; for example:
■ AAODL71
■ AAODL* (any origin whose name begins with the characters AAODL) |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required</th>
<th>Specified as one of the following options</th>
<th>Description</th>
</tr>
</thead>
</table>
| DURA= | no | ■ a substitution value for the PROC statement
■ directly in the PARM= value of the JCL step card as the fifth positional parameter (do not include the characters "DURA=") | specifies a period of time for the records to be printed. Specify 1 to 3-digit number followed by an alphabetic value that defines the unit of time; valid alphabetic values are as follows:
■ M: minutes
■ H: hours
■ D: days
For example:
■ to print out 10 minutes of data beginning at the time specified by the STRT parameter, specify 10M
■ to print out 1 day’s worth of data beginning at the time specified by the STRT parameter, specify 1D
■ to output 8 hours of data beginning at the time specified by the STRT parameter, specify 8H
You must specify either the RECS= or the DURA= parameter.
When you specify both RECS and DURA parameters, whichever criteria completes first will end the output. For example, if you specify RECS=100 and DURA=1D, either 100 records or 1 day of records will be output, whichever comes first. |
BBPARM member BBISSP^{xx} parameters

MainView AutoOPERATOR version 7.3 includes BBPARM member BBISSP^{xx} parameter DMABTIM that allows you to specify a time limit (in minutes) within which abends will disable the BBI-SS PAS SSI routine.

Deciding what to specify for this parameter is important because when the BBI-SS PAS SSI routine is disabled, all Rules-based automation processing becomes disabled. For example, you might want to specify that 50 abends occurring within 1 minute (DMABTIM=50) is more severe than 50 occurring abends within 10 hours (DMABTIM=6000).

If the BBI-SS PAS SSI routine is disabled because more than 50 abends have occurred with the specified time limit, you must perform a COLD START of MainView AutoOPERATOR to re-establish the SSI routines, and turn Rules-based automation back on.

If you do not specify a time limit with the DMABTIM parameter, the BBI-SS PAS SSI component is disabled when the 51st abend occurs since the last COLD START of the PAS.

In addition, when you specify the DMABTIM parameter, the QAODUMP EXEC (located in the BBPROC) is scheduled to run in MainView AutoOPERATOR and obtain a console dump of the BBI-SS PAS. This console dump can provide critical diagnostic information to BMC customer support. You can specify your own EXEC with the DMABEXEC parameter.

Refer to Table 38 on page 342 for more information about the DMABTIM and DMABEXEC parameters.
Table 38: BBISSPxx parameters

<table>
<thead>
<tr>
<th>BBISSPxx parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| DMABTIm= [0| 1-999999] (minutes) | specify the number of minutes during which 50 abends disables the BBI-SS SSI component
WARNING: Specifying 0 minutes indicates that the BBI-SS PAS SSI routine should not be disabled because of abends occurring and continue processing regardless of how many abends occur within this component. Therefore, specifying 0 could lead to system degradation or a system outage and you should only specify 0 after careful consideration. |
| DMABEXEC=[execName] | specify an EXEC name that MainView AutoOPERATOR schedules when it detects the 51st abend within the period of time specified by the DMABTIm parameter
You must use the DMABEXEC parameter in conjunction with the DMABTIm parameter. If you specify a value for DMABEXEC and not for DMABTIm, the value is ignored.
If you omit this parameter and you specify a value for DMABTIm, MainView AutoOPERATOR schedules the EXEC QAODUMP to obtain a console dump. |
Index

Symbols

$EXECJOB 325
$EXECTST 325
$TESTDAT 325

A

AAOALS00
BBPARM member 273
modifying ALERT parameters, Dynamic Parameter Manager 60, 61
parameters 277
 ALERTNV 277
 AUDIT 277
 PUBLISH 277
 WARNLVL1 277
 WARNLVL2 277

AAOARP00
BBPARM member 273
modifying Automation Reporter parameters, Dynamic Parameter Manager 65, 66
parameters 281
 DISP 281
 DSN 281
 INTVL 281
 OFFINTVL 281
 QUEUE 281

AAOEXP00

description 237, 238, 283
modifying EXEC parameters
 EXEC= 238
 MAXHIGH= 238
 MAXNORM= 238
modifying EXEC parameters, Dynamic Parameter Manager 68, 77
parameters
 APIAUTH 283
 AUDITEXE 283
 AUDITMSG 283
 AUDITRES 283
 CICSECID 283
 ELAPSLIM 75, 283
 EMLOG 283
 EXABCNT 283
 EXEC 283
 MAXHIGH 283
 MAXHIGHQ 283
 MAXHOTQ 283
 MAXNORM 283
 MAXNORMQ 283
 MAXTPUT 283
 OSPINUM 283
 OSPIPRFX 283
 PEREXLIM 283
 PREFIX 283
 RESAUTH 283
 SELLLIM 283
 SUBXAUTH 283
 TIMEXLIM 283
 TSOTIME 283
 UCPARMS 283
 UNITNAME 283
 WARNLVL1 283
 WARNLVL2 283

AAOGME00
BBPARM member 273

parameters

 CONAUDIT 287
 DEBUGMSG 287
 EXEC 287
 GMEACT 287
 HOSTNAME 287
 MVE_LINK 287
 TGTBIMCF 287
 TGTHB 287
 TGTIP 287
 TGTHB 287
 TGTNAME 287
 TGTRTC 287
 TGTRTI 287
 TRACEAPP 287
 TRACEBUFF 287
 TRACEGME 287
 TRACEK 287
 TRACESC 287
 TRACEN 287
 WTO 287

AAOMQL00 273
BBPARM parameter

 OPEN 292
 QMGR 292
 QUEUE 292
 TYPE 292

AAONCD00
BBPARM member 273
BBPARM parameter

 DEBUG 292, 295
parameters 295

AAOPPM00

BBPARM parameter

 ALOGACT 295
 ALOGEV 295
 AOPTION 295
 AOREPLAY 295
 BIIZJRN 295
 DBCTLCMD 295
 DBCTLORG 295
 DZDSN 295
 HONORMPF 295
 IMFJNUM 295
 IMFORGN 295
 IMSAUTH 295
 IMSMDCN 295
 IMSMSMIM 295
 IMSOMEX 295
 IMSPLAUD 295
 IMSPLTM 295
 IMSROUTE 295
 MAXDLYQ 295
 MAXORSTG 295
 MPFFILT 295
 MQALTUSR 295
 MQAUPRMS 295
 MQE 95, 295
 MQEV 95, 295
 MQEVLRPC 95, 295
 MQGNET 95, 295
 MQNSHARE 95, 295
 MSGJOBNM 295
 OR 87, 295
 ORAPPL 295
 ORDESC 87, 295
 OREXC 87, 295
 ORROUT 87, 295
 QALIAS 95, 295
 RULEPROT 295
 RULESAVE 295
 RULESCAN 295
 RULESET 295
 SPLXPREF 295
 SPLXSTR 295
 SPLXVAR 295
 SUPREPLY 295

description 295

AAOPPM00, BBPARM member 273

AAORUL00
BBPARM member 273

list of Rule Set members 313

AAOTRN00
BBPARM member 273
BBPARM parameter
 RLTERM 314
 TRAN 314
parameters 314
TapeSHARE 315
AAOTSP00
BBPARM member 273
BBPARM parameter
 ACTION 315
 FREE 315
 NOGIVE 315
 NOTAKE 315
 PARTNER 315
 PREF 315
 PREFDEV 315
 RETRYCNT 315
 RETRYINT 315
 TIMEOUT 315
 TRACE 315
modifying TapeSHARE parameters, Dynamic Parameter Manager 97
ACTION, modifying AAOTSP00 parameters 98
Actv field, Dynamic Parameter Manager 59
address space application, modifying JES2 job numbers 240
ALERT QUEUE
 AAOARP00 parameter, modifying 88
ALERTNV
 AAOALS00 parameter, modifying 61
ALERTs
setting storage thresholds, Dynamic Parameter Manager 61
thresholds, Dynamic Parameter Manager 60, 61
alternate database, CSM application, selecting 217
AO exit
 execution 178
 return code 178
 routines 177
AO exit routines
 DFSAOE00 181
 DFSAOUE0 181
AOALRTDF 325
AOALRTPE 325
AOAPLDF 325
AOAPLPE 325
AOCMDDF 325
AOEEXIT, control statements 177
AOEXECDF 325
AOEXIT, parameter 177
AOLOGACT
 AAOPRM00 parameter, modifying 88
AOLOGEV
 AAOPRM00 parameter, modifying 88
AOOPTION
 AAOPRM00 parameter, modifying 81
AOPARMDF 325
AOREPLAY
 AAOPRM00 parameter, modifying 88
APIAUTH
 AAOEXP00 parameter, modifying 75
ARM See Automatic Restart Manager 119
ARMPOLICY parameter, valid values 121
AUDIT parameter
 AAOALS00 member, modifying 61
AUDITEXE, field 75
AUDITMSG
 AAOEXP00 parameter, modifying 75
AUDITRES
 AAOEXP00 parameter, modifying 78
authorization 247
Automatic Restart Manager (ARM)
 default policy 120
 implementing support 120, 121
 parameter values 121
Automation Logger parameters
 Dynamic Parameter Manager, modifying 88
 AOOLOGACT 88
 AOOLOGEV 88
Automation Reporter parameters, Dynamic Parameter Manager 65, 66
AutoOPERATOR
 BMC Software products 31, 48
AutoOPERATOR Access NV
 checklist 187
 creating
 DSIPARM member DSICMD 190
 DSIPARM member DSIDMN 191
 DSIPARM member DSIOPF 192
 DSIPARM member NAIOPT00 189
 NetView JCL 189
 operator profiles 193
 security 193
 implementing 187, 197
 modifying
 NAISTUB 189
 NetView JCL 189
 NETVIEW parameter 189
B

BBI-SS PAS to CICS communication
available functions 161
modifying CICS tables 151
overview 149
processing program table (PPT) 151
program control table (PCT) 151
program list table (PLT) 151
restarting CICS target regions 160
Rule Processor 161
specifying Resources to CICS 151
startup JCL 160
BBI-SS PAS, starting before JES 240
BBI-SS to CICS communication
available functions 161
BROADCAST application 161
BBIVAR00, BBPARM member 320
BBKEYS, 7.4 32
BBKEYS, migrating
version 6.5 to 7.1 49
BBLINK
modifying IMS control region JCL 176
BBLINK data set
dynamic install and uninstall 181
BBPARM
AAOALS00 273
AAARPO00 273
AAEXP00 273
AAOGME00 273
AAOMQL00 273
AONEO00 273
AAOPRM00 273
AAORUL00 273
AAOTRN00 273
AAOTSP00 273
members 273, 320
BBPARM member 273
BBSAMP, members
JES2MAO 240
NAICMD0 190
NAILINIT 192
NAILINITX 192
NAIOPT0 189
NAIPROF 192
NAIPROFX 192
NAISVAR 192
SSJCL 240

BMC Impact Manager
implementing TCP/IP interface 199
interface
implementing 199
overview 199
procedure for implementing connection 200
TCP/IP connection 200
BMC Software products, AutoOPERATOR 31, 48

C

CA-ACF2 security 150
CAOTTAB
BBSAMP member 325
macro 167, 168
Changed field, Dynamic Parameter Manager 59
changing transaction IDs, required ZAPs 265
CICSECID
AAOEXP00 parameter, modifying 75
CICSTART 325
CICSTEM 325
Cmd field, Dynamic Parameter Manager 59
CMRASM 249, 327
CMRCSDS 327
CMRDETL (detail performance file) 265
CMRPLT 327
CMRSECU
action parameters 250
BBSAMP member 327
implementing 249
setting 250
TYPE=ENTRY 249
TYPE=FINAL 249
TYPE=INITIAL 249
See also security
CMRSTAT (statistical file) 265
CMRUSECU, BBSAMP member 249, 327
customization commands
migrating
version 6.5 to 7.1 41
version 7.3 to 7.4 25
common storage, migrating
version 6.5 to 7.1 47
version 7.3 to 7.4 30
compatibility, migrating
version 6.5 to 7.1 migrating
 version 6.5 to 7.1
 upward compatibility 48
version 7.3 to 7.4
 version 7.3 to 7.4
 upward compatibility 31
compiled REXX programs 127
CONAUDIT
 AAOGME00 parameter, modifying 287
considerations for implementing CICS 150
consoles
 allocating 109
 CSM application 111
 overview 109
Continuous State Manager
 accessing for the first time 219
 alternate database, selecting 217
 calculating repository size 224
 creating a shared repository 222
 End-of-Memory EXEC 218
EXECs 217
 performance considerations 217
 Rule Set member, selecting 217
Control-O interface, implementing 210
conventions, documentation 16
CPU time limit, AutoOPERATOR EXECs,
 TIMEXLIM 237
CPU usage, migrating
 version 6.5 to 7.1 47
 version 7.3 to 7.4 30
Created field, Dynamic Parameter Manager 59
CSMALTDB, SSJCL parameter, setting 218
CSMBUILD 217
CSMDOWN 217
CSMEOM EXEC 218
CSMINIT 217
CSMUP 217
Current field, Dynamic Parameter Manager 71
Current Parm field, Dynamic Parameter Manager 103
Current SSID field, Dynamic Parameter Manager 103
Current Target field, Dynamic Parameter Manager 103

D
DATAID parameter 150
DB2START 325
DB2TERM 325

DDNAMEs, migrating
 version 6.5 to 7.1 40
 version 7.3 to 7.4 23
DEBUGMSG
 AAOGME00 parameter, modifying 287
dependent services 161
DFHTST TYPE=RECOVERY 150
DFSAOE00 177
DFSAOE00 exit routine 181
DFSAOUE0 exit routine 181
DISP
 AAOARP00 parameter, modifying 66
DIVDEF 325
DIVUTIL 325
documentation changes
 migrating
 version 6.5 to 7.1 47
 version 7.3 to 7.4 29
documentation information 15
DSICMD, DSIPARM member
 NAICMDS 190
 NAIEXEC 190
 NAISTUB 190
DSIDMN, DSIPARM member
 NATASK 191
DSIOPF, DSIPARM member
 NAIPROF 192
 NAIPROFX 192
DTABJCL 325
DUMP data set, BBI-SS PAS 240
dynamic install and uninstall 181
Dynamic Parameter Manager
activating modifications 103

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actv</td>
<td>59</td>
</tr>
<tr>
<td>ALERTNV</td>
<td>61</td>
</tr>
<tr>
<td>ALOGACT</td>
<td>88</td>
</tr>
<tr>
<td>ALOGEV</td>
<td>88</td>
</tr>
<tr>
<td>AOPTION</td>
<td>81</td>
</tr>
<tr>
<td>AOREPLAY</td>
<td>88</td>
</tr>
<tr>
<td>APIAUTH</td>
<td>75</td>
</tr>
<tr>
<td>AUDIT</td>
<td>61</td>
</tr>
<tr>
<td>AUDITMSG</td>
<td>75</td>
</tr>
<tr>
<td>AUDITRES</td>
<td>78</td>
</tr>
<tr>
<td>Changed</td>
<td>59</td>
</tr>
<tr>
<td>CICSECID</td>
<td>75</td>
</tr>
<tr>
<td>Created</td>
<td>59</td>
</tr>
<tr>
<td>Current</td>
<td>71</td>
</tr>
<tr>
<td>ELAPSLIM</td>
<td>75</td>
</tr>
<tr>
<td>EMLOG</td>
<td>78</td>
</tr>
<tr>
<td>EXABCNT</td>
<td>71</td>
</tr>
<tr>
<td>EXEC</td>
<td>75</td>
</tr>
<tr>
<td>EXHMC</td>
<td>78</td>
</tr>
<tr>
<td>HONORMPF</td>
<td>85</td>
</tr>
<tr>
<td>ID</td>
<td>59</td>
</tr>
<tr>
<td>IMFDATE</td>
<td>85</td>
</tr>
<tr>
<td>IMFJNUM</td>
<td>81</td>
</tr>
<tr>
<td>IMFORGN</td>
<td>90</td>
</tr>
<tr>
<td>IMSAUTH</td>
<td>90</td>
</tr>
<tr>
<td>IMSCMDCN</td>
<td>90</td>
</tr>
<tr>
<td>IMSMSTIM</td>
<td>90</td>
</tr>
<tr>
<td>IMSPLTIM</td>
<td>90</td>
</tr>
<tr>
<td>IMSROUTE</td>
<td>90</td>
</tr>
<tr>
<td>IMSSHTIM</td>
<td>90</td>
</tr>
<tr>
<td>Lib</td>
<td>59</td>
</tr>
<tr>
<td>MAXDLYQ</td>
<td>81</td>
</tr>
<tr>
<td>MAXHIGH</td>
<td>71</td>
</tr>
<tr>
<td>MAXHIGHQ</td>
<td>71</td>
</tr>
<tr>
<td>MAXHOTQ</td>
<td>71</td>
</tr>
<tr>
<td>MAXNORM</td>
<td>71</td>
</tr>
<tr>
<td>MAXNORMQ</td>
<td>71</td>
</tr>
<tr>
<td>MAXORSTG</td>
<td>87</td>
</tr>
<tr>
<td>MAXSTOR</td>
<td>61</td>
</tr>
<tr>
<td>MAXTPUT</td>
<td>71</td>
</tr>
<tr>
<td>Member</td>
<td>59, 71</td>
</tr>
<tr>
<td>MSGJOBNM</td>
<td>81</td>
</tr>
<tr>
<td>ORAPPL</td>
<td>87</td>
</tr>
<tr>
<td>OSPINUM</td>
<td>75</td>
</tr>
<tr>
<td>OSPIPRFX</td>
<td>75</td>
</tr>
<tr>
<td>PEREXLIM</td>
<td>75</td>
</tr>
<tr>
<td>PREFIX</td>
<td>75</td>
</tr>
<tr>
<td>PUBLISH</td>
<td>61</td>
</tr>
<tr>
<td>RESAUTH</td>
<td>75</td>
</tr>
<tr>
<td>RULEPROT</td>
<td>85</td>
</tr>
</tbody>
</table>
E

ELAPSLIM, AAOEXP00 parameter, modifying 75

E

ELAPSLIM, AAOEXP00 parameter, modifying 75
ALERTs Storage Thresholds panel 61
Automation Reporter Parms panel 65, 66
Dynamic Parameter Manager 59, 103
EXEC PARMS panel 71, 77
TapeSHARE parameters panel 98, 103
FREE
 AAOTSP00 parameter, modifying 98
FST2 QOFF transaction 265
FST2 QON transaction 265

G

GMEACT
 AAOGME00 parameter, modifying 287

H

Help
 online 15
high-priority EXECs, Dynamic Parameter Manager 77
HONORMPF
 AAOPRM00 parameter 295
 AAOPRM00 parameter, modifying 85
HOSTNAME
 AAOGME00 parameter, modifying 287
HST2 transaction (history display) 265

I

IAODEBUG 180
IBAOUE3 330
IBUNSTL member 182
IBUNINST member 185
ICOPY7 330
ICOPY8 330
ICOPY9 330
ICOPYAOI job 181
ID field, Dynamic Parameter Manager 59
IDEL41$2 171
identifying transactions 265
IELOAD 178
IMFDATE
 AAOPRM00 parameter, modifying 85
IMFEXEC CICS commands 162
IMFJNUM
 AAOPRM00 parameter, modifying 81
IMFORGN
 AAOPRM00 parameter, modifying 90
IMFSYS00 177
IMSAUTH
 AAOPRM00 parameter, modifying 90
IMSCMDCN
 AAOPRM00 parameter, modifying 90
IMSID 247
IMSMSTIM
 AAOPRM00 parameter 295
 AAOPRM00 parameter, modifying 90
IMSPLITM
 AAOPRM00 parameter 295
 AAOPRM00 parameter, modifying 90
IMSROUTE
 AAOPRM00 parameter 295
 AAOPRM00 parameter, modifying 90
IMSSHTIM
 AAOPRM00 parameter, modifying 90
IMSSTART 325
IMSTERM 325
independent IMFEXEC CICS commands 162
initialization exit 177
install, dynamic 181
installation
dynamic 181
INTERVAL
 AAOARP00 parameter, modifying 66
INTRA, CAODTAB macro, parameter 168
intrapartition transient data queue destinations, selecting 167
IRHIST, AAOARP00 parameter, modifying 66

J

JCL
dynamic install 182
dynamic uninstall 185
JCL samples 330
JES, start after AutoOPERATOR 240
JES2 job numbers, displaying 240
JES2MAO, BBSAMP data set 240, 325
JES3 support 213
JNL2 transaction (subsystem status) 265

L

LAST SEG LOST 179
Last Update field, Dynamic Parameter Manager 103

MainView AutoOPERATOR Customization Guide
Lib field, Dynamic Parameter Manager 59
LINKNUC 330
loop detection, AutoOPERATOR EXECs 237

M
manual start 265
manual stop 265
MAXDLYQ
AAOPRM00 parameter, modifying 81
MAXHIGH
AAOEXP00 parameter, modifying 71, 238
MAXHIGHQ
AAOEXP00 parameter, modifying 71
MAXHOTQ
AAOEXP00 parameter, modifying 71
MAXNORM
AAOEXP00 parameter, modifying 71, 238
MAXNORMQ
AAOEXP00 parameter, modifying 71
MAXORSTG
AAOPRM00 parameter 295
AAOPRM00 parameter, modifying 87
MAXSTOR 277
AAOALS00 parameter, modifying 61
MAXTPUT
AAOEXP00 parameter, modifying 71
MCTSIZE=xxxx, specifying 239
Member field, Dynamic Parameter Manager 59, 71
message counter table, defining 239
messages
migrating
version 6.5 to 7.1 42
version 7.3 to 7.4 26
migrating
modifying ALERTs thresholds, Dynamic Parameter Manager 60, 61
modifying Automation Reporter parameters, Dynamic Parameter Manager 65, 66
modifying EXEC parameters, Dynamic Parameter Manager 68, 77
modifying TapeSHARE parameters, Dynamic Parameter Manager 97, 103
MPFFILTR
AAOPRM00 parameter 295
MPFFLTR parameter
implementing 124
MQEV

7.4
BBKEYS 32
version 6.5 to 7.1
BBKEYS 49
commands 41
common storage 47
CPU usage 47
DDNAMEs 40
documentation changes 47
downward compatibility 48
EXECs 36, 38
messages 42
other changes 46
parameter values 40
parameters 36
PTFs 47
Rules 36
security 47
variables 39
version 7.2 to 7.3
Rules 37
version 7.3 to 7.4
commands 25
common storage 30
CPU usage 30
DDNAMEs 23
documentation changes 29
downward compatibility 30
EXECs 18, 20
messages 26
other changes 28
parameter values 23
parameters 18
PTFs 29
Rules 18, 19
security 30
variables 22

Index 351
AAOPRM00 parameter 95, 295
MQEVLPRC
AAOPRM00 parameter 95, 295
MQGINHIB
AAOPRM00 parameter 95, 295
MQNSHARE
AAOPRM00 parameter 95, 295
MSGJOBNM
AAOPRM00 parameter, modifying 81
MSGLVLI keyword
BOTH 174
MTO (IMS master terminal) 174
NONE 174
WTO (OS/390 system console) 174
MTO message capture 177
MVE_LINK
AAOGME00 parameter, modifying 287
MVS console See consoles, subsytem, X-MCS 109
MVS subsystem consoles See consoles, subsytem, X-MCS 109

N
NAICMDS 325
NAINIT 325
NAIOPT00
description 325
DSIPARM member, OPERxx statements 189
NAIPROF 325
NAISTUB, AutoOPERATOR Access NV, executing 193
NAISVAR 325
NAITASK 325
NetView
DSICLD data set
NAINIT 192
NAINITX 192
NAISVAR 192
JCL, modifying 189
NETVIEW parameter, AutoOPERATOR Access NV, BBISSP00 197
NEW DSN
AAOARP00 parameter, modifying 66
NOGIVE
AAOTSP00 parameter, modifying 98
NOTAKE
AAOTSP00 parameter, modifying 98

O
OFF INT
AAOARP00 parameter, modifying 66
online Help 15
Open System Procedural Interface (OSPI)
ACB pool 143–145
accessing VTAM applications 143
defining virtual terminals 143
IMFEXEC LOGON 143
naming conventions 144
OSPINUM 145
OSPIPRFX 144
terminal definitions 333
terminal macros 334
OPID= 255
OR
AAOPRM00 parameter 87, 295
ORAPPL
AAOPRM00 parameter, modifying 87
ORDESC
AAOPRM00 parameter 87, 295
OREXC
AAOPRM00 parameter 87, 295
origin 247
ORROUT
AAOPRM00 parameter 87, 295
OSPI
See Open System Procedural Interface (OSPI) 143
OSPINUM
AAOEXP00 parameter, modifying 75
OSPIPRFX
AAOEXP00 parameter, modifying 75
other changes
migrating
version 6.5 to 7.1 46
version 7.3 to 7.4 28

P
parameters
BBPARM 273
migrating
version 6.5 to 7.1 36, 40
version 7.3 to 7.4 18, 23
PARTNER
AAOTSP00 parameter, modifying 98
PEREXLIM
 AAOEXP00 parameter, modifying 75, 237
performance considerations, CSM 217
PM0229W warning message, BBI-SS PAS startup 240
PREF
 AAOTSP00 parameter, modifying 98
PREFDEV
 AAOTSP00 parameter, modifying 98
PREFIX
 AAOEXP00 parameter, modifying 75
processing program table (PPT)
 modifying 151
 use of 265
product
 installation 181
PROFILE pool, expanding data set 331
program control table (PCT), use of 151, 265
program list table (PLT) 151
PTFs
 migrating
 version 6.5 to 7.1 47
 version 7.3 to 7.4 29
publications, related 15
PUBLISH
 AAOALS00 parameter, modifying 61

Q
QALIAS
 AAOPRM00 parameter 95, 295
QAOCTMCO 325
QAOCTMNC 325

R
RACF security 150
recoverable temporary storage 263
related publications 15
Replaced by field, Dynamic Parameter Manager 103
RESAUTH
 AAOEXP00 parameter, modifying 75
reset, CMRSECU table 249
RESLIB 330
RETRYCNT
 AAOTSP00 parameter, modifying 98
REXX, support for EXECS 237
REXX/370 Alternate Library

BBREXALT 127
 implementing 127
SMP/E messages 128
Rule Set, CSM application, selecting 217
RULEPROT
 AAOPRM00 parameter 295
 AAOPRM00 parameter, modifying 85
rules processor authorization 257
Rules, migrating
 version 6.5 to 7.1 36
 version 7.2 to 7.3 37
 version 7.3 to 7.4 18, 19
RULESAVE
 AAOPRM00 parameter 295
 AAOPRM00 parameter, modifying 85
RULESCAN
 AAOPRM00 parameter 295
 AAOPRM00 parameter, modifying 85
RULESET
 AAOPRM00 parameter 295
 AAOPRM00 parameter, modifying 85
RULESET parameter 85, 295
RVARTST 325

S
sample JCL 330
sample members
setting Automation Reporter thresholds, Dynamic Parameter Manager 65, 66
setting EXEC parameters, Dynamic Parameter Manager 74, 77, 78
setting EXEC thresholds, Dynamic Parameter Manager 70, 71
setting high-priority EXECS, Dynamic Parameter Manager 77
setting TapeSHARE thresholds, Dynamic Parameter Manager 97, 103
Size field, Dynamic Parameter Manager 59
SMN2 transaction, manual start 265
SPLXPRF
 AAOPRM00 parameter, modifying 81
SPLXSTR
 AAOPRM00 parameter, modifying 81
SPLXVARS
 AAOPRM00 parameter, modifying 81
SSJCL, CSMALTDB parameter, setting 218
storage thresholds, ALERTs, Dynamic Parameter Manager 61
SUB=MSTR, SSJCL command 240
subsystem consoles
 allocating 109
 CSM application 111
subsystem status 265
SUBXAUTH
 AAOEXP00 parameter, modifying 75
SUPREPLY
 AAOPRM00 parameter 295
 AAOPRM00 parameter, modifying 81
SUPREPLY parameter 295
SYS1.HASPSRC, JES2 offsets 240
sysplex variables
 BBPARM member AAOPRMxx 134
 coupling facility 135, 136, 141
 enabling support 133
 specifying default prefix 134
SYSPROG
 security exit 245

T
TapeSHARE parameters
Dynamic Parameter Manager 97
implementing 113, 115
activating 116
password keys 115
prerequisite 115
securing 116
TapeSHARE, AAOTSP00, BBPARM member 315
TARGET 247
TCP/IP connection
 establishing for BMC Impact Manager 200
 prerequisites for BMC Impact Manager 200
temporary storage prefix
 CMRI prefix ZAP 263
 existing definition 263
Temporary Storage Table (TST)
 compatibility 150
 use of 263
terminal emulation, VTAM sessions, OSPI
 application 143
TGTBIMCF
 AAOGME00 parameter, modifying 287
TGTHB
 AAOGME00 parameter, modifying 287
TGTP
 AAOGME00 parameter, modifying 287
TGTMXMSL
 AAOGME00 parameter, modifying 287
TGTNAME
 AAOGME00 parameter, modifying 287
TGTRTC
 AAOGME00 parameter, modifying 287
TGTRTI
 AAOGME00 parameter, modifying 287
TIMEXLIM
 AAOEXP00 parameter, modifying 75, 237
TRACE
 AAOOTSP00 parameter, modifying 98
TRACEAPP
 AAOGME00 parameter, modifying 287
TRACEBUF
 AAOGME00 parameter, modifying 287
TRACEGME
 AAOGME00 parameter, modifying 287
TRACELK
 AAOGME00 parameter, modifying 287
TRACESEC
 AAOGME00 parameter, modifying 287
TRACEZN
 AAOGME00 parameter, modifying 287
description 265
FCD2 265
FIC2 265
FST2 QOFF 265
FST2 QONN 265
HST2 265
JNL2 265
required ZAPs for changed IDs 265
SMN2 265
TRANSEC parameter 150
TSOTIME
 AAOEXP00 parameter, modifying 75
TST 263
TTABJCL 325
type-1 and type-2 AO exit routines 177

U
UCPARMS
 AAOEXP00 parameter, modifying 75
UCVARS
 AAOPRM00 parameter, modifying 81
uninstall, dynamic 181
unique message total, modifying 239
UNITNAME
 AAOEXP00 parameter, modifying 75
user AO exit
 DFSAOUE0 177
 DFSAOUE1 177
User field, Dynamic Parameter Manager 103
USERID 247

V
variables, migrating
 version 6.5 to 7.1 39
 version 7.3 to 7.4 22
variables, sysplex
 coupling facility 135
 coupling facility, hardware requirements 136
 coupling facility, rebuilding 137
 coupling facility, sizing 138
 coupling facility, structure definition 139
 enabling support 133
 specifying default prefix 134
VTAM sessions, accessing, OSPI application 143
VV.MM field, Dynamic Parameter Manager 59
W

WARNLVL1
 AAOALS00 parameter, modifying 61
 AAOEXP00 parameter, modifying 71

WARNLVL2
 AAOALS00 parameter, modifying 61
 AAOEXP00 parameter, modifying 71

X

XTLOAD utility 331

Z

ZAP, CMRI temporary storage prefix 263
ZAPs for changed transaction IDs 265