Xen systems - metrics

<table>
<thead>
<tr>
<th>vis Schema table</th>
<th>vis Schema table field</th>
<th>TrueSight Capacity Optimization dataset</th>
<th>TrueSight Capacity Optimization metric</th>
<th>Open source Xen host</th>
<th>Open source Xen domain</th>
<th>Citrix XenServer host</th>
<th>Citrix XenServer domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAXPSYS</td>
<td>SERIAL_NUMBER</td>
<td>[1] SYSCNF</td>
<td>HOST_ID</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>A serial number is a unique number assigned by a manufacturer for identifying a physical element (e.g. system, baseboard or processor) which varies from its successor or predecessor by a fixed value.</td>
</tr>
<tr>
<td>CAXPSYS</td>
<td>DESCRIPTION</td>
<td>[1] SYSCNF</td>
<td>DESCRIPTION</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Generally, the description field is used by the data provider to include additional detail about the system being managed for reporting, collaboration and in some cases categorization.</td>
</tr>
<tr>
<td>CAXPSYS</td>
<td>OPERATING_SYSTEM_NAME</td>
<td>[1] SYSCNF</td>
<td>OS_TYPE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The name of the operating system running on the physical system. It applies to physical system directly hosting operating system only.</td>
</tr>
<tr>
<td>CAXPSYS</td>
<td>OPERATING_SYSTEM_VERSION</td>
<td>[1] SYSCNF</td>
<td>OS_VER</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The specific version of the operating system running on the physical system. For the hosts of a hypervisor (full and para virtualization solutions), it specifies the hypervisor version.</td>
</tr>
<tr>
<td>CAXPSYS</td>
<td>ALIAS</td>
<td>[1] SYSCNF</td>
<td>ALIAS_NAME</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The alias name for the physical host.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>PHYSICAL_PROCESSORS</td>
<td>[1] SYSCNF</td>
<td>CPU_NUM</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The number of physical processors on the system.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>PHYSICAL_PROCESSORS Москов счет</td>
<td>[1] SYSCNF</td>
<td>CPU_TOTAL_MHZ</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The total frequency of CPU (the sum of each physical CPU core)</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>LOGICAL_PROCESSORS</td>
<td>[1] SYSCNF</td>
<td>LCPU_NUM</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The number of logical processors on the system.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>SYSTEM_UPTIME</td>
<td>[95] SYSVIRGLB</td>
<td>UPTIME_PCT</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>The system uptime is a measure of the time a computer system has been "up" and running</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>CPU_USED/LOGICAL_PROCESSORS</td>
<td>[2] SYSGLB</td>
<td>CPU_UTIL</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>the total processor time used by each logical processor, normalized by the number of logical processors.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>(CPU_USED/MODELS.THREADS_PER_CORE) * MODELS.MAX_CLOCK_RATE</td>
<td>[2] SYSGLB</td>
<td>CPU_UTILMHZ</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>a measure of the total processor time used by each processor in unit of MHZ</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>(CPU_USED/MODELS.THREADS_PER_CORE) * MODELS.RATING/MODELS.MAX_PROCESSORS</td>
<td>[2] SYSGLB</td>
<td>CPU_UTILSPEC</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>a measure of the total processor time used by each processor based on SPEC rating</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>IO_RATE</td>
<td>[2] SYSGLB</td>
<td>DISK_TRANSFER_RATE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>This metric captures the total disk IO rate for the system. In order to obtain the average IO rate per disk, the presentation layer can normalize the disk IO rate by the number of configured disks.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>DISKS</td>
<td>[1] SYSCNF</td>
<td>DISK_NUM</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>This metric captures the total number of disks configured for the physical system.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>DISK_CONFIG</td>
<td>[1] SYSCNF</td>
<td>TOTAL_FS_SIZE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>This metric captures the total file system size for the system. Available for systems with Host_Type IND, ZONE, WPAR, ESX, HPIVM</td>
</tr>
<tr>
<td>vis Schema table</td>
<td>vis Schema table field</td>
<td>TrueSight Capacity Optimization dataset</td>
<td>TrueSight Capacity Optimization metric</td>
<td>Open source Xen host</td>
<td>Open source Xen domain</td>
<td>Citrix XenServer host</td>
<td>Citrix XenServer domain</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>DISK_USED</td>
<td>[2] SYSGLB</td>
<td>TOTAL_FS_USED</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>This metric captures the total amount of file systems in use for the system. Available for systems with Host_Type IND, ZONE, WPAR, ESX, HPVM.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>DISK_USED/DISK_CONFIG</td>
<td>[2] SYSGLB</td>
<td>TOTAL_FS_UTIL</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The utilization of total file systems. This metric captures the percentage of file systems in use for the system. Available for systems with Host_Type IND, ZONE, WPAR, ESX, HPVM.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>NETWORK_RATE</td>
<td>[2] SYSGLB</td>
<td>NET_BIT_RATE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>This metric captures the overall network activity for the system based on number of bytes sent and received from its network interface cards. The average network rate can be obtained by normalizing the network rate by the number of configured network interfaces.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>TOTAL_MEMORY</td>
<td>[1] SYSCNF</td>
<td>TOTAL_REAL_MEM</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>This metric captures the total amount of physical memory installed for the system.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>MEMORY_IN_USE</td>
<td>[2] SYSGLB</td>
<td>MEM_USED</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>This metric captures the total amount of physical memory in use on the system.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>MEMORY_IN_USE/TOTAL_MEMORY</td>
<td>[2] SYSGLB</td>
<td>MEM_UTIL</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>This metric captures the total amount of physical memory not in use on the system.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>TOTAL_MEMORY/MEMORY_INUSES</td>
<td>[2] SYSGLB</td>
<td>MEM_FREE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>This metric identifies the amount of virtual memory that is not occupied (free to use).</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>CONFIGURED_VMS</td>
<td>[95] SYSVIRGLB</td>
<td>GM_NUM</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Number of virtual machine configured to run on the virtualized host.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>ACTIVE_VMS</td>
<td>[95] SYSVIRGLB</td>
<td>GM_ON_NUM</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Number of virtual machines that are powered on and running on the host.</td>
</tr>
<tr>
<td>CAXPSYSD</td>
<td>TIMEZONE</td>
<td>[1] SYSCNF</td>
<td>TIMEZONE_BD</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>String representing the timezone international code for the business driver.</td>
</tr>
<tr>
<td>CAXAGENT</td>
<td>Collector_Version</td>
<td>(113)AGENT</td>
<td>AGENT_PACKAGE_VERSION</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The Agent package version with service pack number, cumulative patch level and cumulative hotfix level like 10.SP1.CP1.CHF1.</td>
</tr>
<tr>
<td>CAXAGENT</td>
<td>Collector_Bld_Date</td>
<td>(113)AGENT</td>
<td>AGENT_PACKAGE_BUILD_DATE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Agent package build date.</td>
</tr>
<tr>
<td>CAXAGENT</td>
<td>Collector_Bld_Date</td>
<td>(113)AGENT</td>
<td>AGENT_PACKAGE_INSTALL_DATE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Agent package install date.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>SYSTEM_VENDOR</td>
<td>[1] SYSCNF</td>
<td>HW_VENDOR</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The name of the independent hardware vendor (IHV) that manufacturers or distributes the computer hardware model used to host the operating system.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>SYSTEM_DESCRIPTION</td>
<td>[1] SYSCNF</td>
<td>HW_DESCRIPTION</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The computer hardware description provides additional information that is sometimes needed to differentiate similar computer hardware models. This is most notable in hardware models running Solaris operating system.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>SYSTEM_MODEL</td>
<td>[1] SYSCNF</td>
<td>HW_MODEL</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The computer hardware model is the physical part of the computer. A computer hardware model consists of the following components: motherboard, power supply, storage controllers, removable media devices, internal storage and networking.</td>
</tr>
<tr>
<td>vis Schema table</td>
<td>vis Schema table field</td>
<td>TrueSight Capacity Optimization dataset</td>
<td>TrueSight Capacity Optimization metric</td>
<td>Open source Xen host</td>
<td>Open source Xen domain</td>
<td>Citrix XenServer host</td>
<td>Citrix XenServer domain</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>CPU_VENDOR</td>
<td>[1] SYSCNF</td>
<td>CPU_VENDOR</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The name of the company that either manufacturers or distributes the CPU processor (cores) for the computer hardware model used to host the operating system.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>CPU_MODEL</td>
<td>[1] SYSCNF</td>
<td>CPU_MODEL</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The central processing unit (CPU) model defines the processor or core that is used by the motherboard to execute instructions provided by the operating system and hosted applications.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>CPU_DESCRIPTION</td>
<td>[1] SYSCNF</td>
<td>CPU_DESCRIPTION</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The central processing unit (CPU) description provides additional information that is sometimes required to differentiate different CPU models. This is most notable in Windows operating systems running on Intel Xeon and Pentium IV processors.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>MAX_CLOCK_RATE</td>
<td>[1] SYSCNF</td>
<td>CPU_MHZ</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The clock rate is the fundamental rate in cycles per second (measured in hertz) at which a CPU performs its most basic operations.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>MAX_PROCESSORS</td>
<td>[95] SYSVIRGLB</td>
<td>CPU_MAX_PROCESSORS</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The maximum number of physical processors configured for the computer hardware model.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>THREADS_PER_CORE</td>
<td>[1] SYSCNF</td>
<td>CPU_THREADS_PER_CORE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The thread per core field is used with the multi-threading hardware type to identify hardware systems with simultaneous multi-threading technology.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>MTHREADINGTYPE</td>
<td>[1] SYSCNF</td>
<td>CPU_MT_TYPE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The multi-threading hardware type field is used with the thread per core to identify hardware systems with simultaneous multi-threading technology.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>RATING</td>
<td>[33] SYSGEN</td>
<td>BYBENCHMARK_VALUE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The performance rating is the reported benchmark result reported for the benchmark rating system.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>RATING_SOURCE</td>
<td>[33] SYSGEN</td>
<td>BYBENCHMARK_SOURCE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The performance rating source field identifies which hardware table was used to obtain the performance rating. The possible options include the default hardware table, which provides hardware vendor published numbers, and user hardware table, which usually provides BMC estimated numbers or vendor numbers that are not published.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>RATING_COMP_TYPE</td>
<td>[33] SYSGEN</td>
<td>BYBENCHMARK_COMP</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The performance rating computation type is used to differentiate when a benchmark result has been reported and when it has been converted.</td>
</tr>
<tr>
<td>CAXMODEL</td>
<td>RATING_BUILD_DATE</td>
<td>[33] SYSGEN</td>
<td>BYBENCHMARK_DATE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>The hardware table build date field is used to identify which hardware table was used to provide the benchmark results that are reported in the database.</td>
</tr>
<tr>
<td>CAXVM</td>
<td>MAC_ADDRESS</td>
<td>[1] SYSCNF</td>
<td>NET_MAC_ADDRESS</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The MAC address that identifies the guest operating system.</td>
</tr>
<tr>
<td>CAXVM</td>
<td>OPERATING_SYSTEM_NAME</td>
<td>[1] SYSCNF</td>
<td>OS_TYPE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The name of the guest operating system running on the virtual machine.</td>
</tr>
<tr>
<td>CAXVM</td>
<td>PARTITION_NAME</td>
<td>[1] SYSCNF</td>
<td>PARTITION_NAME</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The name of the guest machine.</td>
</tr>
<tr>
<td>CAXVM</td>
<td>NODE_NAME</td>
<td>[1] SYSCNF</td>
<td>HOST_NAME</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The host name that is identified by the guest operating system running on the virtual machine.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>VIRTUAL_PROCESSOR_S</td>
<td>[1] SYSCNF</td>
<td>CPU_NUM</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The number of virtual processors configured for the virtual machine. Basically, this is the number of processors that the guest operating system sees.</td>
</tr>
<tr>
<td>vis Schema table</td>
<td>vis Schema table field</td>
<td>TrueSight Capacity Optimization dataset</td>
<td>TrueSight Capacity Optimization metric</td>
<td>Open source Xen host</td>
<td>Open source Xen domain</td>
<td>Citrix XenServer host</td>
<td>Citrix XenServer domain</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>LOGICAL_PROCESSORS</td>
<td>[1] SYSCNF</td>
<td>LPCPU_NUM</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The number of logical processors configured for the virtual machine. The number of logical processors will be the number of virtual processors multiplied by the multi-threading factor. If multi-threading is not enabled, this field would be same as the field of VPROC.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>CPU_SHARES</td>
<td>[95] SYSVIRGLB</td>
<td>CPU_SHARES</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The CPU shares configured for the virtual machine. The relative CPU shares among all busy virtual machines on the same physical system or within the same resource pool determines the proportion of CPU time that is guaranteed to the virtual machine.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>CPU_LIMIT</td>
<td>[95] SYSVIRGLB</td>
<td>CPU_LIMIT_MHZ</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>The maximum processing power assigned to the virtual machine in MHz.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>CPU_USED/VIRTUAL_PROCESSORS</td>
<td>[2] SYSGLB</td>
<td>CPU_UTIL</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The average processor time used by the virtual machine by each CPU processor, normalized by CPU processor.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>(CPU_USED/MODELS_THREADS_PER_CORE)*MODELS.MAX_CLOCK_RATE</td>
<td>[2] SYSGLB</td>
<td>CPU_UTILMHZ</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>a measure of the total processor time used by each processor in unit of MHz</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>(CPU_USED/MODELS_THREADS_PER_CORE)*MODELS.RATING/MODELS.MAX_PROCESSORS</td>
<td>[2] SYSGLB</td>
<td>CPU_UTILSPEC</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>a measure of the total processor time used by each processor based on SPEC rating. Computed based on SPEC rating associated to system.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>TOTAL_IO_RATE</td>
<td>[2] SYSGLB</td>
<td>DISK_TRANSFER_RATE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The number of data read and written in the interval, summarized across all the disks used by the virtual machine.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>DISKS</td>
<td>[1] SYSCNF</td>
<td>DISK_NUM</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The I/O performed by the virtual machine that reads from or writes to the paging (swap) devices.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>NETWORK_RATE</td>
<td>[2] SYSGLB</td>
<td>NET_BIT_RATE</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>The network I/O performed by the virtual machine.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>NETWORK_INTERFACES</td>
<td>[1] SYSCNF</td>
<td>NETIF_NUM</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The number of network interfaces configured for the virtual machine.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>TOTAL_MEMORY</td>
<td>[1] SYSCNF</td>
<td>TOTAL_REAL_MEM</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The total memory size configured for the virtual machine.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>MEMORY_IN_USE</td>
<td>[2] SYSGLB</td>
<td>MEM_CONSUMED</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The memory used or consumed by the virtual machine.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>MEMORY_IN_USE/TOTAL_MEMORY</td>
<td>[2] SYSGLB</td>
<td>MEM_USED</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>the percentage of memory used or consumed by the virtual machine.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>TOTAL_MEMORY-MEMORY_IN_USE</td>
<td>[2] SYSGLB</td>
<td>MEM_FREE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The memory not used or consumed by the virtual machine.</td>
</tr>
<tr>
<td>CAXVMD</td>
<td>POWER_STATUS</td>
<td>[95] SYSVIRGLB</td>
<td>VM_LAST_STATUS</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Indicates if the machine is powered On or Off during the measured interval.</td>
</tr>
<tr>
<td>vis Schema table</td>
<td>vis Schema table field</td>
<td>TrueSight Capacity Optimization dataset</td>
<td>TrueSight Capacity Optimization metric</td>
<td>Open source Xen host</td>
<td>Open source Xen domain</td>
<td>Citrix XenServer host</td>
<td>Citrix XenServer domain</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
<td>---------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>CAXVMD (CPUUT_Highmark_LO WMODELS.THREADS_PER_CORE)* MODELS.MAX_CLOCK_RATE</td>
<td>[2] SYSGLB</td>
<td>CPU_UTILMHZ_HM (min)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
<td>The 75th percentile value of CPU utilization (expressed in MHz) calculated by using granular samples that the capacity agent collects. This metric is available only when you install Capacity Agents 11.3 or later.</td>
</tr>
<tr>
<td>CAXVMD (CPUUT_Highmark_ME DIUMMODELS.THREADS_PER_CORE)* MODELS.MAX_CLOCK_RATE</td>
<td>[2] SYSGLB</td>
<td>CPU_UTILMHZ_HM (avg)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
<td>The 90th percentile value of CPU utilization (expressed in MHz) calculated by using granular samples that the capacity agent collects. This metric is available only when you install Capacity Agents 11.3 or later.</td>
</tr>
<tr>
<td>CAXVMD (CPUUT_Highmark_HI GMODELS.THREADS_PER_CORE)* MODELS.MAX_CLOCK_RATE</td>
<td>[2] SYSGLB</td>
<td>CPU_UTILMHZ_HM (max)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
<td>The 95th percentile value of CPU utilization (expressed in MHz) calculated by using granular samples that the capacity agent collects. This metric is available only when you install Capacity Agents 11.3 or later.</td>
</tr>
<tr>
<td>CAXHSTDD</td>
<td>READS</td>
<td>[4] SYSDSK</td>
<td>BYDISK_READ_RATE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>This metric identifies the average rate that the data is read in from the disk within the interval.</td>
</tr>
<tr>
<td>CAXHSTDD</td>
<td>WRITES</td>
<td>[4] SYSDSK</td>
<td>BYDISK_WRITE_RATE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>This metric identifies the average rate that the data is written out to the disk within the interval.</td>
</tr>
<tr>
<td>CAXPARDD</td>
<td>READS</td>
<td>[4] SYSDSK</td>
<td>BYDISK_READ_RATE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>This metric identifies the average rate that the data is read in from the disk on behalf of the virtual machine within the interval.</td>
</tr>
<tr>
<td>CAXPARDD</td>
<td>WRITES</td>
<td>[4] SYSDSK</td>
<td>BYDISK_WRITE_RATE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>This metric identifies the average rate that the data is written out to the disk on behalf of the virtual machine within the interval.</td>
</tr>
<tr>
<td>CAXNODED</td>
<td>TIMEZONE</td>
<td>[1] SYSCNF</td>
<td>TIMEZONE</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>String representing the timezone international code for the system.</td>
</tr>
<tr>
<td>CAXWKLD</td>
<td>ETRAN</td>
<td>[132] PROCDETT RAN</td>
<td>BYWTRAN_ALIVE_PROC</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The throughput of the transaction. It represents the total number of transactions completed in an hour.</td>
</tr>
<tr>
<td>CAXWKLD</td>
<td>WCPUUT</td>
<td>[132] PROCDETT RAN</td>
<td>BYWTRAN_CPU_UTIL</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The CPU utilization of the transaction.</td>
</tr>
<tr>
<td>CAXWKLD</td>
<td>WPGRIT</td>
<td>[132] PROCDETT RAN</td>
<td>BYWTRAN_DISK_PAGING_IO_RATE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The paging I/O rate of the transaction. The unit of the metric is pages/second, where the page size here is normalized to 4 KB regardless of the actual hardware or OS page size.</td>
</tr>
<tr>
<td>CAXWKLD</td>
<td>BYTE_RATE</td>
<td>[132] PROCDETT RAN</td>
<td>BYWTRAN_DISK_TRANSFER_RATE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The network byte rate of the transaction.</td>
</tr>
<tr>
<td>CAXWKLD</td>
<td>PRIVACTM</td>
<td>[132] PROCDETT RAN</td>
<td>BYWTRAN_MEM_PRIVATE_ACTIVE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The actively used private memory pages of the transaction. The page size is normalized to 4 KB regardless of hardware or OS native page size.</td>
</tr>
<tr>
<td>CAXWKLD</td>
<td>PRIVINTM</td>
<td>[132] PROCDETT RAN</td>
<td>BYWTRAN_MEM_PRIVATE_INACTIVE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The inactive private memory pages of the transaction. The page size is normalized to 4 KB regardless of hardware or OS native page size.</td>
</tr>
<tr>
<td>vis Schema table</td>
<td>vis Schema table field</td>
<td>TrueSight Capacity Optimization dataset</td>
<td>TrueSight Capacity Optimization metric</td>
<td>Open source Xen host</td>
<td>Open source Xen domain</td>
<td>Citrix XenServer host</td>
<td>Citrix XenServer domain</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>CAXWKLDD</td>
<td>SHARACTM</td>
<td>[132]PROCDETT RAN</td>
<td>BYWTRAN_MEM_SHARED_ACTIVE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The actively used shared memory pages of the transaction. The page size is normalized to 4 KB regardless of hardware or OS native page size.</td>
</tr>
<tr>
<td>CAXWKLDD</td>
<td>SHARINTM</td>
<td>[132]PROCDETT RAN</td>
<td>BYWTRAN_MEM_SHARED_INACTIVE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The inactive shared memory pages of the transaction. The page size is normalized to 4 KB regardless of hardware or OS native page size.</td>
</tr>
<tr>
<td>CAXWKLDD</td>
<td>IOACT</td>
<td>[132]PROCDETT RAN</td>
<td>BYWTRAN_NET_BIT_RATE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The rate of total I/O issued from the transaction. The unit of the metric is pages/second, where the page size is normalized to 4 KB regardless of the actual hardware or OS page size.</td>
</tr>
<tr>
<td>CAXWKLDD</td>
<td>WRESPTIM</td>
<td>[132]PROCDETT RAN</td>
<td>BYWTRAN_RESPONSE_TIME</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The average response time of the transaction. This metric is populated by Predict only.</td>
</tr>
<tr>
<td>CAXWKLDD</td>
<td>RESIPROC</td>
<td>[132]PROCDETT RAN</td>
<td>BYWTRAN_TRANSACTION_RATE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>The number of resident processes in the transaction. The resident processes are those reside in the memory all the time during the interval.</td>
</tr>
</tbody>
</table>