PACLOG for DB2 Reference Manual

Supporting
PACLOG for DB2 12.1.00
December 2016
Contacting BMC Software

Several methods are available for contacting BMC Software.

You can access the BMC Software website at http://www.bmc.com. From this website, you can obtain information about the company, its products, corporate offices, special events, and career opportunities.

United States and Canada

Address
BMC SOFTWARE INC
2103 CITYWEST BLVD
HOUSTON TX 77042-2827 USA

Telephone
1 713 918 8800
or
1 800 841 2031

Fax
1 713 918 8000

Outside United States and Canada

Telephone
+01 713 918 8800

Fax
+01 713 918 8000

Restricted rights legend

U.S. Government Restricted Rights to Computer Software. UNPUBLISHED—RIGHTS RESERVED UNDER THE COPYRIGHT LAWS OF THE UNITED STATES. Use, duplication, or disclosure of any data and computer software by the U.S. Government is subject to restrictions, as applicable, set forth in FAR Section 52.227-14, DFARS 252.227-7013, DFARS 252.227-7014, DFARS 252.227-7015, and DFARS 252.227-7025, as amended from time to time. Contractor/Manufacturer is BMC SOFTWARE INC, 2103 CITYWEST BLVD, HOUSTON TX 77042-2827, USA. Any contract notices should be sent to this address.
Customer support

Support website

You can obtain technical support from BMC 24 hours a day, 7 days a week at http://www.bmc.com/support. From this website, you can:

- Read overviews about support services and programs that BMC offers
- Find the most current information about BMC products
- Search a database for problems similar to yours and possible solutions
- Order or download product documentation
- Download products and maintenance
- Report a problem or ask a question
- Subscribe to receive proactive e-mail alerts
- Find worldwide BMC support center locations and contact information, including e-mail addresses, fax numbers, and telephone numbers

Support by telephone or e-mail

In the United States and Canada, if you need technical support and do not have access to the web, call 1 800 537 1813 or send an e-mail message to customer_support@bmc.com. (In the subject line, enter SupID:yourSupportContractID, such as SupID:12345). Outside the United States and Canada, contact your local support center for assistance.

Before contacting BMC

Have the following information available so that Customer Support can begin working on your issue immediately:

- Product information
 - Product name
 - Product version (release number)
 - License number and password (trial or permanent)
- Operating system and environment information
 - Machine type
 - Operating system type, version, and service pack or other maintenance level such as PUT or PTF
 - System hardware configuration
 - Serial numbers
 - Related software (database, application, and communication) including type, version, and service pack or maintenance level
- Sequence of events leading to the problem
- Commands and options that you used
- Messages received (and the time and date that you received them)
 - Product error messages
 - Messages from the operating system
 - Messages from related software
License key and password information

If you have questions about your license key or password, contact Customer Support through one of the following methods:

- Send an e-mail message to customer_support@bmc.com. (In the Subject line, enter SupID:yourSupportContractID, such as SupID:12345.)
- In the United States and Canada, call 1 800 537 1813. Outside the United States and Canada, contact your local support center for assistance.
Contents

About this book
- Related publications ... 9
- Conventions ... 10
- Syntax diagrams ... 10

Chapter 1 Overview of PACLOG
- DB2 archive log issues ... 13
- PACLOG solution .. 14
- Benefits of PACLOG functionality ... 15
- BMC Software archive history file ... 18
- How PACLOG works ... 18
- PACLOG in disaster recovery .. 20
- XCA subsystem control ... 21
- Restrictions ... 21

Chapter 2 Getting started with PACLOG
- For first-time users ... 23
 - Prerequisites and preferences .. 24
 - Software environment ... 24
 - PACLOG installation ... 24
 - PACLOG authorizations ... 25
 - DB2 environment settings .. 26
 - Recommended archive log processing practices 26
 - PACLOG and NGT Recover compatibility 27
 - Understanding PACLOG options ... 27
 - Deciding which logs to process .. 28
 - Deciding which copies to make and when 29
 - Choosing the output medium .. 30
 - Removing unwanted records and objects 30
 - Reprocessing a processed local site archive log 31
 - Compressing archive log records 32
 - Using PACLOG to simulate log processing 33
 - Using PACLOG to conserve disk space 34

Chapter 3 The PACLOG logging environment modeling tool
- Viewing and modeling logging environment statistics 36
<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>PACLOG syntax</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax rules</td>
<td>...</td>
<td>50</td>
</tr>
<tr>
<td>Syntax diagrams</td>
<td>...</td>
<td>50</td>
</tr>
<tr>
<td>Option descriptions</td>
<td>...</td>
<td>52</td>
</tr>
<tr>
<td>Archive copy specification</td>
<td>...</td>
<td>53</td>
</tr>
<tr>
<td>Global options</td>
<td>...</td>
<td>55</td>
</tr>
<tr>
<td>Device type options</td>
<td>...</td>
<td>58</td>
</tr>
<tr>
<td>Filter options</td>
<td>...</td>
<td>59</td>
</tr>
<tr>
<td>Tape options</td>
<td>...</td>
<td>60</td>
</tr>
<tr>
<td>Disk options</td>
<td>...</td>
<td>61</td>
</tr>
<tr>
<td>ZIIP option</td>
<td>...</td>
<td>62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Building and running PACLOG jobs</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building PACLOG jobs</td>
<td>...</td>
<td>65</td>
</tr>
<tr>
<td>JOB statement</td>
<td>...</td>
<td>65</td>
</tr>
<tr>
<td>EXEC statement</td>
<td>...</td>
<td>65</td>
</tr>
<tr>
<td>STEPLIB DD statement</td>
<td>...</td>
<td>66</td>
</tr>
<tr>
<td>Specifying the PACLOG data set DD statements</td>
<td>...</td>
<td>66</td>
</tr>
<tr>
<td>Sample jobs</td>
<td>...</td>
<td>68</td>
</tr>
<tr>
<td>Archive log management reports</td>
<td>...</td>
<td>72</td>
</tr>
<tr>
<td>Processed archive log data set report</td>
<td>...</td>
<td>73</td>
</tr>
<tr>
<td>Expired archive log data sets report</td>
<td>...</td>
<td>73</td>
</tr>
<tr>
<td>Using output from the reports</td>
<td>...</td>
<td>74</td>
</tr>
<tr>
<td>Running jobs and responding to processing errors</td>
<td>...</td>
<td>74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Examples of PACLOG JCL</th>
<th>77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determining archive log size reduction</td>
<td>...</td>
<td>77</td>
</tr>
<tr>
<td>Using data compression to tape</td>
<td>...</td>
<td>78</td>
</tr>
<tr>
<td>Processing archive logs</td>
<td>...</td>
<td>80</td>
</tr>
<tr>
<td>Limiting the archive logs that are processed</td>
<td>...</td>
<td>81</td>
</tr>
<tr>
<td>Creating offsite copies of archive logs</td>
<td>...</td>
<td>83</td>
</tr>
</tbody>
</table>
Printing the PACLOG history file .. 84
Uncompress archive log data sets ... 85
Create and initialize archive history data set .. 86

Chapter 7 XCA subsystem control 87
BMCP (primary subsystem) ... 88
BCSS (consolidated subsystem) ... 88
 Data set for BCSS commands .. 89
MVS command support ... 89
 Subsystem naming conventions .. 90
Address space dispatching priorities ... 90
Engine level mask ... 91
Subsystem commands ... 91
 BMCP commands ... 93
 BCSS commands ... 95
 XCA commands ... 98
PACLOG processing only (PPO) mode .. 99
 PPO commands ... 100

Appendix A PACLOG installation 103
About the installation system ... 103
Installing PACLOG on multiple DB2 subsystems 103
Integrating PACLOG with RECOVERY MANAGER for DB2 104
Sample ALM$OPTS file .. 104
PACLOG memory requirements .. 104
 BMC Software subsystems ... 105
 Non-VSAM compression component 105
PACLOG installation options ... 106

Appendix B Obtaining trace and maintenance information 109
Obtaining a trace for a batch job ... 109
Determining applied maintenance ... 109

Glossary 111
About this book

This book contains detailed information about the associated product or products. This preface explains the special conventions that the book uses, and how to access related publications.

If applicable, the preface also summarizes the major changes included in the latest release of the product.

Related publications

From the BMC Support Central website, you can use the following methods to access related publications that support your product or solution:

- Link to the BMC Documentation Center to browse documentation sets (http://www.bmc.com/available/documentation-center.html or, for secured documentation sets, http://www.bmc.com/available/documentation-center-secure.html).

- View Quick Course videos (short overviews of selected product concepts, tasks, or features), which are available from the following locations:
 — Documentation Center (primary center and secured center)
 — BMC Mainframe YouTube channel (https://www.youtube.com/user/BMCSoftwareMainframe)

- View individual product documents (books and notices) within the “A – Z Supported Product List” (https://webapps.bmc.com/support/faces/az/supportlisting.jsp).

Products with online interfaces also offer online Help via the F1 key or, for graphical user interfaces (GUIs), via a Help button.
If you prefer hardcopy documentation, you can order it from your BMC sales representative or from Support Central. Also, from Support Central you can subscribe to receive proactive e-mail alerts when BMC issues notices.

Conventions

This document uses the following special conventions:

- All syntax, operating system terms, and literal examples are presented in this typeface.

- Variable text in path names, system messages, or syntax is displayed in italic text: `testsystestsys/instance/fileNametestsys/instance/fileName`

- Menu sequences use a symbol to convey the sequence. For example, `Actions => Create Test` instructs you to choose the `Create Test` command from the `Actions` menu.

Syntax diagrams

The following figure shows the standard format for syntax diagrams:
The following example illustrates the syntax for a hypothetical DELETE statement. Because the FROM keyword, alias variable, and WHERE clause are optional, they appear below the main command line. In contrast, the tableName variable appears on the command line because the table name is required. If the statement includes a WHERE clause, the clause must contain a search condition or a CURRENT OF clause. (The searchCondition variable appears on the main line for the WHERE clause, indicating that this choice is required.)

The following guidelines provide additional information about syntax diagrams:

- Read diagrams from left to right and from top to bottom.
- A recursive (left-pointing) arrow above a stack indicates that you may choose more than one item in the stack.
- An underlined item is a default option.
- If a diagram shows punctuation marks, parentheses, or similar symbols, you must enter them as part of the syntax.
- In general, IBM commands, keywords, clauses, and data types are displayed in uppercase letters. However, if an item can be shortened, the minimum required portion might be shown in uppercase letters, with the remainder in lowercase (for example, CANcel).
- The following conventions apply to variables in syntax diagrams:
 - Variables are typically displayed in lowercase letters and are always italicized.
 - If a variable is represented by two or more words, initial capitals distinguish the second and subsequent words (for example, databaseName).
Overview of PACLOG

The BMC Software PACLOG product is a DB2 log management batch utility that provides substantial storage media savings while preserving the integrity of all archived log data that might be needed for recovery.

The product assists the database administrator (DBA) in determining what data is retained in archive log data sets and in choosing the archive log storage media. It also provides statistics useful in the management of archive log data sets.

DB2 archive log issues

Typically, DB2 installations create a large amount of log data. When a DB2 active log data set becomes full, DB2 automatically creates an archive log data set.

IBM recommends the creation of dual archive log data sets. Because of the cost and availability of the DASD space necessary to store the amount of archive log data that DB2 might generate, many DBAs choose tape as the medium for storing their DB2 archive log data sets, thus sacrificing the improved access for recovery and application backout provided by DASD. In large installations, DB2 may create hundreds of archive log data sets per week. Storing so many archive log data sets on tape can be costly because of the number of tapes required and the physical space required to store them.

Another issue regarding the DB2 archive log is that much of the data within the archive log data set is completely unnecessary for any DB2 forward recovery process. A considerable amount of log data recorded by DB2 is there only to allow any transaction backouts that may be required. After the data has been committed, up to 80 percent of the data recorded in the log is not needed by any DB2 forward recovery process. Also, some DB2 objects may exist within your environment that will never require a DB2 forward recovery involving access to log data. These objects can always be recovered in a recovery to a specified image copy or be re-created by batch processes. However, DB2 does not give you the option to omit logging of the information on such objects.

Data compression of the archive log data sets does allow you to reduce the storage media required to contain the log data. However, IBM recommends that hardware
data compression not be used when you store archive log data sets on tape due to the adverse effect on performance when you perform transaction backouts (in cases where archive log data is needed to perform the backout).

Even without data compression, when an application is terminated and archive log data residing on tape is required to allow DB2 to back out the application, the backout process can impose a heavy burden on DB2 resources. DBAs, therefore, must choose between the following two options for storing archive log data sets:

- Storing them on DASD, which allows faster backouts but is more costly
- Storing them uncompressed on tape, which is less expensive but provides slower access for backouts

In an attempt to compromise, many DBAs keep as much data as possible in the active logs, thus increasing the amount of DASD dedicated to DB2 log data.

PACLOG solution

The PACLOG utility provides solutions to DB2 archive log issues. The product provides impressive savings of archive log media along with a set of archive log management functions that include an interactive modeling tool that helps you optimize the number of active logs and their size.

PACLOG achieves media savings in the following ways:

- Replaces log data records not needed by any DB2 recovery process with easily compressible data
- Removes log data for user-specified DB2 objects
- Compresses the log data
- Allows reductions in the size of active log data sets stored on DASD if the archive log data sets reside on DASD instead of tape

PACLOG also offers the following functionality:

- Stores the processed primary and backup archive logs on different device types
- Provides statistical information about the logs and the bootstrap data set (BSDS)
- Provides recovery site primary and backup archive logs in addition to the archive logs that were created by DB2
Benefits of PACLOG functionality

The functionality provided by the PACLOG product offers substantial time and resource savings and performance benefits, as shown in the following table.

<table>
<thead>
<tr>
<th>Functionality and benefits</th>
<th>More information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time and resource savings</td>
<td></td>
</tr>
<tr>
<td>Reduction of up to 95 percent or more in the amount of media that is required to store archive log data</td>
<td>“Removing unwanted records and objects” on page 30</td>
</tr>
<tr>
<td>Because you have control over which types of records to retain and compress, you can considerably reduce the media space that is required to store archive logs.</td>
<td>“Compressing archive log records” on page 32</td>
</tr>
<tr>
<td>Potential reduction in the size and number of active logs with a corresponding reduction in the amount of DASD that is needed for them:</td>
<td></td>
</tr>
<tr>
<td>■ The ability to keep archive logs on DASD eliminates any need to keep large amounts of data in active logs.</td>
<td>“Using PACLOG to conserve disk space” on page 34</td>
</tr>
<tr>
<td>■ You can use the interactive PACLOG modeling tool to calculate the optimum size for your active logs.</td>
<td>“The PACLOG logging environment modeling tool” on page 35</td>
</tr>
<tr>
<td>Increase in the time period that is covered by a given amount of media that is used for log data</td>
<td>“Recommended archive log processing practices” on page 26</td>
</tr>
<tr>
<td>More jobs access the logs concurrently when you perform a recovery using the BMC Next Generation Technology Recover for DB2 for z/OS product as the recover utility.</td>
<td></td>
</tr>
<tr>
<td>Reduction in the time that is required to perform a recovery when the logs are on DASD instead of tape</td>
<td>None</td>
</tr>
<tr>
<td>Elimination of tape mounts for log access when the logs are on DASD instead of tape</td>
<td>None</td>
</tr>
<tr>
<td>Reduction in the time that is needed to transmit log data over a communications network</td>
<td>None</td>
</tr>
<tr>
<td>Notification when an archived log data set is no longer needed, thus releasing DASD and tape for other purposes</td>
<td>“Archive log management reports” on page 72</td>
</tr>
<tr>
<td>Assistance in disaster recovery</td>
<td>“PACLOG in disaster recovery” on page 20</td>
</tr>
<tr>
<td>You can make and catalog additional copies of processed archive log data sets specifically for recovery site use. You can also use PACLOG to restore these log data sets to disk at the recovery site.</td>
<td></td>
</tr>
<tr>
<td>Functionality and benefits</td>
<td>More information</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Trial processing of archive logs before disposing of the original log</td>
<td>“Using PACLOG to simulate log processing” on page 33</td>
</tr>
<tr>
<td>You can perform simulation runs without performing any actions on the original log.</td>
<td></td>
</tr>
</tbody>
</table>

Performance benefits

<table>
<thead>
<tr>
<th>Allows compression of processed archive log data sets:</th>
<th>“Compressing archive log records” on page 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ This feature reduces the amount of media required for archived logs and supports effective capacity planning.</td>
<td></td>
</tr>
<tr>
<td>■ PACLOG syntax provides separate compression options for disk and tape.</td>
<td></td>
</tr>
<tr>
<td>Allows for the removal of unwanted log records, which further reduces the amount of media required</td>
<td>“Removing unwanted records and objects” on page 30</td>
</tr>
<tr>
<td>PACLOG provides the option to remove log data that is:</td>
<td></td>
</tr>
<tr>
<td>■ Not required for recovery</td>
<td></td>
</tr>
<tr>
<td>■ For user-specified DB2 objects</td>
<td></td>
</tr>
<tr>
<td>You can specify multiple filter options separately for each copy of a processed log data set.</td>
<td></td>
</tr>
<tr>
<td>Searches for original archive log data sets (optionally, according to user-specified limits) and meets users’ needs for scheduling flexibility</td>
<td>“Deciding which logs to process” on page 28</td>
</tr>
<tr>
<td>PACLOG allows retrieval of original archive logs in different ways:</td>
<td></td>
</tr>
<tr>
<td>■ Over a specified number of the most recent hours</td>
<td></td>
</tr>
<tr>
<td>■ Over a specified relative byte address (RBA) range</td>
<td></td>
</tr>
<tr>
<td>■ For a specified number of the most recent original logs</td>
<td></td>
</tr>
<tr>
<td>■ Concurrently creates and processes up to four copies of the original unprocessed archive log data sets</td>
<td>“Deciding which copies to make and when” on page 29</td>
</tr>
<tr>
<td>■ Allows scheduling of log data set processing to match available resources to meets users’ needs for flexibility and efficiency</td>
<td></td>
</tr>
<tr>
<td>PACLOG options allow any mix of up to two local site copies and up to two offsite copies.</td>
<td></td>
</tr>
<tr>
<td>Functionality and benefits</td>
<td>More information</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>■ Allows table space pattern matching in table space specifications</td>
<td>“Removing unwanted records and objects” on page 30</td>
</tr>
<tr>
<td>■ Provides flexibility in customizing log data set processing to meet users’ needs</td>
<td></td>
</tr>
<tr>
<td>PACLOG syntax lets you use wildcards with the FILTERTS option.</td>
<td></td>
</tr>
<tr>
<td>Allows different output device types for each copy of the processed archive log data set</td>
<td>“Choosing the output medium” on page 30</td>
</tr>
<tr>
<td>PACLOG provides flexibility and efficiency and optimizes media usage by:</td>
<td></td>
</tr>
<tr>
<td>■ Writing processed copy 1 to disk</td>
<td></td>
</tr>
<tr>
<td>■ Allowing either tape or disk for each of the other copies</td>
<td></td>
</tr>
<tr>
<td>■ Allowing copies to be stacked to tape</td>
<td></td>
</tr>
<tr>
<td>While processing an archived log data set, gathers and reports information useful for log</td>
<td>“Archive log management reports” on page 72</td>
</tr>
<tr>
<td>management</td>
<td></td>
</tr>
<tr>
<td>This feature facilitates administrative decision making by providing management reports</td>
<td></td>
</tr>
<tr>
<td>that:</td>
<td></td>
</tr>
<tr>
<td>■ Report which archive log data sets were processed</td>
<td></td>
</tr>
<tr>
<td>■ List any archive log data sets that have expired</td>
<td></td>
</tr>
<tr>
<td>■ Provide filtered and unfiltered record statistics</td>
<td></td>
</tr>
<tr>
<td>Allows report output to be used by other tools</td>
<td>“Archive log management reports” on page 72</td>
</tr>
<tr>
<td>This feature facilitates integration with other technology by allowing customization of</td>
<td></td>
</tr>
<tr>
<td>the interface between PACLOG and your tool.</td>
<td></td>
</tr>
<tr>
<td>Allows reprocessing of previously processed log data sets</td>
<td>“Reprocessing a processed local site archive log” on page 31</td>
</tr>
<tr>
<td>This feature provides maximum media savings over a wide range of environments by allowing</td>
<td></td>
</tr>
<tr>
<td>(for example) reprocessing to remove previously uncommitted transactions.</td>
<td></td>
</tr>
<tr>
<td>Allows simulated processing of original archive log data sets</td>
<td>“Using PACLOG to simulate log processing” on page 33</td>
</tr>
<tr>
<td>You can create processed log data sets without taking any action against original log</td>
<td></td>
</tr>
<tr>
<td>data sets. This enables you to evaluate the PACLOG product without disrupting production</td>
<td></td>
</tr>
<tr>
<td>work. You have flexibility in simulation because PACLOG allows several levels of process</td>
<td></td>
</tr>
<tr>
<td>simulation.</td>
<td></td>
</tr>
<tr>
<td>Uses dynamic data set allocation for both original and processed log data sets</td>
<td>“Specifying the PACLOG data set DD statements” on page 66</td>
</tr>
<tr>
<td>Increase productivity by simplifying the generation of PACLOG JCL.</td>
<td></td>
</tr>
</tbody>
</table>
BMC Software archive history file

The BMC Software archive history file is a control file used by PACLOG to determine which archive logs to process. It is not intended for any direct use by the customer. The file is shared by the BMC Software RECOVERY MANAGER for DB2 product.

The archive history file contains an entry for each archive log recorded in the BSDS. It is automatically updated and backed up by PACLOG with each PACLOG operation. The backup file name is the same as the log file name except for the first character of the suffix, which is .H instead of .A. The archive history file is not required for recovery processing.

Normally, there is no need to recover the archive history file. If the file is damaged or lost, a new one can be created by running the ALMHIST job in the .SAMP data set. To avoid processing old logs after re-creating an archive history file, update the LIMIT STARTRBA syntax option (see “Global options” on page 55) to reflect which logs have already been processed. This process has no impact on the usability of logs previously processed by PACLOG.

Because the archive history file is not used during recovery, its use at the disaster recovery site is limited to the processing of new logs that have been created at the recovery site. If you need an archive history file for this purpose, create it by running the ALMHIST job and coding the LIMIT STARTRBA option to reflect the RBAs of logs that you expect to create at the recovery site.

How PACLOG works

In normal mode (nonsimulation mode), PACLOG examines the BSDS and the archive history file to identify the archive log data sets that have not yet been processed by PACLOG. It also reads the active log, performing a checkpoint analysis to identify committed data.

For each archive log data set so identified, PACLOG performs the following processing:
1. Copies the BSDS to the medium that is specified in the job input
2. Copies the archive log data set to the medium that is specified while performing the filtering that is specified in the job input
3. Replaces the original archive log with the processed log
4. Updates the archive history file and copies the replaced version to the medium that is specified in the job input

Figure 1 on page 19 illustrates normal mode processing.

To keep the original primary and backup archive logs intact and at the same time make additional (processed) copies, or to perform PACLOG trials, you can use PACLOG in simulation mode. In simulation mode, PACLOG examines the BSDS and BMC Software archive history file to identify the archive log data sets that have not yet been processed by PACLOG and then performs a series of tasks that is slightly different from normal mode.

For each archive log so identified, PACLOG performs the following processing:

1. Copies the BSDS to the medium that is specified in the job input
2. Copies the archive log data set to the medium that is specified while performing the filtering that is specified in the job input
3 Updates the archive history file if so specified in the job input

4 Copies an updated version of the archive history file to the medium that is specified in the job input

5 Deletes or retains all copies according to the job input specifications, as follows:
 - If deletion was specified, PACLOG deletes all copies created in this operation.
 - If retention was specified, PACLOG retains all copies created in this operation.

See “Global options” on page 55 for information about the syntax required to specify simulation and about how retained copies are named.

PACLOG in disaster recovery

When a disaster recovery is necessary, only local site data that has already been dispatched to the recovery site can be used in the recovery.

The point in time to which applications can be recovered is determined by the end point of the most recent local site archive log taken to the recovery site. Records of transactions occurring after the last archive log was created and prior to the failure exist only in the active log and cannot be recovered from the data taken to the recovery site.

PACLOG can contribute to disaster recovery contingency planning in the following areas:

- At the local site, PACLOG can make and catalog additional archive logs (copies 3 and 4) for use at the recovery site. Using PACLOG for this task allows you to filter and compress the logs before dispatching them to the recovery site.

 If you use RECOVERY MANAGER for DB2, consider using PACLOG to make processed offsite archive logs instead of using the RECOVERY MANAGER archive log copy program (ARMBARC) to make copies of the original (unprocessed) archive logs.

- At the recovery site, PACLOG can restore archive log copies 3 and 4 to disk.

 If you use RECOVERY MANAGER, this step can be automatically included in the disaster recovery JCL. If you do not use RECOVERY MANAGER, you must first restore the BSDS at the recovery site and then use the CHANGE LOG INVENTORY utility to modify it so that archive log copies 3 and 4 are renamed as copies 1 and 2.

Note

If archive log copies 3 and 4 are being compressed, then the PACLOG subsystem started tasks must be started at the recovery site when the system is started.
For detailed information about the role of archive logs in disaster recovery, see the chapter on disaster recovery in the RECOVERY MANAGER for DB2 User Guide.

XCA subsystem control

In routine PACLOG operations, the XCA compression subsystems do not require your direct intervention.

The choices you make during PACLOG installation provide the required defaults for your environment. However, in some circumstances, such as a system initial program load (IPL), you may need to perform shutdown and restart procedures for these subsystems.

For an overview and for information on specific subsystem control, see “XCA subsystem control” on page 87.

Restrictions

The following restrictions apply to PACLOG:

- All original archive log data sets that need to be processed by PACLOG must be cataloged. PACLOG does not process uncataloged archive log data sets.

- PACLOG always writes copy 1 of the processed archive log data set to disk. It does not write this copy to tape.

- PACLOG does not filter DB2 catalog and directory spaces information in the log.
Getting started with PACLOG

This chapter describes how to get started with PACLOG.

For first-time users

This chapter provides important information that you should be familiar with before using PACLOG for the first time.

Table 2 on page 23 outlines the key topics and the topics in this book that provide more details.

Table 2: Topics for first-time PACLOG users

<table>
<thead>
<tr>
<th>Topic</th>
<th>See topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites for using PACLOG:</td>
<td>■ “Software environment” on page 24</td>
</tr>
<tr>
<td>■ Required operating system and DB2 environment</td>
<td>■ “PACLOG installation” on page 24</td>
</tr>
<tr>
<td>■ Installation requirements</td>
<td>■ “PACLOG authorizations” on page 25</td>
</tr>
<tr>
<td>■ Appropriate authorizations</td>
<td></td>
</tr>
<tr>
<td>Preferred settings and practices</td>
<td>■ “DB2 environment settings” on page 26</td>
</tr>
<tr>
<td>■ Setting up the DB2 environment</td>
<td>■ “Recommended archive log processing practices” on page 26</td>
</tr>
<tr>
<td>■ Recommended processing practices for the archive log data set</td>
<td></td>
</tr>
<tr>
<td>Using the various PACLOG options for normal processing and for simulated processing</td>
<td>■ “Understanding PACLOG options” on page 27</td>
</tr>
<tr>
<td>■ Using PACLOG to simulate log processing</td>
<td>■ “Using PACLOG to simulate log processing” on page 33</td>
</tr>
</tbody>
</table>
Prerequisites and preferences

This topic provides information about items that require special consideration or action before you use PACLOG.

Software environment

The *minimum* software environment for using this release of PACLOG is as follows:

- OS/390 or z/OS
- DB2 version 7.1 or later
- ISPF version 3.1 or later

Archive log data sets processed by PACLOG can be used in a recovery by the NGT Recover product or DB2 RECOVER.

PACLOG installation

PACLOG is installed by using the BMC Software OS/390 and z/OS Installer.

Note

Before you install the product, review the section about installation considerations for PACLOG in the *Backup and Recovery Products for DB2 Installation Guide.*
The installation process does not require any modifications to DB2. However, it does require that you choose values for certain PACLOG options. For more information, see “PACLOG installation options” on page 106.

The installation process is for a single DB2 subsystem. To install PACLOG on additional subsystems using the same operating system after the initial installation, you simply add the new subsystems to the PACLOG control information and create the new history files.

For more information, see “Installing PACLOG on multiple DB2 subsystems” on page 103.

Shared PACLOG and RECOVERY MANAGER features

When the PACLOG and RECOVERY MANAGER for DB2 products coexist in a DB2 subsystem, they should use the same options file.

You can designate that the two products share a common options file during product installation.

Sharing the same options file ensures that both products use the same archive history file, time stamp value, DB2 load library, and work data sets, all of which are specified in the options file. For a discussion of the archive history file, see “BMC Software archive history file” on page 18.

For more information, see “Integrating PACLOG with RECOVERY MANAGER for DB2” on page 104.

PACLOG authorizations

You must have the following authorizations to run PACLOG:

- ALTER authority for DB2 active log data sets
- DELETE and DEFINE authority for DB2 archive log data sets 1, 2, 3, and 4
- READ authority for the DB2 BSDS
- UPDATE authority for the archive history file
- Authorization for the XCA compression started tasks as follows:
 - For advanced communications function 2 (ACF2) security, authorize BMCP and BCSS as started tasks under started task control.
— For resource access control facility (RACF) or TOP SECRET security, authorize BMCP and BCSS as started tasks in the started task table.

- Authorized program facility (APF) authorization for all STEPLIB and JOBLIB libraries (PACLOG and XCA)

Note
When all of the following circumstances exist, add ALMUMAN to the list of commands in the TSOCMDS module:
- You use the PACLOG logging environment modeling tool
- You use the CA Technologies CA-ACF2 security system
- Your shop restricts TSO commands

DB2 environment settings

BMC Software recommends that you always set up your DB2 environment as follows:

- Use dual active logs to provide backup in the event of a disk failure that affects one log.

- Use the PACLOG logging environment modeling tool to calculate the optimum size for your active log data sets.

- Keep a minimum of three active logs to allow operation to continue unimpeded in the event of a failure involving one of the logs. If you use PACLOG and keep one archive log on disk, you do not need more than three active logs. This practice helps to reduce log data redundancy because active data is replicated in the archive log.

- Keep 1,000 entries in the BSDS.

Recommended archive log processing practices

When you use PACLOG, BMC Software recommends that you follow these guidelines.

These should be considered in conjunction with the information provided in “PACLOG in disaster recovery” on page 20.

- Use dual archive logs at your local site. If a DB2 forward recovery becomes necessary at the local site that requires the use of the archive log, dual archive logging provides backup if the primary log fails.
If you plan to use archive logs for disaster recovery, create both primary and secondary offsite copies of the archive logs. Although dual logging does allow you to send the local backup copy offsite, if that copy were needed at the local site, the required data would be unavailable and the DB2 subsystem would hang. See the *RECOVERY MANAGER for DB2 User Guide* for more information about the use of offsite archive logs in disaster recovery.

To help you decide how frequently to run PACLOG against the local site archive logs, you can use the ALMEX01 sample job in the .SAMP data set. This example shows how to run PACLOG in simulation mode to determine the effect of processing multiple logs during processing. You can also find this example in “Determining archive log size reduction” on page 77.

If you are making offsite copies of archive log data sets as part of your disaster recovery contingency planning, run PACLOG as soon as practical after archiving the active log. For example, run PACLOG after the DB2 -ARCHIVE LOG command that forces the active log to be archived and prior to backing up the OS/390 and tape management catalogs. If practical, use the DB2 archive completion message to start PACLOG.

Use the LIMIT option when you begin using PACLOG; otherwise, PACLOG attempts to process all cataloged archive log data sets. Use LIMIT until all existing original log data sets have been processed. For more information, see “Deciding which logs to process” on page 28.

Catalog all original archive log data sets. PACLOG does not process uncataloged log data sets.

When you archive the active log, archive it to disk.

PACLOG and NGT Recover compatibility

NGT Recover fully supports log data sets that are created by PACLOG.

If you have any questions about how the products work together, contact your BMC Software technical support analyst for NGT Recover.

Understanding PACLOG options

PACLOG allows you to copy and process original cataloged archive log data sets in a variety of ways.

Using PACLOG syntax options, you can perform the following actions:
Decide which original archive log data sets to copy and process by using the search limits provided with PACLOG

Decide whether to make one, two, three, or four copies of each original archive log data set

Note
PACLOG automatically catalogs all copies it makes.

Separately specify the output medium (tape or disk) for each copy

Separately specify which log record types and objects to remove for each copy

Reprocess a log that has already been processed by PACLOG

Compress the log data written to tape or disk

Simulate archive log data set processing using PACLOG syntax options

For more information, see “Using PACLOG to simulate log processing” on page 33.

Deciding which logs to process

When you use PACLOG for the first time, you may not want to process all of the archive logs that are recorded in the BSDS.

You may want to process only a recent subset of these log data sets. Use the LIMIT option to limit the log data sets (from the most recent to the least recent) to be considered for processing.

Select the log data sets to be processed by specifying one of the following options:

- The number of log data sets
- A time in hours
- An RBA range

All log data sets processed in the normal (nonsimulation) mode are recorded in the archive history file so that PACLOG can determine whether a particular original log data set has been processed previously.

After all archive logs in the BSDS have been processed and recorded in the archive history file, you do not normally need to continue to use the LIMIT. For more information and examples of the use of the LIMIT option, see “Global options” on page 55 and “Examples of PACLOG JCL” on page 77.
Deciding which copies to make and when

PACLOG lets you make one, two, three, or four processed copies of each archive log data set.

Copy 1 is intended for use as a local site primary copy to replace the original (unprocessed) primary archive log data set. Where dual archive logging is in use, copy 2 is intended for use as a local site backup to replace the corresponding original (unprocessed) backup archive log. Copies 3 and 4 are intended for offsite use (recovery site primary and backup).

PACLOG provides considerable flexibility in the processing of all archive log copies. You can process one, two, three, or four copies at one time in the same job, with one exception: copy 2 can be processed only if you use dual archive logging in your DB2 subsystem. You can make filtering, compression, and medium selections separately for each copy.

Note
For important information regarding archive logs, see “Recommended archive log processing practices” on page 26.

A typical approach to archive log processing might be to create all four copies at the same time using the maximum filtering. This approach is provided by filtering defaults and identifying any objects that never need recovery. Copy 1 might be compressed and directed to disk using the defaults, and copies 2, 3, and 4 might be directed to tape. For more information about specifying each copy, see “Archive copy specification” on page 53 through “Disk options” on page 61.

The syntax for this approach is as follows:

```
ARCHIVE1 FILTERS (DBASE.TSPACE1)
ARCHIVE2 FILTERS (DBASE.TSPACE1)
   TAPE UNIT CART
ARCHIVE3 PREFIX OFFSITE.DB2A.ARC1
   TAPE UNIT CART
   FILTERS (DBASE.TSPACE1)
ARCHIVE4 PREFIX OFFSITE.DB2A.ARC2
   TAPE UNIT CART
   FILTERS (DBASE.TSPACE1)
```

Variations on this scenario include the following:
If the number of tape drives required to process all copies together is a concern, you could first process copies 1 and 2 as described previously and then later process copies 3 and 4. This approach results in copies 3 and 4 inheriting any filtering that was performed on copy 1 when it was processed.

Consider scheduling the job to process copies 3 and 4 to match the movement of offsite resources (see the RECOVERY MANAGER for DB2 User Guide). This approach has the added advantage of potentially improving stacking efficiency because more than one log data set can be written to the tape.

If you anticipate that log data might be required for uses other than recovery (such as audit reporting), then copy 2 might be made with no filtering and directed to tape. However, if you plan to follow this approach, you must create copy 2 when you first process copy 1.

Choosing the output medium

With the exception of copy 1, you can choose either disk or tape as the output medium independently for each copy of the processed log.

For copy 1, you can only use disk as the medium. If you do not specify an output medium, PACLOG uses disk as the default. Writing copy 1 to disk may substantially reduce the resources required by the active logs. Read the online overview included with the PACLOG logging environment modeling tool (described in “The PACLOG logging environment modeling tool” on page 35). For information about specifying the output medium, see “Device type options” on page 58.

You can write copy 2 of the processed log to tape and optionally specify that the log data sets be stacked to the tape. Copies 3 and 4 (the offsite copies) can also be stacked to tape for transport to a recovery site. If you require compression of the processed copies, you specify it differently for tape and disk. For more information, see “Compressing archive log records” on page 32.

Removing unwanted records and objects

PACLOG provides filter options that remove certain record types and objects from the archive log.

In general, these records are not needed for DB2 forward recovery processes. They are initially written to the log to allow update data backout in the event that a transaction does not complete successfully. Table 3 on page 31 shows the filter options available in PACLOG. For more information about DB2 log record types, see the IBM DB2 administration guide.
To guard against the inadvertent removal of records that you might need for purposes other than recovery, consider using different filter options for each of your processed copies.

Table 3: PACLOG filter options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILTERIX</td>
<td>Use this option to replace index-related records that are not needed for DB2 recovery purposes with easily compressible data.</td>
</tr>
<tr>
<td>FILTERIX EXCEPT (ixSpaceList)</td>
<td>Use this option to exclude selected index spaces from filtering, thus allowing index recovery from log data.</td>
</tr>
<tr>
<td>FILTERRECTYPE</td>
<td>Use this option to replace records that are not needed for DB2 recovery processes (other than those removed by FILTERIX) with easily compressible data.</td>
</tr>
<tr>
<td>FILTERTS (tsSpaceList)</td>
<td>WARNING: If you use this option and you attempt to recover a table space that requires the DB2 log, the recovery fails.</td>
</tr>
<tr>
<td></td>
<td>■ Use this option with a table space specification to replace all records pertaining to those table spaces with easily compressed data.</td>
</tr>
<tr>
<td></td>
<td>■ To specify the table spaces, you can use a list, wildcard specifications, or a combination of both.</td>
</tr>
</tbody>
</table>

For more information about PACLOG filter options, see “Filter options” on page 59.

Reprocessing a processed local site archive log

You can use the REDO option to tell PACLOG to reprocess a local site archive log data set that has already been processed and cataloged.

The new log data set replaces the prior version and updates the archive history file. You should use the LIMIT option in conjunction with the REDO option to control which log data sets are reprocessed.

Note

If the current syntax specifies less filtering than was previously performed, the log data set is still processed but a warning message is issued.

You can use the REDO option in situations such as these:
Because PACLOG does not filter uncommitted transaction data, original log data sets that contain uncommitted data may be insufficiently processed the first time. After the data is committed, a processed log data set can be reprocessed if the REDO option is used. The reprocessed log data set replaces the prior version.

- If you process an archive log data set in simulation mode and update the BMC Software archive history file (by using the UPDATEHIST keyword with the SIMULATE option), and then you want to process the same archive log data set in normal mode, you must use the REDO option. This action tells PACLOG that an entry already exists in the archive history file and that it needs to be updated when normal mode processing is complete.

- You want to perform additional filtering on one or more archive log data sets.

- You want to move one or more archive log data sets from one medium to another (for example, from tape to disk).

For examples that show how to use REDO and LIMIT, see “Examples of PACLOG JCL” on page 77.

WARNING
The REDO option is valid for only copies 1 and 2 of the original archive log data set. You cannot use the REDO option with copies 3 and 4 (the offsite copies).

Compressing archive log records

You can optionally compress the filtered archive log data produced by PACLOG to reduce the amount of tape or disk space required for storage.

Compressing data to tape

When you write the processed log data sets to tape, you can choose to use the hardware compression feature in the tape drive.

The PACLOG tape option TRTCH provides this choice. For TRTCH syntax, see “Tape options” on page 60.

Compressing data to disk

When you write the processed log data sets to disk, you can choose to compress the data by using the COMPRESS option.

COMPRESS provides a high degree of data compression and uses the BMC Software XCA technology. COMPRESS syntax is described on “Disk options” on page 61.
If you already have DASD hardware compression enabled, do not use the COMPRESS option. If you need to determine whether you have DASD hardware compression installed on your system, contact your DASD hardware provider.

Using PACLOG to simulate log processing

You can simulate the processing of archive log data sets by PACLOG without performing any action against the original archive log data set. This capability lets you become familiar with the processing without altering your data.

When you use the SIMULATE keyword in addition to the syntax options used for normal PACLOG processing, PACLOG performs log data set processing without replacing the original log data set or cataloging the processed log data set. When you use SIMULATE, you can

- Update the archive history file by using the keyword UPDATEHIST
 If you use UPDATEHIST, PACLOG updates the archive history file when processing is successfully completed. If you subsequently reprocess the same original log data set in normal mode, you must then use the REDO option to inform PACLOG to update the entry in the archive history file.

- Keep or delete the processed log data set that was created in SIMULATE mode by using the keywords KEEP or NOKEEP
 If you use KEEP, the processed log data set is retained. If you use NOKEEP, the processed log data set is deleted. In both cases, no action is performed against the original log data set.

 Note
 If you use NOKEEP with UPDATEHIST, the entry in the archive history file is not deleted.

For more information, see the following topics:

- For a description of the syntax, see “Syntax diagrams” on page 10
- “Determining archive log size reduction” on page 77
- For examples of the use of SIMULATE, see “Using data compression to tape” on page 78
Using PACLOG to conserve disk space

A major benefit of the PACLOG utility is the conservation of disk space. This space conservation results from increased flexibility in the allocation of such space to DB2 logs. Because the utility can reduce the size of the archive log by a considerable amount (up to 95 percent or more), it becomes feasible to keep archive logs on disk, thereby making it possible to reduce the number and size of the active logs.

The precise active log size that is optimal for your DB2 subsystem depends on the following factors:

- Number of hours of active or archive log kept on disk
- Number of archive logs kept on disk
- Number of active logs
- Number of days covered by the BSDS
- Number of archive logs recorded in the BSDS
- Average logging rates
- Whether you use a 3380 or 3390 disk device
- Expected log size reduction factor due to removed records and data compression

The number of variables makes manual methods of determining an optimal active log size unattractive. To show the impact of using PACLOG and to determine the optimal size for your logs, a modeling tool is supplied with the utility. The modeling tool is described in “The PACLOG logging environment modeling tool” on page 35.
The PACLOG logging environment modeling tool

The PACLOG logging environment modeling tool allows you to examine and view different logging scenarios for a selected DB2 subsystem in order to optimize the amount of DASD space required by the archive logs.

In addition, you can display active and archive log information. By using the modeling tool’s optimization capabilities, you may be able to dramatically reduce the amount of DASD space required by your logging environment.

The modeling tool provides the following information:

- Current logging environment statistics ("Viewing and modeling logging environment statistics" on page 36)
- Information about the active logs ("Viewing active log information" on page 42)
- Information about the archive logs ("Viewing archive log information" on page 44)
- Existence of an archive copy 1 data set for each archive copy 2 data in the BSDS ("Audit synchronization" on page 47)

The modeling tool operates interactively through ISPF panels and includes a comprehensive help system that is automatically installed when you install PACLOG. For information about installing PACLOG, see the Backup and Recovery Products for DB2 Installation Guide.

Figure 2 on page 36 shows the modeling tool menu. To run the modeling tool, issue the following TSO command, where prefix is the prefix you specified during the installation process:

`prefix.CLIST(ALMISPF)`
The CLIST is tailored during installation to include data set names at your site.

Figure 2: PACLOG main menu

ALMPRIM ================================= V1.4.00 - PACLOG =================================
Command ===> ___
Type information. Then press Enter.

- Display current statistics & model changes
- Display active log information
- Display archive log information

Subsystem ID. DECI

Copyright 1994-2006 BMC Software, Inc. as an unpublished licensed work.
All rights reserved. DB2 is a registered trademark of International Business Machines Corp.

Viewing and modeling logging environment statistics

Use the following procedure to view and model the logging environment.

To view and model the logging environment

1 On the PACLOG Main Menu, enter a subsystem ID and press Enter.

The Logging Environment panel is displayed.

Figure 3: Logging Environment panel

ALMLG00A ============== Logging Environment - DECI ===============
Command ===> __
Type information. Then press Enter.

Option
1. Model Display current statistics & model changes
2. Actives Display active log information
3. Archives Display archive log information

DASD type. . 2 1. 3380
2. 3390

Device type used in rate calculations

2 Perform the following actions:

a Enter 1. Model on the COMMAND line.

b Specify the DASD type in your environment.

c Press Enter.
The Logging Environment Model for SSID panel is displayed.

Figure 4: Logging Environment Model for SSID panel

You can use the Logging Environment Model panel to change the following logging environment variables to see what effect those changes would have on the required amount of DASD and other logging environment variables:

- Days of log data recorded in the BSDS
- Hours of log required on DASD
- Highest logging rate
- Active log size in cylinders
- Number of active log pairs
- Number of entries in the BSDS
- Hours of archive 2 on DASD

In addition, you can choose to have the modeling tool optimize your logging environment based on these criteria:

- The number of days of log data that you want to record in the BSDS
- The number of hours of log that you require to be kept on DASD

Logging environment panel field descriptions

This topic describes the fields on the Logging Environment Model panel.
Source of highest logging rate

This field determines how the logging environment model obtains the highest logging rate: from the BSDS, a user entry, or a list of previous rates.

- Select **BSDS** to display the highest logging rate found in the BSDS. The logging environment modeling tool searches the BSDS to find the highest rate of activity for the period of \(nn\) hours, where \(nn\) equals the value in the *Hours of log required on DASD* field.

- Select **User** if you want to enter the highest logging rate yourself in the *High logging rate for that period* field.

- Select **List** to select the highest logging rate from a list encompassing the highest rates of activity for the period of \(nn\) hours, where \(nn\) is the number of hours for which the average logging rate is calculated. Use the *Hours of log required on DASD* field to specify \(nn\). When the list is displayed, enter / or S beside the rate you want and press Enter.

Optimize fields marked * for DASD archives

The logging environment modeling tool can calculate the optimal size of your active logs, assuming that the archive logs will be on DASD. All fields marked with a * are included in the optimization process. To perform the optimization, select **Yes** in this field, enter data in the following fields, and then press Enter.

- *Hours of log required on DASD*
- *Days of log data recorded in BSDS*
- *Expected compression ratio*

The tool initializes the following fields and then performs the optimization.

- Number of active log pairs is set to 3
- Number of entries in BSDS is set to 1000
- Hours of archive 2 on DASD is set to 1

Current

Figures in the **Current** column describe the current logging environment of your system as determined from the BSDS.

Model

Fields in the **Model** column allow you to change the logging environment settings in order to determine the overall effect of the changes on DASD or the logs.
Prev

The Prev column displays the results of the previous model you created, allowing you to compare two different scenarios.

Expected compression ratio

This field displays expected compression of an archive log when PACLOG is used. Compression percentages of 70 to 90 percent can be expected in most circumstances.

Days of log data recorded in BSDS

This field displays the number of days of log data to be kept in the BSDS. BMC Software recommends that you keep a few more days than is usually necessary to allow for periods of unexpectedly high activity. For example, if you want 14 days of log available for recovery, then you should ensure that you have 17 days of log available in the BSDS.

If you select Yes in the Optimize fields marked * for DASD archives field, then you must enter the number of days you want to keep log data.

If you select No in the Optimize fields marked * for DASD archives field, then this value is calculated as follows:

\[
\frac{(\text{active log size}) \times (\text{number of entries in BSDS})}{(\text{highest logging rate}) \times 24}
\]

Hours of log required on DASD

This field displays the number of hours you want to retain log data on DASD. This is the length of time that you want recovery data to be available on DASD. Valid values range from 1 to 999.

If you do not archive to DASD (hours of archive 2 on DASD=0), then the value entered in this field, along with the average logging rate for this time period, is used to determine the number of days of data that is stored in the BSDS.

Note

The value in the Current column is the value determined by the shortest length of time taken to fill all of the active log data sets.
High logging rate for that period

The logging environment modeling tool searches the BSDS to find the highest rate of log activity for the period of nn hours, where nn equals the value in the **Hours of log required on DASD** field.

You can also enter a logging rate manually or choose a logging rate from a list of high rates.

- To have the logging environment modeling tool find the highest rate, select **BSDS** in the **Source of highest logging rate** field.

- To enter the logging rate of your choice, select **User** in the **Source of highest logging rate** field and enter the logging rate you want in this field. Valid values range from 1 to 99999 cylinders per hour.

- To select a logging rate from a list of the highest 15 logging rates, select **List** as the **Source of highest logging rate** and press **Enter**. When the list is displayed, enter **S** or **/** beside your choice and press **Enter**.

Active log size

This field displays the active log size in cylinders.

If you select **Yes** in the **Optimize fields marked * for DASD archives** field, then the size in cylinders is calculated as follows:

$$A \times 24 \times B / C + 1$$

<table>
<thead>
<tr>
<th>Variable</th>
<th>Equals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Number of days of data in BSDS</td>
</tr>
<tr>
<td>B</td>
<td>High logging rate</td>
</tr>
<tr>
<td>C</td>
<td>Number of entries in the BSDS</td>
</tr>
</tbody>
</table>

If you select **No** in the **Optimize fields marked * for DASD archives** field, then you must enter a value for the active log size.

Number of active log pairs

This field shows the number of active log pairs for the DB2 subsystem. The entry in the **Current** column shows your current DB2 log configuration.

BMC Software recommends that you keep only three active logs if you place archive logs on DASD. In the event of a DASD failure on any log, DB2 operation can continue unimpeded with the two remaining logs while you recover the third log.
Keeping only three logs also reduces redundant log information (the active data that
is replicated in the archive log data sets).

If you select Yes in the **Optimize fields marked * for DASD archives** field, then the
logging environment modeling tool sets the number of active log pairs to 3.

Number of entries in BSDS

This field shows the number of entries kept in the BSDS. The entry in the **Current**
column shows number of entries currently kept in the BSDS. BMC Software
recommends that you always use the maximum value of 1000. The amount of DASD
space occupied by these entries is only a few cylinders. If you select Yes in the
Optimize fields marked * for DASD archives field, the logging environment
modeling tool sets this figure to 1000.

If you do not currently keep 1000 entries in the BSDS, you can determine how
changing the number of entries affects the number of days of log data recorded in
the BSDS by performing log environment modeling.

Hours of archive 2 on DASD

This field shows the amount of time that you want to retain ARCHLOG2 on DASD
before migrating it to tape. The logging environment modeling tool sets this to one
hour when you choose to optimize. You can also use the logging environment
modeling tool to determine the impact on DASD usage if you are currently keeping
more than the optimal number of hours. To view the effect of keeping a larger
number of hours of ARCHLOG2 on DASD, follow these steps:

1. In the **Optimize fields marked * for DASD archives** field, select No.
2. Set or verify the following fields:
 - **Expected compression ratio**
 - **Days of log data recorded in BSDS**
 - **Hours of log required on DASD**
3. Set the **Hours of archive 2 on DASD** as desired, and then press Enter.

Note
If you do not store either copy of the archive log on DASD, set this value to 0.

Hours of archive 1 on DASD

This field shows the amount of time that ARCHLOG1 should be retained on DASD
before migrating it to tape. This figure is determined by the number of hours you
indicate in the **Hours of log required on DASD** field.
Total cylinders without PACLOG

The total number of cylinders required if you do not use PACLOG compression is calculated in the following formulas.

- If you do not keep any archive log on DASD (hours of archive 2 on DASD=0), the total number of cylinders required is as follows:
 \[A \times B \times 2 \text{ (if you are using dual logs)} \]

- If you keep archive data on DASD, the total number of cylinders required is as follows:
 \[(A \times B \times 2) + (C \times [D - E]) + (C \times F)\]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Equals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Size of the active log data sets</td>
</tr>
<tr>
<td>B</td>
<td>Number of log data sets</td>
</tr>
<tr>
<td>C</td>
<td>Highest logging rate</td>
</tr>
<tr>
<td>D</td>
<td>Number of hours of ARCLOG1</td>
</tr>
<tr>
<td>E</td>
<td>Total hours of active log</td>
</tr>
<tr>
<td>F</td>
<td>Hours of ARCLOG2</td>
</tr>
</tbody>
</table>

Total cylinders with PACLOG

The total number of cylinders required if you use PACLOG compression is calculated as the amount required without PACLOG, except that the requirements for ARCLOG1 and ARCLOG2 are reduced by the percentage you entered in the Expected compression ratio field.

Cylinders saved by PACLOG

The number of cylinders saved by using PACLOG compression is calculated by subtracting the cylinders required when using PACLOG from the cylinders required when not using PACLOG.

Viewing active log information

PACLOG enables you to view active log information, including:
- Total cylinders of active log
- Average number of hours represented in the active logs
- Minimum number of hours represented in the active logs
Start and end times of each active log

To view active log information

Start this procedure at the PACLOG Main Menu.

1. Enter a subsystem ID and press Enter.

The Logging Environment panel is displayed.

Figure 5: Logging Environment panel

![Image of ALMLG00A panel]

Type information. Then press Enter.

Option . . .
1. Model Display current statistics & model changes
2. Actives Display active log information
3. Archives Display archive log information

DASD type .
2 1. 3380 Device type used in rate calculations
2. 3390

2. Enter 2. Actives, specify the DASD type in your environment, and press Enter.

The Active Log Information panel is displayed.

Figure 6: Active Log Information panel

![Image of ALMLG02A panel]

Active log information panel field descriptions

This topic describes the fields on the Active Log Information panel.

Total cyls of actives (1 and 2)

This field displays the total number of cylinders allocated to active logs. This includes copy 1 data sets and copy 2 data sets, if they exist.
Average hours of data in actives

For all log data recorded in the BSDS, this field displays the average number of hours for which data was available in the active logs. This number is based on the current number of active log sets.

Minimum hours of data in actives

For all log data recorded in the BSDS, this field displays the minimum number of hours for which data was available in the active logs. This is the shortest timespan in which all of the active logs were filled.

Start time

This field displays the start time for each active log, in the format yyyy-mm-dd wkd hh:nn:ss, where:

- yyyy is the 4-digit year
- mm is the month of the year
- dd is the day of the month
- wkd is the 3-character abbreviation of the day of the week
- hh is hour of the day in military format
- nn is minutes
- ss is seconds

End time

This field displays the end time for each active log in the same format as Start time.

Cyls

This field displays the number of cylinders that this log occupies.

cyl/hr

This field displays the logging rate in cylinders per hour for each active log.

Viewing archive log information

PACLOG enables you to view archive log information, including:

- Details about every archive log
Details about every archive log
Audit details about archive copy 1 and 2 synchronization

To view archive log information

1. On the PACLOG Main Menu, enter a subsystem ID and press **Enter**.

 The Logging Environment panel is displayed.

 Figure 7: Logging Environment panel

 ALMLGOOA ============== Logging Environment - DECI =============
 Command ===> __
 Type information. Then press Enter.
 Option . . . _ 1. Model Display current statistics & model changes
 2. Actives Display active log information
 3. Archives Display archive log information
 DASD type. . 2 1. 3380 Device type used in rate calculations
 2. 3390

2. Perform the following actions:
 a. Enter **3. Archives** on the **COMMAND** line.
 b. Specify the DASD type in your environment.
 c. Press **Enter**.

 The Archive Log Information panel is displayed.

 Figure 8: Archive Log Information panel

 ALMLGO3A ============ Archive Log Information - DECI ================
 Command ===> ___ Scroll ===> PAGE
 Type information. Then press Enter.
 Displays are limited to the 100 most recent logs
 Option. . _ 1. Copy 1 detail Display detail information on copy 1 data sets
 2. Copy 2 detail Display detail information on copy 2 data sets
 3. Audit sync. Check synchronization of copy 1 with copy 2

3. Specify **Copy 1 detail**, **Copy 2 detail**, or **Audit sync**, and press **Enter**.

 See the following sections for detailed information:

 ■ “Archive log copy 1 and copy 2 information panels field descriptions” on page 46
 ■ “Audit synchronization” on page 47

Chapter 3 The PACLOG logging environment modeling tool 45
Archive log copy 1 and copy 2 information panels field descriptions

This topic describes the fields on the archive log copy 1 and copy 2 information panels. To access these panels, select the Copy 1 detail option or the Copy 2 detail option from the Archive Log Information panel.

Sort by

You can choose to sort the list of archive logs by start time, by cylinders per hour in descending order (largest to smallest), or by cylinders per hour in ascending order (smallest to largest).

Average cyls per hour

This field displays the average number of cylinders per hour for all of the logs in the list.

Number of days covered

This field displays the number of days covered by all of the logs in the list, that is, from the start time of the first log to the end time of the last log.

Start time

This field displays the start time for each archive log, in the format yyyy-mm-dd wkd hh:nn:ss, where:

- yyyy is the 4-digit year
- mm is the month of the year
- dd is the day of the month
- wkd is the 3-character abbreviation of the day of the week
- hh is hour of the day in military format
- nn is minutes
- ss is seconds

End time

This field displays the end time for each archive log in the same format as Start time.
Cyls

This field displays the number of cylinders that this log would occupy if on DASD.

cyl/hr

This field displays the logging rate in cylinders per hour for each archive log.

Audit synchronization

You can verify the existence of an archive copy 1 data set for each archive copy 2 data set in the BSDS. To access this information, select the **Audit sync.** option from the Archive Log Information panel. You receive one of the following results:

- If the copies are synchronized, a message is displayed at the top of the panel. This means that there is an ARCHLOG1 data set that matches each ARCHLOG2 data set found in the BSDS.

- If the copies are not synchronized, one or more messages are displayed listing each ARCHLOG2 data set for which there is no matching ARCHLOG1 data set.
PACLOG syntax

PACLOG syntax is designed to make the utility easy to install and operate.

The ALMIN control statement options enable you to specify up to four processed archive log data sets. PACLOG dynamically allocates both the input (original) log data sets and the output (processed) log data sets. You can choose to write each processed log data set to tape or disk (except copy 1, which can go only to disk) and to specify the filtering options that you want PACLOG to use when processing each log data set.

Specifying minimal command syntax, as shown in the following example, produces two copies of the processed log data sets for the local site.

```
ARCHIVE1 ARCHIVE2
```

Both copies are written to disk and cataloged. By default, maximum record filtering is used when processing the original log data sets. Also by default, the data is compressed when it is written to disk. Because no search limits are specified, all original archive log data sets that have not previously been processed by PACLOG (as indicated by the archive history file) are processed by this job. The original (unprocessed) archive log data sets are replaced.

The following example produces two copies of the processed log data sets for the local site, as in the previous example.

```
ARCHIVE1 ARCHIVE2
ARCHIVE3 PREFIX prefix3 TAPE UNIT CART FILTERIX NONE
ARCHIVE4 PREFIX prefix4 TAPE UNIT CART
```

This example also produces two copies of the processed log data sets for recovery site use. The recovery site log data sets are written to tape and cataloged at the local site. One of these data sets has maximum record filtering, and the other retains the index-related records. For more examples, see “Examples of PACLOG JCL” on page 77.
Syntax rules

Use the following rules when you specify the options in the SYSIN data set:

- Group filter options together.
- Group device type options together.
- Specify at least one `ARCHIVE\textit{n}` keyword.
- Specify the data set prefix immediately after each `ARCHIVE3` or `ARCHIVE4` keyword.
- Place subordinate keywords immediately after the corresponding primary keyword.

Syntax diagrams

The following figures show the syntax for PACLOG, with default values underscored.

“Option descriptions” on page 52 lists each option alphabetically and describes each option.

\textit{Note}

The conventions used in the diagram are described in “Syntax diagrams” on page 10.
Figure 10: Global options

```
LIMIT
HOURS n
LOGS n
RBARANGE startRba endRba
SIMULATE
UPDATEHIST
KEEP
NO KEEP
DB2LOGPRODUCT
```

Figure 11: Device type options

```
DISK
UNIT
unitName
SYSALLDA
disk options
ZIP
ENABLED
DISABLED
TAPE
UNIT
unitName
SYSALLDA
tape options
```

Figure 12: Filter options

```
FILTERIX
ALL
NONE
EXCEPT- (database.indexSpace, )
FILTERETYPE
ALL
NONE
FILTERTS- (database.tableSpace, )
```

Figure 13: Tape options

```
RETPD n
EXPDT yyddd
STACK YES NO
TRTCH COMP NOCOMP
```

Figure 14: Disk options

```
COMPRESS YES NO
DATACLAS name
MGMTCLAS name
STORCLAS name
```
Option descriptions

The following table describes the options that you can specify with PACLOG and includes default values and other information.

The validity of each option is shown for both tape and disk output. See the referenced topic for more information about a particular option.

Table 4: Selecting PACLOG options

<table>
<thead>
<tr>
<th>Syntax option</th>
<th>Option type</th>
<th>Options for disk output</th>
<th>Options for tape output</th>
<th>See topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHIVE(n)</td>
<td>Copy specification</td>
<td>Required</td>
<td>Required</td>
<td>“Archive copy specification” on page 53</td>
</tr>
<tr>
<td>COMPRESS</td>
<td>Disk</td>
<td>Defaults to YES</td>
<td>Not valid</td>
<td>“Disk options” on page 61</td>
</tr>
<tr>
<td>DATACLAS</td>
<td>Disk</td>
<td>Optional</td>
<td>Not valid</td>
<td>“Disk options” on page 61</td>
</tr>
<tr>
<td>DISK</td>
<td>Device type</td>
<td>Default medium</td>
<td>Not valid</td>
<td>“Device type options” on page 58</td>
</tr>
<tr>
<td>EXPDT</td>
<td>Tape</td>
<td>Not valid</td>
<td>Optional; not valid with RETPD or for copy 1</td>
<td>“Tape options” on page 60</td>
</tr>
<tr>
<td>FILTERIX</td>
<td>Filter</td>
<td>Defaults to ALL</td>
<td>Defaults to ALL</td>
<td>“Filter options” on page 59</td>
</tr>
<tr>
<td>FILTERRECTYPE</td>
<td>Filter</td>
<td>Defaults to ALL</td>
<td>Defaults to ALL</td>
<td>“Filter options” on page 59</td>
</tr>
<tr>
<td>FILTERTS</td>
<td>Filter</td>
<td>Optional</td>
<td>Optional</td>
<td>“Filter options” on page 59</td>
</tr>
<tr>
<td>KEEP</td>
<td>Global</td>
<td>Valid only with SIMULATE</td>
<td>Valid only with SIMULATE</td>
<td>“Global options” on page 55</td>
</tr>
<tr>
<td>LIMIT</td>
<td>Global</td>
<td>Optional</td>
<td>Optional</td>
<td>“Global options” on page 55</td>
</tr>
<tr>
<td>MGMTCLAS</td>
<td>Disk</td>
<td>Optional</td>
<td>Not valid</td>
<td>“Disk options” on page 61</td>
</tr>
<tr>
<td>NOKEEP</td>
<td>Global</td>
<td>Valid only with SIMULATE</td>
<td>Valid only with SIMULATE</td>
<td>“Global options” on page 55</td>
</tr>
<tr>
<td>PREFIX</td>
<td>Copy specification</td>
<td>Required for copies 3 and 4; not valid for copies 1 and 2</td>
<td>Required for copies 3 and 4; not valid for copies 1 and 2</td>
<td>“Archive copy specification” on page 53</td>
</tr>
<tr>
<td>REDO</td>
<td>Copy specification</td>
<td>Optional; valid only with ARCHIVE1 or ARCHIVE2</td>
<td>Optional; valid only with ARCHIVE1 or ARCHIVE2</td>
<td>“Archive copy specification” on page 53</td>
</tr>
</tbody>
</table>
Archive copy specification

The following figure shows the syntax diagram for the ARCHIVE option, which you use to specify which copies to make of each log data set.

You can make up to four processed copies of each log data set and specify options that apply to all of the copies. You can also specify device options and filter options separately for each copy. For ARCHIVE1 and ARCHIVE2 you can also specify the REDO option. For more information, see the following topics:

- “Global options” on page 55
- “Device type options” on page 58
- “Filter options” on page 59

<table>
<thead>
<tr>
<th>Syntax option</th>
<th>Option type</th>
<th>Options for disk output</th>
<th>Options for tape output</th>
<th>See topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETPD</td>
<td>Tape</td>
<td>Not valid</td>
<td>Optional; not valid with EXPDT or for copy 1</td>
<td>“Tape options” on page 60</td>
</tr>
<tr>
<td>SIMULATE</td>
<td>Global</td>
<td>Optional</td>
<td>Optional</td>
<td>“Global options” on page 55</td>
</tr>
<tr>
<td>STACK</td>
<td>Tape</td>
<td>Not valid</td>
<td>Defaults to YES; not valid for copy 1</td>
<td>“Tape options” on page 60</td>
</tr>
<tr>
<td>STORCLAS</td>
<td>Disk</td>
<td>Optional</td>
<td>Not valid</td>
<td>“Disk options” on page 61</td>
</tr>
<tr>
<td>TAPE</td>
<td>Device type</td>
<td>Not valid</td>
<td>Required for tape output; not valid for copy 1</td>
<td>“Device type options” on page 58</td>
</tr>
<tr>
<td>TRTCH</td>
<td>Tape</td>
<td>Not valid</td>
<td>Optional; not valid for copy 1</td>
<td>“Tape options” on page 60</td>
</tr>
<tr>
<td>UNIT</td>
<td>Device type</td>
<td>Defaults to SYSALLDA</td>
<td>Defaults to SYSALLDA</td>
<td>“Device type options” on page 58</td>
</tr>
<tr>
<td>UPDATEHIST</td>
<td>Global</td>
<td>Valid only with SIMULATE</td>
<td>Valid only with SIMULATE</td>
<td>“Global options” on page 55</td>
</tr>
<tr>
<td>ZIIP</td>
<td>Device type</td>
<td>Optional</td>
<td>Optional</td>
<td>“ZIIP option” on page 62</td>
</tr>
</tbody>
</table>
Following are descriptions for the ARCHIVE copy option and its parameters.

ARCHIVE\(n \)

When you do not specify the REDO option, ARCHIVE\(n \) (where \(n = 1, 2, 3, \) or 4) specifies one of up to four processed copies of original log data sets.

The original log data sets must be within the range specified by the LIMIT option or be indicated as unprocessed by the archive history file. The original log data sets are deleted, unless this is a simulation (see “Global options” on page 55).

When you specify the REDO option, PACLOG processes copies 1 and 2 of log data sets that have already been processed and found within the same range.

Note

You can process copy 2 only if dual archive logging is used in your DB2 system.

Use ARCHIVE1 and ARCHIVE2 to create processed copies for local site use and ARCHIVE3 and ARCHIVE4 to create processed copies for recovery site use.

PREFIX prefix

Use this option to tell PACLOG to use *prefix* as the high-level qualifier in the data set names for the third or fourth processed log data sets (ARCHIVE3 and ARCHIVE4). PREFIX is only valid for the third and fourth processed log data sets and provides a means of identifying these log data sets as offsite logs. PREFIX is a required option for ARCHIVE3 and ARCHIVE4.
WARNING

Ensure that the data set prefixes that you specify for the third or fourth copies are different from the prefixes used for the original local site archive logs. Otherwise, you might not be able to restart the job.

If the installation option TSTAMP is set to YES, prefix cannot be more than 17 characters. If TSTAMP is set to NO, prefix can be up to 35 characters. For information about installation options, see “PACLOG installation” on page 103.

REDO

When you specify the REDO option with either ARCHIVE1 or ARCHIVE2, PACLOG processes (or reprocesses) all log data sets (original or already processed) that are found within the range that is specified by the LIMIT option.

If a log data set within the range specified has already been processed and the current syntax specifies less filtering than the previous processing, PACLOG still processes the log data set, but you receive a warning message.

Note

Do not specify the REDO option with ARCHIVE3 and ARCHIVE4.

PACLOG updates the archive history file when reprocessing is completed. For more information, see “Reprocessing a processed local site archive log” on page 31. Also, for a discussion of the archive history file, see “BMC Software archive history file” on page 18.

Global options

The global options apply to all archive log data sets processed concurrently by PACLOG.

Figure 16 on page 55 shows the syntax diagram for the global options.

Figure 16: Global options syntax

Following are descriptions for the global options and their parameters.
LIMIT

Use this option to specify the limits to be used by PACLOG when searching for original archive log data sets to process.

You can express the limit as a number of hours, a number of logs, or a relative byte address (RBA) range. If you do not specify LIMIT, PACLOG uses the entries in the DB2 bootstrap data set (BSDS) and the BMC archive history file to determine those original archive log data sets that have not yet been processed and then processes those log data sets.

You can also use the LIMIT option when reprocessing archive log data sets that have already been processed, that is, when you use the REDO option (see “Archive copy specification” on page 53). The limit you specify applies to all archive log data sets being processed. For more information about using the LIMIT option, see “Recommended archive log processing practices” on page 26 and “Deciding which logs to process” on page 28.

LIMIT HOURS n

Use this option to limit the number of original log data sets that have been selected for processing to those covering the last n hours. The number must be in the range 1 through 999 and greater than the interval between successive PACLOG operations. LIMIT HOURS uses the end RBA timestamp in determining which process. The end RBA timestamp is based on Greenwich Mean Time (GMT).

LIMIT LOGS n

Use this option to specify the number of original log data sets to be processed by PACLOG. Log data sets are counted backwards with the most recent archive log data set considered as the first data set. The number must be in the range of 1 through 9999.

LIMIT RBARANGE startRba endRba

Use the LIMIT RBARANGE option with start and end values (in hexadecimal notation) to specify an RBA range to be searched by PACLOG for original log data sets.

If you want to search from a specific start RBA to the current time, specify an end RBA of FFFFFFFFFFFFF to ensure that the whole period is searched.
SIMULATE

Use this option to specify that the current PACLOG job is a simulation. PACLOG generates processed log data sets, but it performs no action against the original log data sets.

You can specify whether to keep or delete the processed log data sets and whether to update the BMC archive history file. If you do not specify SIMULATE, PACLOG performs processing for normal archive log data sets.

UPDATEHIST

Use this option to specify that the archive history file is to be updated. Otherwise, the archive history file is not updated.

KEEP

Use this option (SIMULATE UPDATEHIST KEEP) to specify that the processed copies of the log data sets that have been produced by the current job should be retained and cataloged. Copies of all three files are retained: the BSDS file, the archive log file, and the archive history file.

When the copies are cataloged, copies 1 and 2 are named as follows to distinguish them from the original copies:

- BSDS copy: `prefix.Y.dataSetNumber`
- Archive log copy: `prefix.Z.dataSetNumber`
- Archive history file: `prefix.H.dataSetNumber`

NOKEEP

Use this option (SIMULATE UPDATEHIST NOKEEP) to specify that the data sets produced by the current job should be deleted.

Note

If you use SIMULATE UPDATEHIST NOKEEP, the entry in the archive history file is *not* deleted.

DB2LOGPRODUCT

If you use a DB2 log processing product, such as the BMC Software Log Master product, use the DB2LOGPRODUCT keyword to specify that PACLOG is *not* to filter log records that may be needed by the log product.
Device type options

The following figure shows the syntax diagram for the device type options.

All of the options are available for use with ARCHIVE2, ARCHIVE3, and ARCHIVE4. For ARCHIVE1, DISK (and disk options) and UNIT are available; TAPE is not available.

Figure 17: Device type options syntax

Following are descriptions of each of the device type options.

TAPE

Use this option to write the processed log data sets to tape. For descriptions of the options you can use when you write the log data sets to tape, see “Tape options” on page 60. If you do not specify TAPE, PACLOG uses DISK as the default.

Note

PACLOG always writes copy 1 of the processed archive log data set to disk. It does not write this copy to tape.

DISK

Use this option (the default) to write the processed log data sets to disk. For descriptions of the options that you can use when you write the log data sets to disk, see “Disk options” on page 61.

UNIT

Use this option to specify the symbolic name for the tape drive or disk drive to be used when you generate processed log data sets. The default unit name is SYSALLDA.
Filter options

The following figure shows the syntax diagram for the filter options.

WARNING
To guard against the inadvertent removal of records that you might need for purposes other than recovery, consider using different filter options for each of your processed copies.

Figure 18: Filter options syntax

Following are descriptions of each of the filter options.

FILTERIX

Use this option to specify whether to remove index-related records from the archive log data set. Use FILTERIX NONE to keep all such records. Use FILTERIX ALL (the default) to filter out those records. Use FILTERIX EXCEPT (database.indexSpace) to exclude selected index spaces from filtering, thus allowing index recovery from log data. You can use an asterisk (*) as a wildcard to pattern match on either or both the database and index space names.

FILTERRECTYPE

Use this option to specify whether to remove other record types that are not needed for DB2 forward recovery processes from the archive log. Use FILTERRECTYPE NONE to keep all such records. Use FILTERRECTYPE ALL (the default) to filter out those records.

FILTERTS(database.tableSpace,...)

Use this option and a DB2 table space specification to remove all records that pertain to those table spaces from the archive log. The list must be enclosed in parentheses, and the items in the list must be separated by commas. You can use an asterisk (*) as a wildcard to pattern match on either or both the database and table space names.
Tape options

The following figure shows the syntax diagram for the tape options.

These options are available when you select TAPE as the medium for the processed log data set. All of these options are invalid for disk.

Note

None of these tape options are valid for copy 1. PACLOG always writes this copy of the processed archive log data set to disk.

Figure 19: Tape options syntax

Following are descriptions of each tape options:

RETPD

Use this option to specify the retention period in days for the current log data set. The valid range is 0 through 9999. PACLOG does not provide a default.

EXPDT

Use this option to specify the expiration date for a tape copy data set. The date must be in the format `yyyy/ddd`, where `yyyy` is the four-digit year and `ddd` is the three-digit Julian day (001 through 366). PACLOG does not provide a default.

Note

RETPD and EXPDT are mutually exclusive. If you specify neither of these options, an OS/390 or tape management system default may apply.

STACK

Use this option to specify whether to stack the ARCHIVEx log data sets that are processed in this job contiguously on a new tape volume. STACK YES is the default.
TRTCH

Use this option to specify whether to use the data compression feature in the tape drive for the current processed log data set. Use TRTCH COMP to enable data compression. Use TRTCH NOCOMP to disable data compression. If you do not specify TRTCH, an OS/390 or tape management system default may apply.

Disk options

The following figure shows the syntax diagram for the disk options.

These options are available when you specify DISK (whether explicitly or by default) as the medium for the processed log data sets. All of these options are invalid for tape.

Figure 20: Disk options syntax

Following are descriptions of each of the disk options.

COMPRESS

Use this option to specify whether the processed log data sets are to be compressed. The default is to compress the data (Yes).

For more information, see “Compressing archive log records” on page 32.

WARNING

If you already have DASD hardware compression enabled, you should not use the COMPRESS option. If you need to determine whether you have DASD hardware compression installed in your system, consult with your DASD hardware provider.

COMPRESS YES

COMPRESS YES is the default. PACLOG uses the BMC Software Extended Compression Architecture (XCA) services to provide maximum data compression when writing to disk.

COMPRESS NO

This option tells PACLOG not to use compression for this log data set.
WARNING
Always use COMPRESS NO when you have DASD hardware compression enabled.

DATACLAS
Use this option to specify a valid storage management subsystem (SMS) data class name for this log data set.

The name must not exceed eight characters. If you do not specify this option, PACLOG does not use SMS.

MGMTCLAS
Use this option to specify a valid SMS management class name for this log data set.

The name must not exceed eight characters. If you do not specify this option, PACLOG does not use SMS.

STORCLAS
Use this option to specify a valid SMS storage class name for this log data set.

The name must not exceed eight characters. If you do not specify this option, PACLOG does not use SMS.

ZIIP option
The ZIIP option tells PACLOG whether to attempt to use IBM System z Integrated Information Processors (zIIPs). PACLOG can use enclave service request blocks (SRBs) to enable zIIP processing automatically while running jobs. Using zIIP processing can reduce the overall CPU time for PACLOG jobs.

You can specify one of the following values:

- **ENABLED** tells PACLOG to attempt to offload eligible processing to an available zIIP. If the zIIP is busy or not available, normal processing continues on a general-purpose processor.

- **DISABLED** tells PACLOG not to attempt to use zIIP processing.

To enable and use zIIP processing with PACLOG, you must:
Have an installed, authorized version of the EXTENDED BUFFER MANAGER (XBM) product or the associated SNAPSHOT UPGRADE FEATURE (SUF) technology

Start and maintain an XBM subsystem in your environment

Have a zIIP available in your environment

You can specify a particular XBM subsystem to use by specifying a value for the XBMID option (with a length of up to 8 characters). If you omit the XBMID option, PACLOG will discover an XBM subsystem that meets the requirements for zIIP processing.

Note

XBM and SUF are licensed, installed, and maintained separately from PACLOG. You can use either XBM or SUF, depending on your license:

- A license for the full version of the XBM product authorizes you to use all features of XBM.
- A license for SUF authorizes you to use only the snapshot and zIIP-processing features of XBM.
Building and running PACLOG jobs

This chapter describes how to build and run PACLOG jobs.

Building PACLOG jobs

Building a PACLOG job involves creating JCL that includes the following:

- A JOB statement
- An EXEC statement that includes a utility parameter to specify the ID of the DB2 subsystem against which the job will run
- DD statements that specify the PACLOG and DB2 load libraries
- DD statements that specify various optional and required data sets

The following descriptions provide more details. For a sample of PACLOG JCL, see “Sample jobs” on page 68.

JOB statement

The JOB statement starts with a job name and includes standard JOB statement parameters, such as accounting information and a run identifier.

EXEC statement

The EXEC statement has the following format:

```
//STEP1 EXEC PGM=ALMMAIN,PARM='ssid,ARMOPTS=optionSet',REGION=0M
```

The parameters and values are as follows: , and

- PGM=ALMMAIN specifies the processing module for PACLOG.
- PARM specifies a single utility parameter, `ssid`, which is the ID of the DB2 subsystem against which the job will run.

- For ARMOPTS, the variable `optionSet` is the name of an XML file that contains the product's configuration option values. The default option set is `ARM$OPTS`.

- REGION=0M specifies zero megabytes for the region size. For PACLOG operations, REGION=3M is sufficient.

STEPLIB DD statement

The STEPLIB DD statement optionally identifies the PACLOG and DB2 load libraries that you want to use.

Example

```plaintext
//STEPLIB DD DISP=SHR, DSN=BMCALM.TEST.OVERRIDE1
// DD DISP=SHR, DSN=BMCALM.TEST.DBLINK
// DD DISP=SHR, DSN=BMCALM.TEST.XXLINK
// DD DISP=SHR, DSN=BMCALM.TEST.XBLINK
// DD DISP=SHR, DSN=SYS3.DECI.DSNEXIT
// DD DISP=SHR, DSN=CSGI.DB2V81M.DSNLOAD
```

Specifying the PACLOG data set DD statements

This topic describes the data sets that PACLOG uses.

Each data set is specified by a `ddname` (data definition name). You must specify all required data sets in the JCL.

Note

You do not need to specify DD statements for the input archive log data sets or the output copy data sets. PACLOG dynamically allocates these data sets.

- **(required) ALMIN**

 The input data set that contains one or more control statements. Attributes for this data set must be fixed-length records with a length of 80 (RECFM=F or FB, LRECL=80).

- **(required) ALMPRINT**

 The output for messages that are returned from PACLOG. PACLOG also echoes the contents of the ALMIN data set in the ALMPRINT output. ALMPRINT can be allocated to SYSOUT or to a data set with a data control block (DCB) of LRECL=121, RECFM=VBA.
(required) ALMOPTS

PACLOG reads the configuration options from the option set that the ARMOPTS parameter of the EXEC statement specifies. If you do not specify a value for that parameter, PACLOG uses the default option set (ARMSOPTS). You can temporarily override one or more configuration options by using the following ARMOPTS DD statement:

```
//ARMOPTS DD
ssid.
configurationOption=value
/*
```

Note

PACLOG and RECOVERY MANAGER for DB2 share the options file. If RECOVERY MANAGER is already installed on this subsystem, PACLOG should use the same data set as that used by RECOVERY MANAGER. The options file is common to all DB2 subsystems and contains the following information:

- Names of the archive history file
- Time stamps for each DB2 subsystem on which PACLOG is installed
- Name of the work unit which is common to all subsystems
- Bootstrap data set (BSDS)
- Production DSN load library for DB2

(Required) ALMMMSGS

The PACLOG messages data set created during installation with the default name of *hilvl.ALM.DBCNTL(ALMMMSGS)*. The data set must be allocated with DISP=SHR.

(Optional) BMCERROR

The output for compiler run time errors. If compiler errors are detected and BMCERROR is not present in the JCL, the errors are printed in the JES log. The data set can be allocated to SYSOUT or to a data set with a DCB of LRECL=121, RECFM=VBA.

(Optional) SYSUT1

The BSDS (either BSDS01 or BSDS02) for the subsystem named in the EXEC statement. For example //SYSUT1 DD DISP=SHR,DSN=DB21CAT.BSDS01. If it is not specified, PACLOG gets the BSDS name from the control options and dynamically allocates the BSDS.

(Optional) ALMLSTAT

A listing of the total number of records in the log for each record type. The data set can be allocated to SYSOUT or to a data set with a DCB of LRECL=133, RECFM=FBA.
■ *(optional) ALMOSTAT*

A listing of the total number of records in the log for each DB2 object. The data set can be allocated to SYSOUT or to a data set with a DCB of LRECL=133, RECFM=FBA.

■ *(required) ALMLIST1*

A listing of local primary archive log data sets that have been processed. The data set can be allocated to SYSOUT or to a data set with a DCB of LRECL=133, RECFM=FBA.

■ *(required) ALMLIST2*

A listing of local secondary archive log data sets that have been processed. The data set can be allocated to SYSOUT or to a data set with a DCB of LRECL=133, RECFM=FBA.

■ *(optional) ALMLIST3*

A listing of offsite archive log data sets for which the primary offsite copy was processed. The data set can be allocated to SYSOUT or to a data set with a DCB of LRECL=133, RECFM=FBA.

■ *(optional) ALMLIST4*

A listing of offsite archive log data sets for which the secondary offsite copy was processed. The data set can be allocated to SYSOUT or to a data set with a DCB of LRECL=133, RECFM=FBA.

■ *(required) ALMXPIRE*

A listing of all expired archive log data sets (those archive log data sets found in the archive history file but which no longer exist in the BSDS). The data set can be allocated to SYSOUT or to a data set with a DCB of LRECL=133, RECFM=FBA.

Note

Data sets that are no longer represented in the BSDS are deleted automatically from the archive history file by PACLOG. However, PACLOG does not delete the physical data set.

Sample jobs

This topic provides sample PACLOG JCL.

For additional sample jobs, see “Examples of PACLOG JCL” on page 77.
Figure 21 on page 69 shows a sample of a PACLOG job that processes a primary archive log data set and writes the filtered output to disk. The job completes after creating and cataloging the processed data set.

The BSDS, PACLOG messages and options, print files, and listings of processed log data sets and expired log data sets are all specified in the JCL by the DD statements described in previous topics.

The ALMIN DD statement specifies log processing options. By default, PACLOG compresses the processed log data set before writing it to the disk.

Figure 21: Sample job for processing an archive log data set

```cpp
MVSXV1.RMD.JCL121.ALMMAIN.DOCOUT(PACLOG02) - 01.05
===>
//* *************************************************************** */
// ALMMAIN EXEC PGM=ALMMAIN,
//              PARM='DEFQ,ALMOPTS=ALM
$OPTS'
//              REGION=4M
//*     INCLUDE MEMBER=ALMSTEP
// STEPLIB  DD DSN=RMD.TEST1210.BMCPSWD.ALM,DISP=SHR
//           DD DSN=RMD.TEST1210.UDBLINK,DISP=SHR
//           DD DSN=SCC.TEST1210.SCCLINK,DISP=SHR
//           DD DSN=SCC.TEST1210.BMCCLINK,DISP=SHR
//           DD DSN=RMD.TEST1210.BMCLINK,DISP=SHR
//           DD DSN=&DB2EXIT,DISP=SHR
//           DD DSN=&DB2LOAD,DISP=SHR
//      INCLUDE MEMBER=ALMMSG5S
// ALMOPTS   DD *
// DEFQ.HIST=ARM.DEFQ.HIST.VVR1210A
/*
// ARMPRT        DD SYSOUT=*
// ARMERROR     DD SYSOUT=*
// ALMERROR     DD SYSOUT=*
// ALMPRT       DD SYSOUT=*
// ALMLIS1      DD SYSOUT=*
// ALMLIS2      DD SYSOUT=*
// ALMXPIRE     DD SYSOUT=*
// ALMIN        DD *
ARCHIVE3 PREFIX ARM.DALM3.DEFQL3
  TAPE UNIT CARTVTS
  F1LTERTS (DB001.TS001, DB001.TS002)
  FILTERIX ALL FILTERRECTYPE ALL
  STACK YES RETPD 2
  TRTCH NOCOMP
ARCHIVE4 PREFIX ARM.DALM3.DEFQL4
  TAPE UNIT CARTVTS
  F1LTERTS (DB001.TS001, DB001.TS002)
  FILTERIX ALL FILTERRECTYPE ALL
  STACK YES RETPD 2
  TRTCH NOCOMP
LIMIT RBARANGE OD113060000 FFFFFFFF
ZIIP ENABLED
/*
// *************************************************************** */
```

The output shown in Figure 22 on page 70 echoes the ALMIN control statement from the JCL, provides progress reports on the operations performed by PACLOG, and provides the following statistics:
- The percentage of compression
- The filtered byte count for each filter option that is specified
- The total filtered byte count
- The total unfiltered byte count
- The total processed byte count
- The unfiltered byte count for uncommitted transactions
- The unfiltered byte count for records that are required by DB2

Note
In jobs that process more than one log data set, separate statistics are provided for each one.
The output shown in Figure 23 on page 71 shows the total number of records in the log for each record type.

Note

The record type numbers are described in the IBM DB2 administration guide.

Figure 23: Total log records by type (ALMLSTAT)

```
** PACLOG - V1.4.00 ***** BMC SOFTWARE, INC. ***** 05/17/2006 1300010000 00020000
DEB2CAT.ARCHLOG1.D06137.T1238038.A0001368 00030000
BMC936561 RECORD TYPE 00020001 - 25 RECORDS TOTALING 40000040000
BMC936561 RECORD TYPE 00020002 - 9 RECORDS TOTALING 90000050000
BMC936561 RECORD TYPE 00020003 - 9 RECORDS TOTALING 37800060000
BMC936561 RECORD TYPE 00020004 - 12 RECORDS TOTALING 51600070000
BMC936561 RECORD TYPE 00020007 - 702 RECORDS TOTALING 14866800080000
BMC936561 RECORD TYPE 00020009 - 48 RECORDS TOTALING 489600090000
BMC936561 RECORD TYPE 00080002 - 1 RECORDS TOTALING 13400100000
BMC936561 RECORD TYPE 00080003 - 1 RECORDS TOTALING 13400110000
BMC936561 RECORD TYPE 00100001 - 7 RECORDS TOTALING 127400120000
BMC936561 RECORD TYPE 00100002 - 7 RECORDS TOTALING 77000130000
BMC936561 RECORD TYPE 00200001 - 57 RECORDS TOTALING 820800140000
BMC936561 RECORD TYPE 00200002 - 56 RECORDS TOTALING 515200150000
BMC936561 RECORD TYPE 0020000C - 56 RECORDS TOTALING 291200160000
BMC936561 RECORD TYPE 00200010 - 56 RECORDS TOTALING 291200170000
BMC936561 RECORD TYPE 00200020 - 1 RECORDS TOTALING 52000180000
BMC936561 RECORD TYPE 00200040 - 1 RECORDS TOTALING 52000190000
BMC936561 RECORD TYPE 01000001 - 448 RECORDS TOTALING 197120020000
BMC936561 RECORD TYPE 01000010 - 7 RECORDS TOTALING 44800210000
BMC936561 RECORD TYPE 01000017 - 7 RECORDS TOTALING 48200220000
BMC936561 RECORD TYPE 01000031 - 7 RECORDS TOTALING 71400230000
BMC936561 RECORD TYPE 01020005 - 97 RECORDS TOTALING 1670800240000
BMC936561 RECORD TYPE 04000003 - 14 RECORDS TOTALING 85400250000
BMC936561 RECORD TYPE 04000019 - 7 RECORDS TOTALING 107900260000
BMC936561 RECORD TYPE 06000001 - 311048 RECORDS TOTALING 442611640270000
BMC936561 RECORD TYPE 06000003 - 14 RECORDS TOTALING 85400280000
BMC936561 RECORD TYPE 06000019 - 152 RECORDS TOTALING 1517600290000
BMC936561 RECORD TYPE 2100001D - 5201 RECORDS TOTALING 56410900300000
BMC936561 RECORD TYPE 22000014 - 21 RECORDS TOTALING 98700310000
BMC936561 RECORD TYPE 2600001D - 64 RECORDS TOTALING 972800320000
BMC936561 RECORD TYPE Totals - 318135 RECORDS TOTALING 450729730330000
```
The output shown in Figure 24 on page 72 show the total number of records in the log for each DB2 object.

Figure 24: Total log records by DB2 object (ALMOSTAT)

<table>
<thead>
<tr>
<th>DBNAME</th>
<th>OBNAME</th>
<th>DBID/OBID</th>
<th>TYP</th>
<th>RECORDS</th>
<th>BYTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSNDB01</td>
<td>DSNLUX01</td>
<td>00010044</td>
<td>X</td>
<td>2</td>
<td>180</td>
</tr>
<tr>
<td>DSNDB01</td>
<td>DSNLUX02</td>
<td>00010046</td>
<td>X</td>
<td>10</td>
<td>1022</td>
</tr>
<tr>
<td>DSNDB01</td>
<td>DSNLLX01</td>
<td>00010087</td>
<td>X</td>
<td>19</td>
<td>1596</td>
</tr>
<tr>
<td>DSNDB01</td>
<td>DSNLLX01</td>
<td>00010086</td>
<td>X</td>
<td>19</td>
<td>1672</td>
</tr>
<tr>
<td>DSNDB01</td>
<td>SYSUTILX</td>
<td>000100AF</td>
<td>T</td>
<td>28</td>
<td>56538</td>
</tr>
<tr>
<td>DSNDB01</td>
<td>SYSLGRNX</td>
<td>000100CF</td>
<td>T</td>
<td>38</td>
<td>4230</td>
</tr>
<tr>
<td>DSNDB06</td>
<td>SYSCOPY</td>
<td>00060010</td>
<td>X</td>
<td>17</td>
<td>3627</td>
</tr>
<tr>
<td>DSNDB06</td>
<td>DSNUCH01</td>
<td>00060072</td>
<td>X</td>
<td>14</td>
<td>1484</td>
</tr>
<tr>
<td>DSNDB06</td>
<td>DSNUXC01</td>
<td>00060076</td>
<td>X</td>
<td>14</td>
<td>1652</td>
</tr>
<tr>
<td>BMCUTIL</td>
<td>BMCUTIL</td>
<td>01040002</td>
<td>T</td>
<td>4</td>
<td>586</td>
</tr>
<tr>
<td>BMCUTIL</td>
<td>BMCSYNC</td>
<td>01040004</td>
<td>T</td>
<td>47</td>
<td>20795</td>
</tr>
<tr>
<td>BMCUTIL</td>
<td>CUTX</td>
<td>01040036</td>
<td>X</td>
<td>2</td>
<td>180</td>
</tr>
<tr>
<td>BMCUTIL</td>
<td>SYX1</td>
<td>01040038</td>
<td>X</td>
<td>26</td>
<td>3248</td>
</tr>
<tr>
<td>BMCUTIL</td>
<td>SYX2</td>
<td>0104003A</td>
<td>X</td>
<td>26</td>
<td>2706</td>
</tr>
<tr>
<td>BMCUTIL</td>
<td>CUTX2</td>
<td>0104005E</td>
<td>X</td>
<td>2</td>
<td>212</td>
</tr>
<tr>
<td>BMCUTIL</td>
<td>SYX3</td>
<td>01040060</td>
<td>X</td>
<td>25</td>
<td>2303</td>
</tr>
<tr>
<td>ARMLOGSP</td>
<td>TS80N5</td>
<td>01120007</td>
<td>T</td>
<td>80000</td>
<td>8920000</td>
</tr>
<tr>
<td>ARMLOGSP</td>
<td>TS80P6</td>
<td>0112000C</td>
<td>T</td>
<td>40000</td>
<td>5480000</td>
</tr>
<tr>
<td>ARMLOGSP</td>
<td>TS80P9</td>
<td>01120013</td>
<td>T</td>
<td>60000</td>
<td>7200000</td>
</tr>
<tr>
<td>ARMLOGSP</td>
<td>TS80N10</td>
<td>0112001B</td>
<td>T</td>
<td>94199</td>
<td>15669412</td>
</tr>
<tr>
<td>ARMLOGSP</td>
<td>TS80N14</td>
<td>01120020</td>
<td>T</td>
<td>33697</td>
<td>6335036</td>
</tr>
</tbody>
</table>

Archive log management reports

PACLOG provides the following management reports for log data sets, all of which are generated by DD statements in the JCL.

The figures in “Processed archive log data set report” on page 73 provide samples of these reports.

- The processed archive log data set report provides lists of archive log data sets that have been processed by the most recently completed PACLOG job.

PACLOG generates two lists: one of all primary copies of the log data sets that have been processed, and a second of all secondary copies processed. These lists are written to the data sets that are specified by the ALMLIST1, ALMLIST2, ALMLIST3, and ALMLIST4 DD statements, which must be included in your PACLOG JCL.

- The expired archive log data set report lists all archive log data sets (found by the most recently completed PACLOG job) in the BMC archive history file that have been dropped from the BSDS since the prior PACLOG job.

These archive log data sets are also removed from the archive history file. This list is written to the data set that is specified by the ALMXPIRE DD statement, which you must include in your PACLOG JCL.
You can also use the output from all reports as input to other tools to facilitate further processing of the data sets that are included in the reports.

Processed archive log data set report

The following figure shows a sample processed primary archive log data set report.

Three archive log data sets were processed, and the lists were written to the file specified by the ALMLIST1 statement.

Figure 25: Sample of a processed primary archive log report

<table>
<thead>
<tr>
<th>ALMLIST1</th>
<th>DB21CAT.ARCHLOG1.A0003766</th>
<th>PROCESSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALMLIST1</td>
<td>DB21CAT.ARCHLOG1.A0003767</td>
<td>PROCESSED</td>
</tr>
<tr>
<td>ALMLIST1</td>
<td>DB21CAT.ARCHLOG1.A0003768</td>
<td>PROCESSED</td>
</tr>
</tbody>
</table>

Figure 26 on page 73 shows a sample processed secondary log data set report. Again, three log data sets were processed. The lists were written to the file specified by the ALMLIST2 DD statement.

Figure 26: Sample of a processed secondary archive log report

<table>
<thead>
<tr>
<th>ALMLIST2</th>
<th>DB21CAT.ARCHLOG2.A0003766</th>
<th>PROCESSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALMLIST2</td>
<td>DB21CAT.ARCHLOG2.A0003767</td>
<td>PROCESSED</td>
</tr>
<tr>
<td>ALMLIST2</td>
<td>DB21CAT.ARCHLOG2.A0003768</td>
<td>PROCESSED</td>
</tr>
</tbody>
</table>

For more information, see “Specifying the PACLOG data set DD statements” on page 66. Similar reports are available for the offsite copies by specifying the by ALMLIST3 and ALMLIST4 DD statements.

Expired archive log data sets report

The following figure shows a sample of an expired archive log data set report.

It shows six archive log data sets that are no longer in the BSDS. The list is written to the file that is specified by the ALMXPIRE DD statement (see “Specifying the PACLOG data set DD statements” on page 66).

Figure 27: Sample of an expired archive log report

<table>
<thead>
<tr>
<th>ALMXPIRE</th>
<th>DB21CAT.ARCHLOG1.A0003264</th>
<th>NO LONGER IN ARCHIVE HISTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALMXPIRE</td>
<td>DB21CAT.ARCHLOG2.A0003264</td>
<td>NO LONGER IN ARCHIVE HISTORY</td>
</tr>
<tr>
<td>ALMXPIRE</td>
<td>BMCARM.DB21CY3I.A0003264</td>
<td>NO LONGER IN ARCHIVE HISTORY</td>
</tr>
<tr>
<td>ALMXPIRE</td>
<td>BMCARM.DB21CY4I.A0003264</td>
<td>NO LONGER IN ARCHIVE HISTORY</td>
</tr>
<tr>
<td>ALMXPIRE</td>
<td>DB21CAT.ARCHLOG1.A0003265</td>
<td>NO LONGER IN ARCHIVE HISTORY</td>
</tr>
<tr>
<td>ALMXPIRE</td>
<td>DB21CAT.ARCHLOG2.A0003265</td>
<td>NO LONGER IN ARCHIVE HISTORY</td>
</tr>
</tbody>
</table>
Using output from the reports

You can use the output from the processed log data set reports and the expired log data set report to perform further processing of the data sets that have been reported.

For example, you might want to delete the data sets that were reported by the expired log data set report.

To allow you to process the output from these reports, PACLOG writes a unique message for each completed report to the PACLOG messages file. You can customize this message to initiate further processing by the tool you want to use.

Table 5 on page 74 shows the messages and how you can use them. You can find the messages in the file indicated by the ALMMSGS DD statement, which is delivered as .DBCNTL(ALMMSGS). The listed messages are identified as 00651I, 00652I, 00663I, 00664I, and 00654I in the ALMMSGS member.

Table 5: Report messages

<table>
<thead>
<tr>
<th>Message number</th>
<th>Use for</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMC93651I</td>
<td>ALMLIST1 report postprocessing</td>
</tr>
<tr>
<td>BMC93652I</td>
<td>ALMLIST2 report postprocessing</td>
</tr>
<tr>
<td>BMC93663I</td>
<td>ALMLIST3 report postprocessing</td>
</tr>
<tr>
<td>BMC93664I</td>
<td>ALMLIST4 report postprocessing</td>
</tr>
<tr>
<td>BMC93654I</td>
<td>ALMXPIRE report postprocessing</td>
</tr>
</tbody>
</table>

You can customize the contents of each message to create appropriate syntax for postprocessing of the reports.

Note

It is important that you maintain the original number of % symbols in the message. These terms are used for variable substitution (such as data set name).

Running jobs and responding to processing errors

A PACLOG job runs as an OS/390 batch job that starts when you submit it for operation.
To execute a PACLOG job, you must have the proper authorizations. For more information, see “PACLOG authorizations” on page 25.

When you execute a PACLOG job, error messages might be issued. Some of the key error messages are discussed in the following subsection. For information about PACLOG messages, see the Backup and Recovery Products for DB2 Messages Manual.

If you encounter errors while running a PACLOG job, correct the errors and then execute the job again. You do not have to clean up any files that were created by the failed operation because PACLOG automatically does this for you.

The following error messages require special attention.

BMC93576E ALLOCATION FAILED FOR dsName

PACLOG attempted to process an archive log copy, but dynamic allocation of the named log data set failed. Additional messages are printed to the job log. This error usually occurs for one of the following reasons:

- The current BMC Software archive history file is not being used, which causes log data sets that have already been processed to be reprocessed. To correct the situation, ensure that the current archive history file is available, and then execute the job again.

- You do not have the necessary authorization to create the data set that is named in the message. To correct the situation, you must be granted the necessary authorization, or the prefix specified in the control statement must be changed to a name that you are authorized to use. After the authorization problem is fixed, execute the job again.

BMC93584E UNABLE TO OPEN dsName

PACLOG could not open the named data set. This error usually occurs for one of the following reasons:

- The named data set is old and is no longer available. To correct the situation, use the LIMIT keyword to limit processing to log data sets that are available, and then execute the job again.

- If the named data set is a current input archive log data set (an original unprocessed DB2 archive log data set) and should be available, check the job log for further information about the failure. Recover the named archive log data set from the corresponding copy 2 (for example, by using RECOVERY MANAGER for DB2), and then execute the job again.
BMC93693E UNCATALOGED ARCHIVE LOG NOT SUPPORTED

dsName

PACLOG found an original archive log data set in the BSDS that was not cataloged. This situation occurs when CATLG NO is specified in the subsystem parameters (ZPARMs). PACLOG does not support uncataloged archive log data sets.

Ensure that your original archive log data sets are cataloged if you expect to use PACLOG to process them.

BMC93694E CATALOG FAILED FOR DSNAME *dsName*, RC = 8

PACLOG attempted to write an archive log data set copy to tape, but dynamic allocation of the copy failed. Additional messages are printed to the job log. This error usually occurs for one of the following reasons:

- The BMC Software archive history file is not being used, and this causes log data sets that have already been processed to be reprocessed. To correct the situation, ensure that the current archive history file is available, and then execute the job again.

- You do not have the necessary authorization to create the data set name that is indicated in the message. To correct the situation, you must be granted the necessary authorization, or the prefix that is specified in the control statement must be changed to a name that you are authorized to use. After the authorization problem is fixed, execute the job again.
Examples of PACLOG JCL

This chapter provides examples of PACLOG JCL.

Determining archive log size reduction

Run a job such as that shown in the following figure to demonstrate the reduction in the size of the original archive log data sets that record filtering and subsequent compression can achieve.

The compressed logs are written to disk. The job runs in simulation mode, so no changes are made to the original log data sets. Message BMC93658I (written to the ALMPRINT data set) provides the percentage compression that was achieved by PACLOG for this job.

For clarity, all of the required processing in this example is specified by the appropriate keywords in the ALMIN data set. You can simplify the syntax shown in Figure 28 on page 77 by omitting the keywords that specify defaults, as shown in the following syntax:

```
LIMIT LOGS 3
SIMULATE NOKEEP
ARCHIVE1 REDO
```

For more syntax information, see “PACLOG syntax” on page 49. For DD statement information, see “Building PACLOG jobs” on page 65.

Figure 28: Sample job for determining archive log size reduction

```
//PACLOG1 JOB (5212), 'EXAMPLE 1', CLASS=A, MSGCLASS=X
 confessed bitten by the availability of processor area.
 //******************************************************************************
 /// THIS JOB CAN BE USED TO DETERMINE THE DATA COMPRESSION
 /// PACLOG WILL PROVIDE ON A GIVEN DB2 SUBSYSTEM, USING A
 /// GIVEN NUMBER OF ARCHIVE LOG DATA SETS. IT WILL NOT
 /// MAKE ANY MODIFICATIONS TO YOUR DB2 ARCHIVE LOGS!
 ///
 /// IT CAN BE RUN MULTIPLE TIMES AGAINST THE SAME DB2 SUBSYSTEM,
 /// VARYING THE NUMBER OF LOGS PROCESSED TO DETERMINE HOW THE
 /// REDUCTION PERCENTAGE IS AFFECTED.
 ///
 /// THE JOB AS SHOWN BELOW, WILL INPUT THE LAST THREE ARCHIVE LOG
 /// DATA SETS AND CREATE THREE FILES PER ARCHIVE LOG. EACH FILE
```
Using data compression to tape

Run a job such that shown in the following figure to determine the impact of writing processed archive logs to tape.

After filtering, the processed logs are compressed by using the tape drive hardware compression that is specified by TRTCH COMP. Because the job runs in simulation mode, it makes no changes to the original archive log data sets. Message BMC93658I (written to the ALMPRINT data set) provides the percentage compression that
PACLOG achieved for this job. See Figure 29 on page 79 for a sample job. The job header provides more detailed information.

Note

This job does not update the archive history file.

All processing is specified in the ALMIN data set. You can simplify the syntax shown in Figure 29 on page 79 by omitting the keywords that specify defaults, as shown in the following example:

```
LIMIT LOGS 3
SIMULATE NOKEEP
ARCHIVE2
TAPE UNIT CART RETPD 1 STACK YES TRTCH COMP REDO
```

For more syntax information, see “PACLOG syntax” on page 49. For DD statement information, see “Building PACLOG jobs” on page 65.

Figure 29: Sample job for data compression to tape

```
//PACLOG2 JOB (5212),‘EXAMPLE 2’,CLASS=A,MSGCLASS=X
//***********************************************************************
//*  THIS JOB CAN BE USED TO SEE THE EFFECT OF USING TRTCH COMP
//*  TO STACKED TAPE OUTPUT.  IT WILL NOT MAKE ANY MODIFICATIONS
//*  TO YOUR DB2 ARCHIVE LOGS!
//*  LIKE EXAMPLE 1, IT CAN BE RUN MULTIPLE TIMES AGAINST THE
//*  SAME DB2 SUBSYSTEM, VARYING THE NUMBER OF LOGS PROCESSED
//*  TO DETERMINE HOW THE COMPRESSION PERCENTAGE IS AFFECTED.
//*  THE JOB AS SHOWN BELOW, WILL INPUT THE LAST THREE ARCHIVE LOG
//*  DATA SETS AND CREATE THREE FILES PER ARCHIVE LOG.  THESE FILES
//*  WILL NOT BE CATALOGED, BUT THE STACKED TAPE WILL HAVE A ONE
//*  DAY RETENTION PERIOD.  EACH FILE NAME WILL BE BUILT USING THE
//*  ARCHIVE LOG DATA SET NAME AS FOLLOWS:
//*    <ARCLOG2PREFIX>.Y<DSNUMBER>  FOR THE BSDS
//*    <ARCLOG2PREFIX>.Z<DSNUMBER>  FOR THE ARCHIVE LOG DATA SET
//*    <ARCLOG2PREFIX>.H<DSNUMBER>  FOR THE PACLOG HISTORY FILE
//*  NOTE: THIS JOB DOES NOT UPDATE THE PACLOG HISTORY FILE, SO
//*  IF IT IS RUN REPEATEDLY, IT WILL PROCESS THE SAME ARCHIVE LOGS
//*  PROCESSED PREVIOUSLY.
//***********************************************************************
//COMP2 EXEC PGM=ALMMAIN,REGION=4M,
//            PARM=‘DECI’                        <=== DESIRED DB2 SSID
//STEPLIB  DD DISP=SHR,DSN=BMCALM.TEST.OVERRIDE1
//         DD DISP=SHR,DSN=BMCALM.DBLINK         <=== PACLOG LOAD LIB
//         DD DISP=SHR,DSN=BMCALM.XXLINK         <=== INFRASTRUCTURE 1
//         DD DISP=SHR,DSN=BMCALM.BBLINK         <=== INFRASTRUCTURE 2
//         DD DISP=SHR,DSN=SYS3.DECI.DSNEXIT     <=== DB2 DSNEXIT LIB
//         DD DISP=SHR,DSN=SYS2.DB2V81M.DSNLOAD  <=== DB2 DSNLOAD LIB
//SYSUT1   DD DISP=SHR,DSN=DECICAT.BSDS01        <=== DB2 BSDS
//ALMMSGS  DD DISP=SHR,DSN=BMCALM.DBCNTL(ALMMSGS)   <=== MSGS DS
//ALM$OPTS  DD DISP=SHR,DSN=BMCALM.DBCNTL(ALM$OPTS)  <=== OPTS DS
//*   /ALMPRINT DD SYSOUT=*                  REQUIRED PRINT OUTPUT
//*   /ALMXPIRE DD SYSOUT=*                 REQUIRED EXPIRED ARCHIVE REPORT
//*   /ALMLIST1 DD SYSOUT=*                REQUIRED LOCAL PRIMARY ARCHIVE LIST
```
Processing archive logs

Run a job such that shown in the following figure to compress archive log data sets.

The job replaces the original archive log data sets with the processed log data sets. The data sets are filtered and compressed. The job header provides information about how you can ensure that the objects that you want to recover will use the archive log.

All processing is specified in the ALMIN data set. You can simplify the syntax shown in Figure 30 on page 80 by omitting the keywords that specify defaults, as shown in the following example:

```plaintext
LIMIT LOGS 3
SIMULATE NOKEEP
ARCHIVE2
    TAPE UNIT CART RETPD 1 STACK YES TRTCH COMP
    FILTERIX ALL
    FILTERRECTYPE ALL
    REDO
```

For more syntax information, see “PACLOG syntax” on page 49. For DD statement information, see “Building PACLOG jobs” on page 65.

Figure 30: Sample job for compressing archive logs

```plaintext
//PACLOG3 JOB (5212), 'EXAMPLE 3', CLASS=A, MSGCLASS=X
/***************************************************************
/* THIS JOB CAN BE USED TO COMPRESS ARCHIVE LOG DATA SETS FOR USE
/* IN RECOVERY TESTING. IT WILL REPLACE YOUR ARCHIVE LOG DATA
/* SETS WITH COMPRESSED DATA SETS! TO UNCOMPRESS THE RESULTING
/* DATA SETS, REFER TO EXAMPLE 7.
/* BEFORE YOU START, IT IS BEST TO CHECK THAT YOU HAVE OBJECTS
/* THAT WILL USE THE ARCHIVE DATA SETS FOR RECOVERY. DO THIS
/* BY RUNNING BMC’S RECOVER PLUS WITH THE ANALYZE ONLY OPTION.
/* YOU COULD ALSO RUN THE DB2 REPORT RECOVERY JOB AND CHECK
/* THAT ANY COPIES REQUIRED ARE AVAILABLE.
/* THE JOB AS SHOWN BELOW, WILL PROCESS THE LAST THREE ARCHIVE LOG
/* DATA SETS. IF THE DATA FOR YOUR RECOVERY IS FURTHER BACK IN
/* THE ARCHIVE LOGS, CHANGE THE NUMBER ACCORDINGLY OR USE
/* "LIMIT RBARANGE <STARTRBA> FFFFFFFFFFF" INSTEAD OF "LIMIT LOG"
```
Limiting the archive logs that are processed

Run a job such that shown in the following figure to begin running production jobs.

It processes all archive logs starting with the log that has the RBA that is specified by the value after the LIMIT keyword. The job header provides more detail. Note the recommendation about using the LIMIT option when you first start running this job.

All processing is specified in the ALMIN data set. You can simplify the syntax shown in Figure 31 on page 82 by omitting the keywords that specify defaults, as shown in the following example:

```
LIMIT RBARANGE <startRBA> FFFFFFFF
ARCHIVE1
ARCHIVE2
TAPE UNIT CART RETPD 31 STACK YES TRTCH COMP
```

For more information, see the following topics:
Figure 31: Sample job using the LIMIT option

```plaintext
//PACLOG4 JOB (5212), 'EXAMPLE 4', CLASS=A, MSGCLASS=X
//***************************************************************
//*  THIS JOB CAN BE USED TO START RUNNING PRODUCTION PACLOG JOBS.
//*  IT WILL PROCESS ALL ARCHIVE LOGS CREATED SINCE THE PREVIOUS
//*  EXECUTION OF PACLOG. THIS JOB REPLACES YOUR ARCHIVE LOG
//*  DATA SETS WITH COMPRESSED DATA SETS, CREATING ARCHIVE 1 LOGS
//*  TO DASD AND ARCHIVE 2 LOGS TO STACKED TAPE. SAVING THE TAPE(S)
//*  FOR 31 DAYS.
//*  REPLACE THE "<STARTRBA>" VALUE IN THE LIMIT STATEMENT BELOW
//*  WITH THE STARTRBA OF THE FIRST ARCHIVE LOG THAT YOU WANT PACLOG
//*  TO PROCESS. THIS VALUE SHOULD NOT BE CHANGED ON SUBSEQUENT
//*  PACLOG Executions until PACLOG has processed all logs recorded
//*  IN THE BSDS. THEN THE LIMIT STATEMENT SHOULD BE REMOVED.
//*  REFER TO CHAPTER 2 "DECIDING WHICH LOGS TO PROCESS".
//***************************************************************
//COMP EXEC PGM=ALMMAIN, REGION=4M,
//        PARM='DECI'                        <=== DESIRED DB2 SSID
//STEPLIB DD DISP=SHR, DSN=BMCALM.TEST.OVERRIDE1
//        DD DISP=SHR, DSN=BMCALM.DBLINK         <=== PACLOG LOAD LIB
//        DD DISP=SHR, DSN=BMCALM.XXLINK         <=== INFRASTRUCTURE 1
//        DD DISP=SHR, DSN=BMCALM.BBLINK         <=== INFRASTRUCTURE 2
//        DD DISP=SHR, DSN=SYS3.DECI.DSNEXIT     <=== DB2 DSNEXIT LIB
//        DD DISP=SHR, DSN=SYS2.DB2V81M.DSNLOAD  <=== DB2 DSNLOAD LIB
//SYSUT1 DD DISP=SHR, DSN=DECICAT.BSDS01        <=== DB2 BSDS
//ALMMGS DD DISP=SHR, DSN=BMCALM.DBCNTL(ALMMGS) <=== MSGS DS
//ALMOPTS DD DISP=SHR, DSN=BMCALM.DBCNTL(ALM$OPTS)  <=== OPTS DS
//ALMPRINT DD SYSOUT=*  REQUIRED PRINT OUTPUT
//ALMPRERE DD SYSOUT=*  REQUIRED EXPIRED ARCHIVE REPORT
//ALMLIST1 DD SYSOUT=* REQUIRED LOCAL PRIMARY ARCHIVE LIST
//ALMLIST2 DD SYSOUT=* REQUIRED LOCAL SECONDARY ARCHIVE LIST
//ALMLIST3 DD SYSOUT=* OPTIONAL OFFSITE PRIMARY ARCHIVE LIST
//ALMLIST4 DD SYSOUT=* OPTIONAL OFFSITE SECONDARY ARCHIVE LIST
//ALMLSTAT DD SYSOUT=* OPTIONAL RECORD TYPE REPORT
//BMCERROR DD SYSOUT=* OPTIONAL SAS/C ERROR MESSAGES
//ALMIN DD *

LIMIT RBARANGE <STARTRBA> FFFFFFFFFFFF

ARCHIVE1
    DISK UNIT SYSALLDA
    COMPRESS YES
    FILTERIX ALL
    FILTERRECTYPE ALL

ARCHIVE2
    TAPE UNIT CART RETPD 31 STACK YES TRTCH COMP
    FILTERIX ALL
    FILTERRECTYPE ALL
```
Creating offsite copies of archive logs

Run a job such that shown in the following figure to create archive log copies 3 and 4 to send to your remote site for storage.

The copies are stacked on tape and are retained for a period of 31 days. The job header provides more detail. Note the recommendation about using the LIMIT option when you first start running this job.

All processing is specified in the AMLIN data set. You can simplify the syntax shown in Figure 32 on page 83 by omitting the keywords that specify defaults, as shown in the following example:

```
ARCHIVE3 PREFIX <vcatname>.BMCLOG1
  TAPE UNIT CART RETPD 31 STACK YES TRTCH COMP
ARCHIVE4 PREFIX <vcatname>.BMCLOG2
  TAPE UNIT CART RETPD 31 STACK YES TRTCH COMP
```

For more syntax information, see the following sections:

- “PACLOG syntax” on page 49
- “Building PACLOG jobs” on page 65
- “Deciding which logs to process” on page 28

Figure 32: Sample job for offsite log creation

```
//PACLOG5 JOB (5212),'EXAMPLE 5',CLASS=A,MSGCLASS=X
//******************************************************************************
//** THIS JOB CAN BE USED TO CREATE THE ARCHIVE 3 AND 4 COPIES TO SEND TO YOUR REMOTE SITE STORAGE.
//** IT WILL PROCESS ALL ARCHIVE LOGS THAT DO NOT CURRENTLY HAVE COPIES 3 & 4. IT WILL MAKE THESE COPIES TO STACKED TAPE, COMPRESSED WITH THE TRTCH OPTION AND SAVE THE TAPES FOR 31 DAYS.
//** BE SURE TO EDIT THE PREFIX NAMES FOR ARCHIVE3 AND ARCHIVE4 BELOW TO USE A VALID HI-LEVEL QUALIFIER FOR THE NEW DATA SETS.
//** NOTE: WHEN YOU FIRST START RUNNING THIS JOB, PICK A STARTING RBA FOR THE FIRST PROCESS AND ADD "LIMIT RBARANGE <STARTRBA> FFFFFFFFR" TO AVOID PROCESSING OF EVERY DATA SET RECORDED IN THE BSDS.
//** REFER TO CHAPTER 2 "DECIDING WHICH LOGS TO PROCESS".
//******************************************************************************
//COMP   EXEC PGM=ALMMAIN,REGION=4M,
//      PARM='DECI'                        <=== DESIRED DB2 SSID
//STEPLIB DD DISP=SHR,DSN=BMCALM.TEST.OVERRIDE1
//      DD DISP=SHR,DSN=BMCALM.DBLINK      <=== PACLOG LOAD LIB
//      DD DISP=SHR,DSN=BMCALM.XXLINK      <=== INFRASTRUCTURE 1
//      DD DISP=SHR,DSN=BMCALM.BBLINK      <=== INFRASTRUCTURE 2
//      DD DISP=SHR,DSN=SYS3.DECI.DSNEXIT   <=== DB2 DSNEXIT LIB
//      DD DISP=SHR,DSN=SYS2.DB2V81M.DSNLOAD <=== DB2 DSNLOAD LIB
//SYSUT1  DD DISP=SHR,DSN=DECICAT.BSDS01   <=== BSDS
//ALMMSGS DD DISP=SHR,DSN=BMCCALM.DBCNTL(ALMMSGS)   <=== MSGS DS
```
Printing the PACLOG history file

Run a job such that shown in the following figure to print the PACLOG history file.

The history file includes the following information:

- Whether PACLOG has processed the file
- Whether index records have been dropped
- Whether record types have been dropped
- Whether table space records have been dropped

Figure 33: Sample job for printing the PACLOG history file

```bash
//PACLOG6 JOB (5212), 'EXAMPLE 6', CLASS=A, MSGCLASS=X
/**********************************************************************
/* THIS JOB CAN BE USED TO PRINT THE ENTRIES IN THE PACLOG
/* HISTORY FILE.
/*/ FOR DATA IN THE HISTORY FILE, ALMHSTP WILL REPORT AS FOLLOWS:
/*/ BMC93860I 500 ARC PR IX RT TS RBA <STARTRBA> - <ENDRBA>
/*/ 1 Y Y Y N DBBHCAT.ARCHLOG1.A0003285
/*/ 2 Y Y Y N DBBHCAT.ARCHLOG2.A0003285
/*/ WHERE THE NUMBER AFTER THE MESSAGE ID IS A RELATIVE BSDS ENTRY
/*/ NUMBER AND EACH MESSAGE HAS UP TO FOUR DISPLAY LINES, ONE FOR
/*/ EACH COPY OF THE ARCHIVE LOG. THE Y/N FLAGS SHOW PROCESSING
/*/ AS FOLLOWS:
/*/ PR HAS PACLOG HAS PROCESSED THE FILE?
/*/ IX HAVE INDEX RECORDS BEEN DROPPED?
/*/ RT HAVE RECORD TYPES BEEN DROPPED?
```
Uncompress archive log data sets

Run a job such that shown in the following figure to uncompress the archive log data sets previously processed with PACLOG.

The resulting data sets must be placed on DASD but can be migrated to tape using the data set migration procedures. Before submitting this job, check the history file to determine the STARTRBA of the oldest log processed by PACLOG (see Figure 34 on page 85 to view the job that prints the history file).

Figure 34: Sample job to uncompress archive log data sets

```plaintext
/*
  THIS JOB CAN BE USED TO UNCOMPRESS THE ARCHIVE LOG DATA SETS
  PREVIOUSLY PROCESSED WITH PACLOG. THE RESULTING DATA SETS
  MUST BE PLACED ON DASD BUT MAY BE MIGRATED TO TAPE USING THE
  DATA SET MIGRATION PROCEDURES IN PLACE IN YOUR SHOP.
  BEFORE SUBMITTING THIS JOB, CHECK THE HISTORY FILE TO DETERMINE
  THE STARTRBA OF THE OLDEST LOG PROCESSED BY PACLOG (SEE ALMEX06).
  ENTER THAT NUMBER IN THE <STARTTRBA> FIELD BELOW.
*/

//UNCOMP EXEC PGM=ALMMAIN,REGION=4M, 
  PARM='DECI'  
//STEPLIB DD DISP=SHR,DSN=BMCALM.TEST.OVERRIDE1 
  DD DISP=SHR,DSN=BMCALM.DBLINK  
  DD DISP=SHR,DSN=BMCALM.XXLINK  
  DD DISP=SHR,DSN=BMCALM.BBLINK  
  DD DISP=SHR,DSN=SYS3.DECI.DSNEXIT  
  DD DISP=SHR,DSN=SYS2.DB2V81M.DSNLOAD  
//SYSUT1 DD DISP=SHR,DSN=DECICAT.BSDS01  
//ALMMSGS DD DISP=SHR,DSN=BMCALM.DBCNTL(ALMMSGS)  
//ALMOPTS DD DISP=SHR,DSN=BMCALM.DBCNTL(ALM$OPTS)  
//ALMPRINT DD SYSDUMP  
//ALMXPRI DD SYSDUMP  
//ALMLIST1 DD SYSDUMP  
//ALMLIST2 DD SYSDUMP  
```

Chapter 6 Examples of PACLOG JCL 85
Create and initialize archive history data set

Run a job such as that shown in the following figure to create and initialize the archive history data set with six cylinders.

Figure 35: Sample job to create and initialize the archive history data set

```sql
//HISTORY JOB (5212), 'EXAMPLE', CLASS=A, MSGCLASS=X, REGION=4M, NOTIFY=&SYSUID
//*
//--================================================================--
//-- DB2 VERSION 8 (EXPANDED) REQUIRES 6 CYLINDERS
//-- USE THIS JOB TO CREATE AND INITIALIZE THE ARCHIVE HISTORY DATASET
//-- IF IT WAS NOT CREATED DURING THE PACLOG INSTALLATION.
//--================================================================--
//--* //ALMHIST EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=* //HISTORY DD DSN=BMCALM.DBW1.HISTORY, DISP=(,CATLG), // UNIT=SYSDA, SPACE=(CYL,6), // DCB=(RECFM=FB, LRECL=196, BLKSIZE=8820) //SYSIN DD * DSD OUTPUT=(HISTORY) FD NAME=HDR1, LENGTH=01, STARTLOC=02, PICTURE=1'B1' FD NAME=HDR2, LENGTH=01, STARTLOC=04, PICTURE=3'B196' CREATE QUANTITY=1, FILL=X'00', NAME=(HDR1, HDR2) /*
```
XCA subsystem control

The PACLOG product uses BMC Software Extended Compression Architecture (XCA) subsystems to implement log compression.

A major advantage of using subsystem architecture is that virtual storage requirements in user address spaces are significantly reduced. PACLOG requires two OS/390 subsystems—the BMC Software Primary Subsystem (BMCP) and the BMC Software Consolidated Subsystem (BCSS). PACLOG can share these subsystems with other BMC Software products.

Note

If PACLOG does not share these subsystems with other products, or if it shares them with only noncompression products, you might be able to improve PACLOG operation in your system. For more information, see “PACLOG processing only (PPO) mode” on page 99.

WARNING

If PACLOG does share the subsystems with other products, be aware that some of the subsystem control commands that are discussed in this chapter may affect those BMC Software products. Refer to the documentation for those products for more information.

You must use a one- to four-character name to identify the BMCP and the BCSS subsystems to OS/390. The install system uses the default names BMCP and BCSS. If either name conflicts with a non-BMC Software subsystem installed on your system, you can use the SUBSYSID parameter in the BMCP or BCSS startup procedure to change the subsystem names.

Note

If you change a subsystem name after the subsystem starts, you must perform an IPL.

The install system tailors two subsystem procedures: one to start BMCP (default procedure member name BMCBMCP), and one to start BCSS (default procedure member name BMCBCSS). Each procedure contains the required parameter and statements for the subsystem. If either default name conflicts with the name of
another procedure member, you can provide a different member name during installation.

Because the BMCP and BCSS subsystems are maintained independently of PACLOG, their maintenance levels do not correspond to the maintenance levels of PACLOG. When you install a new or updated BMC Software product that uses the BMCP and BCSS subsystems, use the Installation Check program to determine the level of the existing subsystems against the level of the subsystems from the distribution tape. Always use the highest level of subsystem code that is available.

Note

The default names for the started tasks that correspond to the BMCP and BCSS subsystems are BMCBMCP and BMCBCSS, respectively. To use other names, change them when you copy them to an OS/390 started tasks library.

The commands used in this chapter are a subset of the DATA ACCELERATOR Compression (DAC) product commands. For a complete list of DAC commands, see the *DATA ACCELERATOR Compression Reference Manual*.

BMCP (primary subsystem)

The BMCP subsystem establishes supervisory services and allows interception of the following supervisor call (SVC) requests for BCSS across multiple BMC Software products.

- OPEN
- BDL/FIND
- STOW
- CLOSE
- ATTACH
- LINK

These products share the BMCP, so only one copy of the BMCP is needed in your system. All such products continue to operate normally even if the BMCP is stopped.

BCSS (consolidated subsystem)

The BCSS subsystem performs processing of the intercepted SVCs.

It also manages the I/O to data sets for BMC Software product registration, collectively called the REGISET. PACLOG does not use the REGISET but other BMC
Software products such as DAC and the Application Enhancement Series (AES) product set require the REGISET.

More than one BCSS can be active on an OS/390 image. The AES product set and others can share a BCSS with PACLOG or use a separate BCSS. The BMCP ensures that each BCSS receives control at the proper time for the products that use that BCSS.

You must use the MODE parameter in the startup procedure to designate one (and only one) BCSS on an OS/390 image as the public BCSS. All others must be designated as private subsystems. The BMCP allows the public BCSS first access to an intercepted request. The BCSS that is used for PACLOG must be the public BCSS. For more information about sharing the BCSS with other BMC Software products, refer to the documentation for those products.

Data set for BCSS commands

The data set for BCSS commands contains BCSS and non-BCSS commands that need to be issued automatically after BCSS startup.

The data set must be a sequential data set or must be specified as a member of a partitioned data set. The name of this data set must appear on the COMMANDS DD statement in the BCSS startup JCL. When you install PACLOG with the recommended settings, a default data set for BCSS commands is created automatically.

You can edit the data set for BCSS commands to add or delete BCSS and non-BCSS commands. For information about the use of non-BCSS commands in that data set, see “MVS command support” on page 89.

When entering commands into the data set for BCSS commands, follow these guidelines:

- Omit the BCSS ID term (BCSSID) from each command.
 - For example, the bcssId DAC NONVSAM CL LOCAL command must appear in the data set for BCSS commands as DAC NONVSAM CL LOCAL.
- Start the commands in column one; enter only one command per line.
- Place an asterisk (*) in column one for comment lines.

MVS command support

You can insert non-BCSS commands, including OS/390 console commands, in the data set for BCSS commands.
After the BCSS has completely initialized and is prepared for processing, non-BCSS commands run sequentially.

You must prefix each OS/390 command in the data set for BCSS commands with MVS. For example, to issue an MVS start command after BCSS initialization is completed, add the following command to that data set:

```
MVS  S  PROC01
```

Subsystem naming conventions

The BMCP and BCSS subsystems use a four-character name to identify the subsystem to OS/390.

PACLOG installation uses the default names BMCP and BCSS. If either name conflicts with a non-BMC Software subsystem installed on your system, you can change that name during installation.

If you change the name of the BMCP or BCSS after the subsystem starts, you must perform an IPL.

Note

In the command examples in this manual, `bmcpld` and `bcssid` represent the one- to four-character BMCP or BCSS subsystem ID, respectively.

Address space dispatching priorities

When you are installing the JCL for the BMC Software subsystems (BMCP and BCSS), you must consider the dispatching priorities at your location.

The address spaces should run at a level that allows timely initialization and operation.

Note

BMC Software recommends that these address spaces use the same dispatching priority as other system tasks, monitors, and subsystems. Also, you should use a fixed dispatching priority.

Compression and expansion activities occur at the dispatching priority of the user and not at the dispatching priority of these BMC Software subsystem address spaces.
Engine level mask

The Engine Level Mask (ELM) value determines which compression techniques are available for use by the VSAM data component and the non-VSAM data component.

BMC Software changes the ELM value when it introduces new compression engines and when it modifies existing compression engines. Not all modifications to existing compression engines require a change to the ELM value.

BMC Software provides a new ELM value when modifications to existing compression techniques require backward compatibility with the modified technique. For example, an older version of PACLOG may not be able to expand data that is compressed with the latest version of PACLOG.

The most current ELM value is set in the BCSS command sample named ALMELM. It is shipped with PACLOG as a member of the data set HLQ.Vnnn.DBSAMP.

WARNING

When you install a new release of PACLOG and change the ELM value, data that was compressed by the new engine may not be expandable by older engines. If you are testing the new release in a shared DASD environment, do not compress data that is accessible from multiple systems using new or enhanced engines unless these engines are available on all systems. Otherwise, expansion of the data on systems using the old engines may not be possible.

You can set an ELM value at the product level or the BCSS level. The product-level command (see “Setting the PACLOG ELM” on page 99) sets an ELM value that supersedes the BCSS value. BMC Software recommends that you set a product-level ELM value. The BCSS-level command (see “Setting the PACLOG ELM” on page 99) provides a default ELM for PACLOG and other BMC Software products that use BCSS but do not set a product-level ELM.

Subsystem commands

This topic describes the BMCP and BCSS operator commands that are available with XCA.

It also includes those commands that apply only to the PACLOG compression subsystems. Table 6 on page 92 lists the available commands, the access required, and the page number on which the command descriptions can be found.

When starting DB2, you must issue the commands in this order:

1. Start the BMCP.
2 Start the BCSS.

3 Start DB2.

Conversely, when stopping DB2, you must issue the commands in this order:

1 Stop DB2.

2 Shut down the BCSS.

3 Shut down the BMCP.

Table 6: OS/390 operator commands

<table>
<thead>
<tr>
<th>Command type</th>
<th>Command format</th>
<th>Security required</th>
<th>Action</th>
<th>See topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMCP operator commands</td>
<td>S BMCP, SUB=<MSTR</td>
<td>JES2</td>
<td>JES3></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>bmcpId SHUTDOWN</td>
<td>Control</td>
<td>Stop the BMCP</td>
<td>“Shutting down the BMCP” on page 94</td>
</tr>
<tr>
<td></td>
<td>bmcpId STATUS</td>
<td>READ</td>
<td>Display the BMCP status</td>
<td>“Displaying BMCP status” on page 95</td>
</tr>
<tr>
<td>BCSS operator commands</td>
<td>S BMCBCSS, OPTION=<REFRESH</td>
<td>NREFRESH></td>
<td>None</td>
<td>Start the BCSS</td>
</tr>
<tr>
<td></td>
<td>.bcssId SHUTDOWN</td>
<td>Control</td>
<td>Stop the BCSS</td>
<td>“Shutting down the BCSS” on page 96</td>
</tr>
<tr>
<td></td>
<td>.bcssId STATUS</td>
<td>READ</td>
<td>Display BCSS status</td>
<td>“Displaying BCSS status” on page 97</td>
</tr>
<tr>
<td></td>
<td>.bcssId REINIT DAC</td>
<td>Control</td>
<td>Start or reinitialize DAC</td>
<td>“Reinitializing XCA compression” on page 97</td>
</tr>
<tr>
<td>Command type</td>
<td>Command format</td>
<td>Security required</td>
<td>Action</td>
<td>See topic</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>XCA operator</td>
<td>BCSS DAC NONVSAM [ENABLE</td>
<td>DISABLE]</td>
<td>None</td>
<td>Enable or disable compression</td>
</tr>
<tr>
<td>commands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BCSS DAC STATUS</td>
<td>None</td>
<td>Return the compression status</td>
<td>“Displaying the status of PACLOG compression components” on page 98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BCSS DAC NONVSAM CL LOCAL</td>
<td>None</td>
<td>Enable or disable Local Compression option</td>
<td>“Enabling global or local compression” on page 99</td>
</tr>
<tr>
<td></td>
<td>bcssld ELM value</td>
<td>Control</td>
<td>Set Engine Level Mask</td>
<td>“Setting the PACLOG ELM” on page 99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPO mode commands</td>
<td>BCSS DAC PPO ON</td>
<td>OFF</td>
<td>Enable or disable PPO mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BCSS DAC PPO SHUTDOWN</td>
<td>None</td>
<td>Stop BMCP and BCSS while allowing PACLOG archive log</td>
<td>“Shutting down the started tasks” on page 101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>compression</td>
<td></td>
</tr>
</tbody>
</table>

BMCP commands

This section provides information about BMCP operator commands that start the BMCP subsystem, shut it down, and display its status. You can issue the commands as needed from the operator console.

For more information, see the following topics:

- “Starting the BMCP” on page 93
- “Shutting down the BMCP” on page 94
- “Displaying BMCP status” on page 95

Starting the BMCP

You must start the BMCP subsystem before starting any applications.
For normal operations, place the OS/390 START command in a COMMNDxx member of SYS1.PARMLIB so that the BMCP subsystem starts automatically during an IPL.

To start a BMCP subsystem manually after you have stopped it, issue the START command from the operator console. Start the BMCP by issuing the following command, where the variable bmcp is the name of the member that contains the BMCP procedure:

```
START bmcp
```

Check the system log to ensure that the command completed successfully. The BMCP responds with messages that indicate its availability.

Optionally, you can issue the OS/390 DISPLAY ACTIVE LIST (D A,L) command. OS/390 responds with the following information. An active BMCP appears in this display.

<table>
<thead>
<tr>
<th>JOBS</th>
<th>M/S</th>
<th>TS USERS</th>
<th>USERS</th>
<th>SYSAS</th>
<th>INITS</th>
<th>ACTIVE/MAX VTAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>00004</td>
<td>00025</td>
<td>00150</td>
<td>00009</td>
<td>00013</td>
<td>00150/00250</td>
<td></td>
</tr>
<tr>
<td>BMCBCSS</td>
<td>BMCBCSS</td>
<td>SSAS</td>
<td>NSW S</td>
<td>BMCP</td>
<td>BMCP13</td>
<td>BPSMDSP0 NSW S</td>
</tr>
</tbody>
</table>

Note

After an IPL, the BMCP subsystem name is not defined to OS/390. The OS/390 START command will wait until the primary subsystem has initialized, then proceed as normal. However, after the subsystem has been started, the subsystem name for BMCP is defined to OS/390.

If the procedure name and the subsystem name are the same, special considerations are necessary to avoid the PROC NOT FOUND message from OS/390. To avoid the PROC NOT FOUND message, either ensure the BMCP procedure is in the system SYS1.PROCLIB data set or include the SUB=JESx parameter on the OS/390 START command.

Shutting down the BMCP

If you are not running in PACLOG Processing Only (PPO) mode, you should leave the BMCP subsystem running at all times.

However, you must shut it down when you need to install maintenance modules. You must also shut down the BMCP subsystem as part of an orderly shutdown of OS/390 before an IPL. Shut down the BMCP subsystem after shutting down the BCSS subsystem and after DB2 has terminated.

To shut down the BMCP subsystem, issue the following command, where the variable bmcpid is the one- to four-character BMCP subsystem ID:

```
bmcpId SHUTDOWN
```
The BMCP subsystem responds with messages that indicate the progress of the shutdown. You need DELETE authority to use this command.

For more information on PPO mode, see “PACLOG processing only (PPO) mode” on page 99.

Displaying BMCP status

You can display the status of BMCP to determine whether it is active.

To display the status, issue the following command, where the variable `bmcpId` is the one- to four-character BMCP subsystem ID:

```
 bmcpId STATUS
```

BMCP responds with messages that indicate the status of the address space. You need READ authority to use this command.

You can also include the STATUS command in a COMMNDxx member of SYS1.PARMLIB so that the BMCP status is displayed automatically during an IPL.

BCSS commands

This section provides information about BCSS operator commands that start the BCSS subsystem, shut it down, display its status, and reinitialize PACLOG.

You can use the BCSS operator commands as follows:

- Place them in a COMMNDxx member of SYS1.PARMLIB so that they are issued automatically during an IPL.
- Place them in a data set for BCSS commands so that they are issued at BCSS start-up.
- Issue them as needed from the operator console.

Note

Commands issued from the operator console remain active until the next IPL, at which time the values in the data set for BCSS commands are reinstated.

For more information, see the following topics:

- “Starting the BCSS” on page 96
- “Shutting down the BCSS” on page 96
- “Displaying BCSS status” on page 97
Starting the BCSS

You must start the BCSS before starting any applications.

For normal operations, include the OS/390 START command in a COMMNDxx member of SYS1.PARMLIB so that the BCSS starts automatically during an IPL. To start the BCSS manually after a shutdown, issue the START command from the operator console. To start the BCSS, issue one of the following OS/390 commands, where the variable bmcBcss is the name of the member that contains the BCSS procedure:

```
START bmcBcss,OPTION=REFRESH
```

This command starts the BCSS subsystem with new copies of resident BCSS modules. OPTION=REFRESH is the default for BCSS startup.

```
START bmcBcss,OPTION=NREFRESH
```

This command starts the BCSS subsystem with existing copies of resident BCSS modules.

Check the system log to ensure that the command completed successfully. The BCSS responds with messages that indicate its availability.

Optionally, you can issue the OS/390 DISPLAY ACTIVE LIST (D A,L) command. OS/390 responds with the following information. An active BCSS appears in this display.

<table>
<thead>
<tr>
<th>JOBS</th>
<th>M/S</th>
<th>TS USR</th>
<th>SYSAS</th>
<th>INITS</th>
<th>ACTIVE/MAX</th>
<th>VTAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>00004</td>
<td>00025</td>
<td>00150</td>
<td>00009</td>
<td>00013</td>
<td>00150/00250</td>
<td>NSW S</td>
</tr>
<tr>
<td>LLA</td>
<td>LLA</td>
<td>LLA</td>
<td>NSW S</td>
<td>RMF</td>
<td>A</td>
<td>IEFPROC</td>
</tr>
<tr>
<td>NET</td>
<td>NET</td>
<td>NETCNP</td>
<td>OWT S</td>
<td>TSO</td>
<td>TSO</td>
<td>STEP1</td>
</tr>
<tr>
<td>BMBCSS</td>
<td>BMBCSS</td>
<td>SSAS</td>
<td>NSW S</td>
<td>BMCP</td>
<td>BMCP13</td>
<td>BPSMDSP</td>
</tr>
</tbody>
</table>

Shutting down the BCSS

If you are not running in PPO mode, you should leave the BCSS subsystem running at all times.

However, you must shut it down when you need to install maintenance modules. You must also shut down the BCSS subsystem as part of an orderly shutdown of OS/390 before an IPL.

Shut down the BCSS subsystem after DB2 subsystems have been stopped and before you shut down the BMCP. To shut down the BCSS subsystem and terminate its
address space, issue the following command, where the variable `bcssid` is the one- to
four-character BCSS subsystem ID:

```
bcssid SHUTDOWN
```

The BCSS responds with messages that indicate the progress of the shutdown. The
shutdown may take several minutes. BCSS will remain active until all SVCs
intercepted by BCSS have completed processing. You need DELETE authority to use
this command.

WARNING

Do *not* cancel the BCSS started task. Many cross-memory links are set between BCSS
and other address spaces. Cancelling BCSS may abnormally terminate other jobs that
are running.

For more information on PPO mode, see “PACLOG processing only (PPO) mode” on
page 99.

Displaying BCSS status

You can display BCSS status to determine the status of the address space.

To display the status, issue the following command, where the variable `bcssid` is the
one- to four-character BCSS subsystem ID:

```
bcssid STATUS
```

The BCSS responds with messages that indicate the status of the address space. You
need READ authority to use this command.

Reinitializing XCA compression

You must reinitialize the XCA compression modules after an IPL or after the XCA
components have been upgraded.

When you reinitialize, XCA initializes only those components that are licensed. To
reinitialize PACLOG, issue the following command, where the variable `bcssid` is the
one- to four-character BCSS subsystem ID:

```
bcssid REINIT DAC
```

BCSS responds with messages that indicate that initialization completed. You need
DELETE authority to use this command.
XCA commands

This section describes commands that you issue through the BCSS that apply only to PACLOG compression components. These commands specify the BCSS ID and the compression component name (DAC).

Enabling and disabling PACLOG compression components

You can enable or disable the PACLOG compression components on any BCSS.

When a component is disabled, compression is not available and PACLOG jobs cannot run.

To enable the PACLOG compression component, issue the following command, where the variable \textit{bcssid} is the one- to four-character BCSS subsystem ID:

\texttt{bcssid DAC NONVSAM ENABLE}

\textbf{WARNING}

This command has changed from previous releases of PACLOG. Using the old syntax, \texttt{DAC ENABLE}, can have a negative impact on your system.

To disable the PACLOG compression component, issue the following command, where the variable \textit{bcssid} is the one- to four-character BCSS subsystem ID:

\texttt{bcssid DAC NONVSAM DISABLE}

The named BCSS responds with messages indicating which components have been enabled or disabled.

Displaying the status of PACLOG compression components

You can display status information about the compression components (DAC).

To display status information, issue the following command, where the variable \textit{bcssid} is the one- to four-character BCSS subsystem ID:

\texttt{bcssid DAC STATUS}

This command displays general status information about the compression components, such as the engine level mask value, version and release information, and the date on which the DAC tape was generated.

Optionally, check the system log to ensure that the command completed successfully. BCSS responds with messages indicating the status of the selected components.
Enabling global or local compression

You can use local or global compression.

The compression default is local compression. Global compression uses cross-memory services and requires more CPU resources. To set local compression, issue the following command, where the variable `bcssId` is the one- to four-character BCSS subsystem ID:

```
bcssId DAC NONVSAM CL LOCAL
```

The named BCSS subsystem responds with messages indicating the status of the local compression option.

Setting the PACLOG ELM

You can specify the compression ELM for PACLOG.

The ELM value that is specified overrides all other specifications of the ELM, including those set at the BCSS level. When you do not specify a product-level engine level mask, the BCSS-level ELM is used.

To specify the required ELM, issue the following command, where the variable `bcssId` is the one- to four-character BCSS subsystem ID and the variable `value` is the required ELM mask value:

```
bcssId DAC NONVSAM ELM value
```

This command sets the product-level ELM to `value` for the non-VSAM component.

The ELM command that you use to specify the engine level mask has been removed from the BCSSCMDS data set. When the ELM is not specified, DATA ACCELERATOR defaults to the highest level that is available. The current ELM mask is documented in member DACELM in the .CNTL data set.

PACLOG processing only (PPO) mode

If you do not run the BMC Software DATA ACCELERATOR non-VSAM component, you can run PACLOG in PPO mode. PPO mode provides the following benefits:

- Eliminates monitoring of the following SVCs:
 - ATTACH
 - LINK
— BDL/FIND
— STOW

- Eliminates interception of SORT and IEBCOPY
- Eliminates I/O to any REGISET defined in the BCSS procedure
- Allows you to share the BCSS subsystem with other BMC Software products that use a REGISET (for example, the AES product family) without incurring the overhead due to the presence of the REGISET

PPO commands

The following sections describe the OS/390 commands that you can use in PPO mode.

Running in PPO mode

To run PACLOG in PPO mode each time the BCSS is started, insert the following command as the last line in the data set for BCSS commands:

```
DAC PPO ON
```

WARNING

Do not issue the `DAC PPO ON` command if you are running the DATA ACCELERATOR non-VSAM product. If you issue that command, any attempt to open a compressed data set fails and the following messages are issued:

```
BMC32740E OPEN failed under PPO because data set profile not created by API
BMC32402I DDNAME(ddName) DSNAME(dsName)
```

The following message may be issued if the IBM utility IEBCOPY is run and the output PDS has been compressed:

```
IEB127I RECFM INCOMPATIBLE
```

The following is an example of the PACLOG BCSS commands.

Note

The fifth line applies only if you are running in PPO mode. The sixth line applies only when you shut down the started tasks.

```
REINIT DAC
DAC NONVSAM ENABLE
DAC NONVSAM CL LOCAL
DAC STATUS
DAC PPO ON
DAC PPO SHUTDOWN
```
Shutting down the started tasks

Use the command DAC PPO SHUTDOWN to terminate the started tasks when you are not running any other BMC Software products that require the BCSS.

To issue the command from an OS/390 console, use the following command, where the variable `bcssId` is the one- to four-character BCSS subsystem ID:

```
bcssId DAC PPO SHUTDOWN
```

Note

You must restart the BCSS if you wish to enter any further commands. For more information, see “Restarting PPO mode” on page 101.

To terminate the started tasks automatically after the subsystems have completed initialization, insert the following command in the data set for BCSS commands:

```
DAC PPO SHUTDOWN
```

WARNING

Do not issue the DAC PPO SHUTDOWN command if you are sharing the BCSS subsystem with any other BMC Software product. Shutting down the BCSS started task that is used for the AES or other products causes failures in those products.

Reinstating full compression services

If you want to disable PPO mode and reinstate full compression services, issue the following commands from the OS/390 console:

```
START BCSS
```

Wait for the BCSS initialization to complete, then issue the following commands, where the variable `bcssId` is the one- to four-character BCSS subsystem ID:

```
bcssId DAC PPO OFF
bcssId DAC NONVSAM ENABLE ATTACH
bcssId DAC NONVSAM ENABLE LINK
```

Restarting PPO mode

If you have stopped PPO mode, use the following command to restart PPO mode.

```
DAC PPO ON
```

To issue the command from an OS/390 console, use the following command, where the variable `bcssId` is the one- to four-character BCSS subsystem ID:

```
bcssId DAC PPO ON
```
PACLOG processing only (PPO) mode
PACLOG installation

This appendix describes how to install PACLOG.

About the installation system

The PACLOG installation process generates a customized installation data set.

This data set contains all of the jobs that are required to install PACLOG in your DB2 environment. The member named $C30DOPT establishes your initial control information for PACLOG.

When you submit the $C30DOPT job that is contained in the installation options, it copies the PACLOG options to the ALM$OPTS member of the .DBCNTL data set and creates the history file for the subsystem.

The PACLOG modeling tool is automatically tailored with your installation’s data set names and copied to your .EXEC data set when you install PACLOG.

Installing PACLOG on multiple DB2 subsystems

After the PACLOG compression services are installed on an OS/390 system, PACLOG can be activated on all DB2 subsystems for that OS/390 system by simply adding the new DB2 subsystems to the PACLOG control information and creating the history data set.

If you have RECOVERY MANAGER for DB2, see “Integrating PACLOG with RECOVERY MANAGER for DB2” on page 104 for instructions. Otherwise, edit the data set referred to by the ALM$OPTS DD statement by adding the new control variables HIST, BSDS1, TSTAMP, and PROD.SNLOAD. You must have OS/390 data set READ and WRITE authority to edit the control information member. Then, create a new history file that refers to the PACLOG .DBCNTL data set member ALMHIST for a sample job.
Integrating PACLOG with RECOVERY MANAGER for DB2

You can update the control information by specifying the new DB2 subsystem ID and selecting Control Information on the RECOVERY MANAGER Main Menu. You can then browse DB2 Subsystem Resource Information and ensure that the history file is specified for the new DB2 subsystem.

If you are not currently using the RECOVERY MANAGER history file, you must specify a history data set name and create the data set. Refer to the PACLOG control information (.DBCNTL) data set member ALMHIST for a sample job to create a new history file.

Note
If RECOVERY MANAGER coexists with PACLOG in the target DB2 subsystem, the two products should share the RECOVERY MANAGER options file and archive history data set.

Sample ALM$OPTS file

The following example shows a PACLOG control information data set.

Note
You can choose any valid OS/390 data set name for the history file during installation. However, the name must be unique for each subsystem. You cannot use the same data set for multiple subsystems. The naming conventions shown in the sample ensure a unique name for each subsystem.

Figure 36: Sample ALM$OPTS file

 DBAA.BSDS1=DBAACAT.BSDS01
 DBAA.PROD.DSNLOAD=SYS2.DB2V81M.DSNLOAD
 DBAA.HIST=BMCALM.TEST.DBAA.HISTORY
 DBAA.TSTAMP=Y
 DBN.HIST=BMCALM.TEST.DBN.HISTORY
 DBN.TSTAMP=N
 DBN.BSDS1=DSNDBN.BSDS01
 DBN.PROD.DSNLOAD=SYS2.DB2V81M.DSNLOAD
 WORKUNIT=WORK

PACLOG memory requirements

PACLOG uses less than 64 KB in nonextended common storage and uses 1.5 MB in extended common storage.
Most of PACLOG’s private storage requirements [(noncommon service area (non-CSA)] are obtained from extended private storage. The actual amount of private storage is variable, and depends on the following items:

- The number of concurrently open files in a job
- Whether you are using the PACLOG compression component to compress the files
- The memory usage on your system

The following subsections describe storage requirements for the BMC Software subsystems and the PACLOG compression component.

BMC Software subsystems

The following table shows the CSA storage requirements for the BMC Software Primary Subsystem (BMCP) and the BMC Software Consolidated Subsystem (BCSS).

These requirements are for each OS/390 system on which the BMC Software subsystems run.

Table 7: CSA Storage for the BMC Software Subsystems

<table>
<thead>
<tr>
<th>CSA storage for modules (per OS/390 system)</th>
<th>Amount</th>
<th>Above 16-MB line</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMCP</td>
<td>22 KB</td>
<td>All</td>
</tr>
<tr>
<td>BCSS</td>
<td>1771 KB</td>
<td>All</td>
</tr>
</tbody>
</table>

Non-VSAM compression component

The following tables show the storage requirements for the PACLOG compression component, as follows:

Table 8 on page 105 shows non-CSA storage requirements.

Table 8: Non-CSA storage for the compression component

<table>
<thead>
<tr>
<th>Non-CSA storage in application address spaces</th>
<th>Total</th>
<th>Above 16-MB line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control blocks per address space</td>
<td>512 bytes</td>
<td>All</td>
</tr>
<tr>
<td>Control blocks per OPEN DCB per data set</td>
<td>3 KB</td>
<td>All except 1536 bytes</td>
</tr>
</tbody>
</table>
Non-CSA storage in application address spaces

<table>
<thead>
<tr>
<th>Data areas per OPEN DCB per data set per Data set</th>
<th>Total</th>
<th>Above 16-MB line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data set</td>
<td>.5 MB</td>
<td>All except 32 KB</td>
</tr>
<tr>
<td>QSAM LM a in MVS/DFP</td>
<td>.5 MB</td>
<td>All except 77 KB</td>
</tr>
<tr>
<td>QSAM LM a in DFSMS/MVS</td>
<td>.5 MB</td>
<td>All</td>
</tr>
<tr>
<td>QSAM MM b in MVS/DFP</td>
<td>.5 MB</td>
<td>All except 77 KB</td>
</tr>
<tr>
<td>QSAM MM b in DFSMS/MVS</td>
<td>.5 MB</td>
<td>All</td>
</tr>
<tr>
<td>BSAM in MVS/DFP</td>
<td>.5 MB</td>
<td>All except 98 KB</td>
</tr>
<tr>
<td>BSAM in DFSMS/MVS</td>
<td>.5 MB</td>
<td>All except 2 KB</td>
</tr>
</tbody>
</table>

a LM—Locate Mode GET and PUT operations
b MM—Move Mode GET and PUT operations

Table 9 on page 106 shows CSA storage requirements.

Table 9: CSA storage for the compression component

<table>
<thead>
<tr>
<th>Maximum common storage required</th>
<th>Total</th>
<th>Above 16-MB line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules per OS/390 system</td>
<td>277 KB</td>
<td>All except 57KB</td>
</tr>
<tr>
<td>Control blocks per OS/390 system</td>
<td>16 KB plus 8 bytes per address space</td>
<td>All</td>
</tr>
<tr>
<td>Control blocks per OS/390 address space with compression and expansion activity</td>
<td>2 KB</td>
<td>All</td>
</tr>
</tbody>
</table>

PACLOG installation options

This topic describes the PACLOG installation options and their default values.

WORKUNIT=SYSALLDA

WORKUNIT specifies the default unit for work data sets dynamically allocated by PACLOG. You can specify another valid unit name during installation if you do not want to use the default, SYSALLDA.

TSTAMP=YES

TSTAMP specifies to PACLOG that the timestamp (if it exists) is to be copied into the data set name of archive log copies 3 and 4. If TSTAMP is set to YES, the prefix for ARCHIVE3 and ARCHIVE4 cannot be more than 17 characters. If TSTAMP is set
to NO, the prefix can be up to 35 characters. For more information, see “PREFIX prefix” on page 54.

HIST= dataSetName

HIST specifies the subsystem’s BMC Software archive history data set. For more information about the archive history file, see “BMC Software archive history file” on page 18.

BSDS1= dataSetName

BSDS1 specifies the bootstrap data set file name.

PROD.DSNLOAD= dataSetName

PROD.DSNLOAD specifies the production DB2 load library.
Obtaining trace and maintenance information

When you contact customer support with a problem, you might be asked to provide a trace so that the events leading up to the problem can be analyzed.

This appendix provides instructions for obtaining a trace in batch mode, obtaining a trace in online mode, and determining what maintenance has been applied.

Obtaining a trace for a batch job

Use one of the following methods to obtain a trace for a batch job:

- To send the trace to a user-defined data set, add the following DD statement to the batch job:

  ```
  //ALMTRACE DD DSN=dsName,DISP=(,CATLG)
  // UNIT=SYSDA,SPACE=(CYL,(10,10))
  ```

 Note
 The DCB characteristics are RECFM=FB,LRECL=80

- To send the trace to SYSOUT, add the following DD statement to the batch job:

  ```
  //ALMTRACE DD SYSOUT=*  
  ```

 WARNING
 The trace produces a large amount of output. For that reason, you may want to consider sending the output to a data set.

Determining applied maintenance

Use one of the following methods to determine what maintenance zaps and fixes have been applied to PACLOG:
Run a trace (see “Obtaining a trace for a batch job” on page 109) to view the fix history that is included at the beginning of the ARMTRACE file.

The fixes that have been applied are printed after the report heading of the ALMPRINT file in most batch jobs.
Glossary

A

active log

The DB2 log data set that is used to record incoming updates to tables and other events. For recovery purposes, this is the log data set in use when a failure occurs. See also “log” on page 115 and “archive log” on page 111.

AES

The BMC Software Application Enhancement Series, which includes the APPLICATION RESTART Control products for IMS, DB2, and VSAM and the BATCH Control FACILITY products.

APF

Authorized program facility.

archive log

A DB2 active log data set that is no longer in use and has been archived. The log data set may be retrievable for recovery purposes. See also “log” on page 115 and “active log” on page 111.

B

backup copy

In DB2 installations, a duplicate of the primary copy of a DB2 data set. This copy can be used for recovery when a recovery using the primary copy fails. A backup copy may be designated for a local site or for a recovery site. See also “primary copy” on page 117.
BCSS

BMC Consolidated System Subsystem.

BMCP

BMC Primary Subsystem.

bootstrap data set (BSDS)

A VSAM data set that contains DB2 name and status information. It also contains RBA range specifications for active and archive log data sets, catalog and directory passwords, and lists of conditional restart and checkpoint records.

BSDS

See “bootstrap data set (BSDS)” on page 112.

C

catalog

The OS/390 data set catalog or the DB2 catalog, depending on the context of the reference.

common service area

In OS/390, a part of the common area that contains data areas that can be addressed by all address spaces.

compression

A process whereby a given amount data is compressed into a smaller number of bytes or characters without losing any of the information represented by the data.

CSA

See “common service area” on page 112.
DAC

The BMC Software DATA ACCELERATOR Compression product.

DASD

See “direct access storage device (DASD)” on page 114.

data definition name (ddname)

The name of a data definition (DD) statement that corresponds to a data control block that contains the same name.

data sharing

A DB2 mode of operation in which multiple DB2s can share data resources (such as table spaces).

database administrator

An individual responsible for the design, development, operation, safeguarding, maintenance, and use of a database.

DB2 catalog

Tables maintained by DB2 that contain descriptions of DB2 objects such as tables, views, and indexes.

DBA

See “database administrator” on page 113.

DCB

Data control block.
DD statement

Data definition statement.

ddname

See data definition name.

direct access storage device (DASD)

A device in which access time is effectively independent of the location of the data. Used in reference to fixed disk drives.

disaster recovery

The recovery of data that has been lost due to a major catastrophe at a computer installation. The recovery is performed at a remote recovery site using copies of the data made before the catastrophe.

E

Engine Level Mask (ELM)

An identification number of the compression engine used by the DATA ACCELERATOR Compression product. A new ELM is provided when a new compression engine becomes available or when changes are made to existing compression engines.

I

I/O

Input/output.

ICF

Integrated catalog facility.

index record
A type of record written to a DB2 log that contains index information. This type of record is not required for recovery purposes.

IPL

Initial Program Load.

ISPF

Interactive System Productivity Facility. A mainframe interactive interface that allows users to access mainframe utilities, tools, and applications.

J

JCL

See “job control language (JCL)” on page 115.

JES

Job entry subsystem.

job control language (JCL)

A control language used to identify a job to an operating system and to describe the requirements of the job.

L

local site

A physical DB2 system installation where DB2 applications are installed and are in use. See also “recovery site” on page 117.

log

A collection of records that describe the events that occur during DB2 processing and their sequence. This recorded information is used for recovery in the event of a failure during DB2 execution. In particular, the log records are used to reconstruct damaged tables and indexes.
logging environment modeling tool

An interactive component of PACLOG that helps you to represent a multi-variable process mathematically with the goal of finding the optimum values of one or more of those variables.

M

modeling tool

See logging environment modeling tool.

multiple virtual storage (MVS)

The mainframe operating system under which DB2, IMS, and VSAM run. In PACLOG documentation, MVS means MVS/XA, MVS/ESA, MVS/370, and OS/390, unless otherwise noted.

MVS

See “multiple virtual storage (MVS)” on page 116.

O

OS/390

An IBM product that bundles MVS, TCP/IP, TSO, and VTAM. The first version of OS/390 (version 1.1, or R1) was equivalent to MVS version 5.2.2. In addition to earlier versions of MVS, the PACLOG products support OS/390 version 1.1 and later.

P

partitioned data set (PDS)

An MVS data set in direct access storage that is divided into portions, called members. Each member can contain a program, part of a program, or data. PDS is synonymous with library.

partitioned table space
In DB2, a table space subdivided into parts (based on the index key range), each of which may be processed by utilities independently.

password activation deadline

The date (either the 15th or the last day of the month) through which a password will be accepted (installed) by the product authorization interface. When this date has passed, BMC Software Contracts Administration must issue another password.

PDS

See “partitioned data set (PDS)” on page 116.

primary authorization ID

The authorization ID used to identify the application process to DB2.

primary copy

In DB2 installations, a copy of a DB2 data set. It is the first copy to be used (when specified) in an attempted recovery of the data set. A primary copy may be designated for a local site or for a recovery site. Contrast with backup copy.

R

RACF

See “resource access control facility (RACF)” on page 118.

RBA

See relative byte address.

recovery

In DB2 installations, the process of rebuilding DB2 table spaces after a failure of those spaces.

recovery site
A physical DB2 system installation designated as the backup system for a local site in the event that a disaster recovery is necessary.

REGISET

The product registration data set.

relative byte address

(RBA) A hexadecimal address (offset) that uniquely identifies a DB2 log record. The RBA is with respect to the start of the log (offset = zero).

resource access control facility (RACF)

An IBM-licensed program that provides for access control by identifying and by verifying the users to the system, authorizing access to protected resources, logging the detected unauthorized attempts to enter the system, and logging the detected accesses to protected resources.

S

simulation

In PACLOG, the process of creating processed copies of archive logs without performing any actions against the original logs.

SMS

Storage Management Subsystem.

stacked tape

A tape on which a series of data sets are stored in succession. In PACLOG, these are copies of processed archive logs.

supervisor call (SVC)

A request that serves as the interface into operating system functions, such as allocating storage. The SVC protects the operating system from inappropriate user entry. All operating system requests must be handled by SVCs.
SVC

See “supervisor call (SVC)” on page 118.

SYSADM

System administration privileges.

system resources

In DB2, those items controlled by DB2 such as the bootstrap data set, the logs, and the catalog and directory.

T

table space

In DB2, a page set that is used to store the records of one or more tables.

V

version code

See submodel

Virtual Storage Access Method (VSAM)

An IBM data-access method that allows efficient sequential and direct access to MVS data sets.

VSAM

W

work file
A temporary file that is used for the temporary storage of data that is being processed.

X

XCA

See Extended Compression Architecture.
Index

.CNTL data set 18, 26, 99, 103, 104

A

active log
definition 111
dual logging 26
factors affecting size 34
log pairs 40
number recommended 26
number used 34
optimum size 34
size 40
address space, dispatching priorities 90
AES
definition 111
ALMIN DD statement 66
ALMISPFF CLIST 35
ALMLG001 panel 36, 44
ALMLG01A panel 36
ALMLG02A panel 43
ALMLG03A panel 44
ALMLIST1 DD statement 66
ALMLIST2 DD statement 66
ALMLIST3 DD statement 66
ALMLIST4 DD statement 66
ALMLSTAT DD statement 66
ALMMMSGS DD statement 66
ALMOPTS DD statement 66
ALMOSTAT DD statement 66
ALMPRIM panel 35
ALMPRINT DD statement 66
ALMXPIRE DD statement 66
APF
definition 111
APF authorization 25
archive copy specification 53
archive history data set, creating 86
archive history file
authorization 25
description 18
updating 31, 53
archive log
cataloging 26, 55, 57
data compression 32
definition 111
issues 13
limiting number processed 28
local site copies 29, 53
media to use 26, 30
offsites copies 29, 53
processing practices 26
recorded in BSDS 34
reprocessing 31, 53, 54
specifying number of copies 29
using in recovery 80
ARCHIVE LOG command 26
ARCHIVEn option 53, 54
ARCHIVMAXV DB2 install option 26
ARCHLOG1 40
ARCHLOG2 40
ARMBARC program DD statements 66
authorizations
for active logs 25
for archive history file 25
for BSDS 25
for JOBLIB 25
for started tasks 25
for STEPLIB 25
B

backing out data 30
backup copy
definition 111
BCSS
architecture 87
commands 91, 95
commands data set 89
definition 112
dispatching priorities 90
displaying status 97
ELM overview 91
naming convention 90
shutting down 96
starting 96
subsystem ID 87
BMC Software Consolidated Subsystem. See BCSS 90
BMC Software Primary Subsystem. See BMCP 90
BMCERROR DD statement 66
BMCP
architecture 87
commands 91, 93
definition 112
dispatching priorities 90
naming convention 90
overview 88
shutting down 94
starting 93
status 95
subsystem ID 87
supervisory services 88
bootstrap data set (BSDS)
definition 112
bootstrap data set. See BSDS 34
BSDS
days of log data in 38
definition 112
number of entries in 40
BSDS (bootstrap data set)
archive logs recorded in 34
ARCHIVMAXV parameter 26
authorization 25
number of entries 26
BSDSI option 106
building a PACLOG job 65

C
catalog
definition 112
cataloging archive logs 26, 55, 57
CLIST, ALMISPF 35
commands
ARCHIVE LOG 26
available with XCA 91
BCSS 91, 95
BMCP 91, 93
order for DB2 shutdown 91
order for DB2 startup 91
PPO mode 100
XCA 91, 98
common service area 105
definition 112
COMPRESS option 32, 61
compressing archive log data sets
hardware compression 32, 61
hardware limitation 61
to disk 32, 61
to reduce media used 32
to tape 32, 60
using XCA technology 32, 61
compression
COMPRESS option 61
definition 112
disabling components 98
enabling components 98
global options 99
local options 99
options 60, 61
ratio 38
subsystem, architecture 87
to disk 32, 61
to tape 32, 60
TRTCH option 60
compression address space (CAS), dispatching priorities 90
conserving disk space 34
control information. See DBCNTL data set 104
conventions, documentation 10
creating offsite copies of logs 83
CSA
definition 112

D
DAC
definition 113
DAC (DATA ACCELERATOR Compression) 87, 91, 98
DASD
definition 113
DASD compression limitation 61
DATA ACCELERATOR Compression. See DAC 87

data backout 30
data compression
 example 78
 hardware limitations 13
 to disk 61
 to tape 60
 using XCA technology 32
data definition name (ddname)
 definition 113
data sharing
 definition 113
database administrator
 definition 113
DATACLAS option 62
DB2 catalog
 definition 113
DB2LOGPRODUCT option 55, 57
DBA
 definition 113
DBCNTL data set 103
DCB
 definition 113
DD statement
 definition 114
 ddname
 definition 114
determining log size reduction 77
device type syntax options 58
direct access storage device (DASD)
 definition 114
disabling compression components 98
disaster recovery
 definition 114
 offsite log copies 20, 53, 54
 planning 26
 restoring offsite log copies to disk 20
 using PACLOG 20
 using RECOVERY MANAGER 20
disk space
 conserving with PACLOG 34
dispatching priorities 90
displaying status
 of BCSS 97
 of BMCP 95
 of compression components 98
documentation information 9
dual logging 53

E

ELM
 overview 91
 specifying the mask value 99
 enabling compression components 98
Engine Level Mask (ELM)
 definition 114
Engine Level Mask. See ELM 91
environment settings for PACLOG 26
examples
 creating offsite copies of logs 83
 expired logs report 73
 JCL 68
 job printout 68
 limiting log processing 81
 processed log report 73
 syntax 29
 using archive logs in recovery 80
 using data compression 78
EXEC statement 65
EXPDT option 60
expiration date for tape data sets 60
Extended Compression Architecture. See XCA 61

F

filter
 features 30
 remove index records 59
 remove records not needed for recovery 59
 syntax 59
FILTERIX option 30, 59
FILTERRECTYPE option 30, 59
FILTERTS option 30, 59
fixes, determining applied 109

G

global compression 99
global syntax options 55

H

hardware compression 32, 60
HIST option 106
I

I/O
 definition 114
ICF
 definition 114
index record
 definition 114
installation
 of logging environment modeling tool 103
 of PACLOG 103
options file 25
 process 103
installation options
 BSDSI 106
 for copying timestamp 25, 106
 HIST 106
 PROD.DSNLOAD 106
 TSTAMP 106
IPL
 definition 115
ISPF
 definition 115

J

JCL
 definition 115
 EXEC statement 65
 for PACLOG job 65
 JOB statement 65
 STEPLIB DD statement 66
JES
 definition 115
job control language (JCL)
 definition 115
JOB statement 65

K

KEEP option 33, 55, 57

L

LIMIT HOURS option 55, 56
LIMIT LOGS option 55, 56
LIMIT option 26, 28, 55, 56
LIMIT RBARANGE option 55, 56
limitations of PACLOG 21
limiting log processing 81
load library 66
local compression 99
local site
 definition 115
 local site copies 53
log
 data set statistics 68
 definition 115
 determining size reduction of 77
 synchronization 47
logging environment modeling tool
 about 35
 active log pairs 40
 active log size 40
 audit synchronization 47
 compression ratio 38
 days of log data in BSDS 38
 definition 116
 entries in BSDS 40
 features 35
 hours of log on DASD 38
 installation 103
 logging environment model field descriptions 38
logging rate 40
 menu 35
 optimize fields for DASD archives 38
 source of highest logging rate 38
 tutorial 35
logging rate 34, 38, 40

M

maintenance, determining applied 109
memory requirements 105
MGMTCLAS option 62
modeling tool
 definition 116
modeling tool. See logging environment modeling tool 103
multiple virtual storage (MVS)
 definition 116
MVS
 definition 116
naming log copies
local site copies 55, 57
offsite copies 53, 54
NOKEEP option 33, 55, 57
normal mode operation 18

offsite copies 53
offsite log data set prefix 53, 54
OK status 109
options
COMPRESS 32, 61
DATAKLAS 62
DB2LOGPRODUCT 55, 57
device type 58
EXPDT 60
filter 59
FILTERIX 30, 59
FILTERRECTYPE 30, 59
FILRERTS 30, 59
global 55
KEEP 33
LIMIT 28
LIMIT RBARANGE 55, 56
MGMTCLAS 62
NOKEEP 33, 55, 57
PREFIX 53, 54
REDO 31, 53, 54
RETPD 60
SIMULATE 33, 55, 57
STACK 60
STORCLAS 62
tape 60
TAPE 58
TRTCH 32, 60
UNIT 58
UPDATEHIST 33, 55, 57
WORKUNIT 106
ZIIP 62
OS/390
definition 116

P
PACLOG
benefits 14
compression feature 32
compression ratio 38
cylinder calculation 40
cylinders saved by 40
features shared with RECOVERY MANAGER 25
in disaster recovery 20, 26
JOB statement 65
load library 66
prerequisites 23
time and resource savings with 15
PACLOG Processing Only. See PPO mode 99
partitioned data set (PDS)
definition 116
partitioned table space
definition 116
password activation deadline
definition 117
pattern matching 59
PDS
definition 117
PPO (PACLOG Processing Only) mode
about 99
commands 100
restarting 101
running PACLOG in 100
PREFIX option 53, 54
primary authorization ID
definition 117
primary copy
definition 117
processed logs report 72
PROD.DSNLOAD option 106
product registration data set 88
publications, related 9

R
RACF
definition 117
RBA
definition 117
records not needed for recovery 30
recovery
definition 117
RECOVERY MANAGER shared features 25
RECOVERY MANAGER software requirements 24
recovery site
definition 117
recovery site copies 53
REDO option 31, 53, 54
REGION parameter 65
REGISET
definition 118
REGISET data set 88, 99
reinitializing XCA compression 97
reinstating compression services 101
related publications 9
relative byte address
definition 118
removing
index records 30, 59
records not needed for recovery 30, 59
table space records 30, 59
unwanted records and objects from archive log 30
reports 72
ALMLSTAT 68
archive log management 72
expired archive log 73
expired log 73
of archive logs processed 72
primary archive log 73
processed log 73
processed secondary archive log 73
total records 68
reprocessing a processed log 31, 53, 54
resource access control facility (RACF)
definition 118
restarting PPO mode 101
retaining log copies 55, 57
retention period of tape data sets 60
RETPD option 60

S
samples

ALMOSTAT report 68
expired archive log report 73
expired logs report 73
JCL 68
job printout 68
primary archive log report 73
processed log reports 73
processed secondary archive log report 73
syntax 29
total records reports 68
shared RMGR and PACLOG features 25
shutting down
BCSS 96
BMCP 94
started tasks 101
SIMULATE option 55, 57
simulating log processing 33
simulation
definition 118
simulation feature 33
simulation mode operation 18
SMS
data class name 61
definition 118
management class name 62
storage class name 62
when not used by PACLOG 62
software requirements 24
source of highest logging rate 38
specifying analysis limits 55, 56
STACK option 60
stacked tape
definition 118
stacked tape option 60
started tasks 20
authorization 25
default names 87
library 87
shutting down 100, 101
starting
a PACLOG job 74
BCSS 96
BMCP 93
statistics, for log data set 68
status, of compression components 98
status, of DB2 objects
OK 109
unacceptable status 109
STEPLIB DD statement 66
storage
CSA 105
 non-CSA 105
STORCLAS option 62
supervisor call (SVC)
 definition 118
SVC
 definition 119
SVC monitoring 99
synchronization, logs 47
syntax
 device type 58
 diagrams 50
 filter 59
 global 55
 tape 60
SYSADM
 definition 119
system resources
 definition 119
SYSUT1 DD statement 66

T
 table space
 definition 119
 table space specification 59
TAPE option 58
tape syntax options 60
timestamp, using in data set name 106
trace
 batch 109
TRTCH option 32, 60
TSTAMP installation option 53, 54, 106

U
 unit for processed log copies 58
UNIT option 58
unwanted records and objects
 removing from archive log 30
UPDATEHIST option 33, 55, 57

V
 version code
 definition 119
Virtual Storage Access Method (VSAM)
 definition 119
VSAM
 definition 119

W
 wildcards in table space specification 59
 work file
 definition 119
WORKUNIT option 106
writing copies
 to disk 30
 to tape 30, 58

X
 XCA
 commands 91, 98
 compression, reinitializing 97
 definition 120
 technology 32

Z
 zaps, determine applied 109
ZIIP option 62