BMC Global Infrastructure Administration Guide

Supporting

Version 10.1.00 of DB2 Component Services (DBC)
Version 10.1.00 of DB2 Product Configuration (LGC)
Version 10.2.00 of Next Generation Logger (NGL)

December 2013
Contacting BMC Software

Several methods are available for contacting BMC Software.

You can access the BMC Software website at http://www.bmc.com. From this website, you can obtain information about the company, its products, corporate offices, special events, and career opportunities.

United States and Canada

<table>
<thead>
<tr>
<th>Address</th>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMC SOFTWARE INC</td>
<td>1 713 918 8800</td>
<td>1 713 918 8000</td>
</tr>
<tr>
<td>2101 CITYWEST BLVD</td>
<td>or</td>
<td></td>
</tr>
<tr>
<td>HOUSTON TX 77042-2827 USA</td>
<td>1 800 841 2031</td>
<td></td>
</tr>
</tbody>
</table>

Outside United States and Canada

<table>
<thead>
<tr>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>+01 713 918 8800</td>
<td>+01 713 918 8000</td>
</tr>
</tbody>
</table>

© Copyright 2013- BMC Software, Inc.

BMC, BMC Software, and the BMC Software logo are the exclusive properties of BMC Software, Inc., are registered with the U.S. Patent and Trademark Office, and may be registered or pending registration in other countries. All other BMC trademarks, service marks, and logos may be registered or pending registration in the U.S. or in other countries. All other trademarks or registered trademarks are the property of their respective owners.

Explorer is a trademark or registered trademark of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

Current, DB2, IBM, MVS, RACF, and z/OS are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

UNIX is the registered trademark of The Open Group in the US and other countries.

The information included in this documentation is the proprietary and confidential information of BMC Software, Inc., its affiliates, or licensors. Your use of this information is subject to the terms and conditions of the applicable End User License agreement for the product and to the proprietary and restricted rights notices included in the product documentation.

Restricted rights legend

U.S. Government Restricted Rights to Computer Software. UNPUBLISHED—RIGHTS RESERVED UNDER THE COPYRIGHT LAWS OF THE UNITED STATES. Use, duplication, or disclosure of any data and computer software by the U.S. Government is subject to restrictions, as applicable, set forth in FAR Section 52.227-14, DFARS 252.227-7013, DFARS 252.227-7014, DFARS 252.227-7015, and DFARS 252.227-7025, as amended from time to time. Contractor/Manufacturer is BMC SOFTWARE INC, 2101 CITYWEST BLVD, HOUSTON TX 77042-2827, USA. Any contract notices should be sent to this address.
Customer support

Support website
You can obtain technical support from BMC 24 hours a day, 7 days a week at http://www.bmc.com/support. From this website, you can:

- Read overviews about support services and programs that BMC offers
- Find the most current information about BMC products
- Search a database for problems similar to yours and possible solutions
- Order or download product documentation
- Download products and maintenance
- Report a problem or ask a question
- Subscribe to receive proactive e-mail alerts
- Find worldwide BMC support center locations and contact information, including e-mail addresses, fax numbers, and telephone numbers

Support by telephone or e-mail
In the United States and Canada, if you need technical support and do not have access to the web, call 1 800 537 1813 or send an e-mail message to customer_support@bmc.com. (In the subject line, enter SupID:yourSupportContractID, such as SupID:12345). Outside the United States and Canada, contact your local support center for assistance.

Before contacting BMC
Have the following information available so that Customer Support can begin working on your issue immediately:

- Product information
 - Product name
 - Product version (release number)
 - License number and password (trial or permanent)
- Operating system and environment information
 - Machine type
 - Operating system type, version, and service pack or other maintenance level such as PUT or PTF
 - System hardware configuration
 - Serial numbers
 - Related software (database, application, and communication) including type, version, and service pack or maintenance level
- Sequence of events leading to the problem
- Commands and options that you used
- Messages received (and the time and date that you received them)
 - Product error messages
 - Messages from the operating system, such as file system full
 - Messages from related software
License key and password information

If you have questions about your license key or password, contact Customer Support through one of the following methods:

- Send an e-mail message to customer_support@bmc.com. (In the Subject line, enter SupID:yourSupportContractID, such as SupID:12345.)
- In the United States and Canada, call 1 800 537 1813. Outside the United States and Canada, contact your local support center for assistance.
Contents

About this book
- Related publications ... 9
- Syntax statements ... 10
- Conventions ... 11

Chapter 1 BMC global infrastructure components
- Overview of DB2 Component Services (DBC) ... 14
- Overview of DB2 Product Configuration (LGC) .. 15
- Overview of the Next Generation Logger (NGL) .. 16
- Overview of the Runtime Component System (RTCS) 16
- Required authorizations for user IDs ... 17

Chapter 2 Working with DB2 Component Services (DBC)
- Working with the DBC subsystem ... 21
 - Started task for the DBC subsystem .. 21
 - DBC startup parameters ... 23
 - Stopping the DBC subsystem ... 32
 - DBC commands ... 33
- DBC security .. 34
 - Controlling access to DBC resources .. 35
 - Configuring RACF security for the DBC subsystem 36
- DBC security parameters ... 39
 - Authorizing the DBC DB2 command services 45

Chapter 3 Working with DB2 Product Configuration (LGC)
- Overview of the LGC interface ... 48
 - Expandable sections ... 48
 - Drop-down menus .. 51
 - Action list ... 51
 - Online Help ... 51
- Working with option sets ... 52
 - Accessing the online interface .. 53
 - Creating a new option set ... 54
 - Editing an option set .. 55
 - Renaming an option set ... 59
 - Deleting an option set ... 59
Filtering option sets ..60
LGC command reference .. 61
 LGC interface commands ..61
 LGC operator commands ...62
LGCUTIL batch utility ..65
 lgcutil ..67
 create ...67
 deregister ..68
 export ...68
 import ...69
 list ...70
 migrate ..71
 register ...72
 rename ..72
 update ...73
Supporting elements ..73

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Working with the Next Generation Logger (NGL)</th>
</tr>
</thead>
</table>
| Overview of deployment .. 99
| Preparing for installation ... 105
| Verifying that the required RTCS level is installed .. 105
| Controlling sharing of the RTCS system registry .. 105
| Checking your cross-system coupling facility (XCF) groups names 107
| Enabling communication between a DOM agent and an older product 109
| Modifying the DBC started task .. 109
| Determining the default DBC group .. 111
| Working with agents ... 112
| Reusing global infrastructure components .. 119
| Installing and upgrading the DOM agent for System and SQL Performance products .. 122
| Migrating to the DBC from a version 6.x Data Collector .. 122
| Upgrading the DOM agent ... 127
| Replicating the installation to other DB2 subsystems .. 127
| Replicating runtime data sets for different environments 129

Chapter 5 Deploying products that use the global infrastructure components

| Overview of deployment .. 99
| Preparing for installation ... 105
| Verifying that the required RTCS level is installed .. 105
| Controlling sharing of the RTCS system registry .. 105
| Checking your cross-system coupling facility (XCF) groups names 107
| Enabling communication between a DOM agent and an older product 109
| Modifying the DBC started task .. 109
| Determining the default DBC group .. 111
| Working with agents ... 112
| Reusing global infrastructure components .. 119
| Installing and upgrading the DOM agent for System and SQL Performance products .. 122
| Migrating to the DBC from a version 6.x Data Collector .. 122
| Upgrading the DOM agent ... 127
| Replicating the installation to other DB2 subsystems .. 127
| Replicating runtime data sets for different environments 129

BMC Global Infrastructure Administration Guide
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replicating runtime data sets by using the Target Destination System (TDS) installation</td>
<td>130</td>
</tr>
<tr>
<td>Manually replicating your runtime data sets</td>
<td>140</td>
</tr>
<tr>
<td>Replicating DBCs on shared DASD in the same sysplex</td>
<td>144</td>
</tr>
<tr>
<td>Replicating the DBC (using the same DBC group and option sets)</td>
<td>144</td>
</tr>
<tr>
<td>Replicating the DBC (using a different DBC group)</td>
<td>147</td>
</tr>
<tr>
<td>Replicating the installation to another sysplex on non-shared DASD</td>
<td>152</td>
</tr>
</tbody>
</table>
About this book

This book contains information about managing and deploying global infrastructure components that certain BMC mainframe products use. This book is intended for system administrators.

The global components described in this book include:

- DB2 Component Services (DBC)
- DB2 Product Configuration (LGC)
- Next Generation Logger (NGL)
- Runtime Component System (RTCS)

Note
For information about infrastructure that is exclusive to MainView, see your MainView documentation.

Like most BMC documentation, this book is available in printed and online formats. To request printed books or to view online books and notices (such as release notes and technical bulletins), see the support website at http://www.bmc.com/support.

Note
Online books are formatted as PDF or HTML files. To view, print, or copy PDF books, use the free Adobe Reader from Adobe Systems. If your product installation does not install the reader, you can obtain the reader at http://www.adobe.com.

The software also offers online Help. To access Help, press **F1** within any product or click the **Help** button in graphical user interfaces (GUIs).

Related publications

From the BMC Support Central website, you can use the following methods to access related publications that support your product or solution:
Link to the BMC Documentation Center (https://webapps.bmc.com/infocenter/index.jsp) to browse documentation sets.

View BMC Quick Course demos (short overviews of selected product concepts, tasks, or features), which are included in the BMC Documentation Center.

Read individual product documents (books and notices) within the “A – Z Supported Product List.”

You can order hardcopy documentation from your BMC sales representative or from the support site. You can also subscribe to proactive alerts to receive e-mail messages when notices are issued.

Tip
You can access the BMC Support Central site at http://www.bmc.com/support.

Syntax statements

This topic explains conventions for showing syntax statements.

A sample statement follows:

```
COMMAND KEYWORD1 [KEYWORD2 | KEYWORD3] KEYWORD4={YES | NO} fileName...
```

<table>
<thead>
<tr>
<th>Convention</th>
<th>Example</th>
</tr>
</thead>
</table>
| Items in italic type represent variables that you must replace with a name or value. If a variable is represented by two or more words, initial capitals distinguish the second and subsequent words. | alias
databaseDirectory
serverHostName |
| Brackets indicate a group of optional items. Do not type the brackets when you enter the option. A comma means that you can choose one or more of the listed options. You must use a comma to separate the options if you choose more than one option. | [tableName, columnName, field]
[-full, -incremental, -level] |
| Braces indicate that at least one of the enclosed items is required. Do not type the braces when you enter the item. | {DBDName | tableName}
UNLOAD device={disk | tape, fileName | deviceName}
{a | c} |
| A vertical bar means that you can choose only one of the listed items. In the example, you would choose either commit or cancel. | {commit | cancel} |
Conventions

This document uses the following special conventions:

- All syntax, operating system terms, and literal examples are presented in this typeface.

- Variable text in path names, system messages, or syntax is displayed in italic text: `testsys/instance/fileName`

- This document uses a symbol to show menu sequences. For example, *Actions => Create Test* instructs you to choose the *Create Test* command from the *Actions* menu.

<table>
<thead>
<tr>
<th>Convention</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>An ellipsis indicates that you can repeat the previous item or items as</td>
<td><code>columnName...</code></td>
</tr>
<tr>
<td>many times as necessary.</td>
<td></td>
</tr>
</tbody>
</table>
BMC global infrastructure components

Some BMC mainframe products use common components to create a global infrastructure in which multiple products work.

This book introduces global infrastructure components (Table 1 on page 13) and explains how to deploy and manage them.

Note

For information about infrastructure that is exclusive to MainView, see your MainView documentation.

<table>
<thead>
<tr>
<th>Component</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **DB2 Component Services (DBC)** | DBC provides a persistent z/OS subsystem address space into which BMC products can dynamically initialize their own product services. The following infrastructure components also require the DBC subsystem:
 - the Data Collector for System and SQL Performance products
 - BMC Workbench for DB2 (also called the GUD component)
 - LGC and NGL components |
| **DB2 Product Configuration (LGC)** | The LGC technology separates product or solution installation from configuration. Through its online interface, LGC simplifies configuration and deployment by setting default option values for you. |
| **Next Generation Logger (NGL)** | NGL is a logging facility that logs and retrieves data based on application-defined keys and a time span. NGL runs as a service within the DBC subsystem and relies on the RTCS for registry services. |
| **Runtime Component System (RTCS)** | RTCS runs as a started task and provides programming services to various BMC mainframe products. RTCS is designed for continuous operation and seldom, if ever, needs to be stopped. |

Table 2 on page 14 indicates the products that use each component.
Overview of DB2 Component Services (DBC)

The DB2 Component Services (DBC) technology provides a persistent z/OS subsystem address space into which enabled BMC products can dynamically initialize their own product services.

DBC uses a variety of techniques to accommodate dynamic initializations:

- Through an XML messaging protocol, DBC provides a non-authorized, loosely coupled, sysplex-enabled communication channel to product services.
- DBC hosts common services for IBM DB2 subsystem discovery and command execution.
- DBC allows BMC products to define operator commands, and to subscribe to and publish user events dynamically.

Typically, these components are shared across the BMC products with one instance per LPAR and are upgraded only through maintenance releases.

Table 2: Products that use the global infrastructure components

<table>
<thead>
<tr>
<th>Product</th>
<th>DBC</th>
<th>LGC</th>
<th>NGL</th>
<th>RTCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Performance for DB2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SQL Performance for DB2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>APPTUNE for DB2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pool Advisor for DB2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MainView for DB2 — Data Collector</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MainView Transaction Analyzer</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BMC Workbench for DB2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Recovery Management for DB2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RECOVERY MANAGER for DB2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PACLOG for DB2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Additional products also use the RTCS component. For more information about RTCS, see BMC Runtime Component System Configuration and Administration Guide. This BMC Global Infrastructure Administration Guide describes RTCS only as it interacts with the other global infrastructure components.
All product services that are hosted within the DBC infrastructure inherit a Security Access Facility (SAF) interface to ensure compliance with the relevant site's security requirements.

The FMID that corresponds to DBC technology is ZDBCxxx, where xxx represents release number information.

Note

For information about maintaining and using the DBC, see “Working with DB2 Component Services (DBC)” on page 21. For information about using the DBC with a particular product, see that product's documentation.

Overview of DB2 Product Configuration (LGC)

DB2 Product Configuration (LGC) technology separates product or solution installation from configuration.

Through its online interface, LGC simplifies configuration. You can accept the default option values or make changes to them, if needed.

LGC panels simplify navigation by allowing you to expand or contract sections as needed. Also, you can link to LGC from within your product or solution, thus maintaining a consistent look and feel, and retaining your changes from version to version.

LGC operates as an agent within the DBC subsystem. The LGC agent uses the registry services of the Runtime Component System (RTCS) to access the RTCS system registry and, optionally, a private registry. LGC stores the option sets for many BMC products in a datastore (a collection of XML documents), which is stored in an RTCS registry.

LGC uses the RTCS private registry when RTCS communicates across the cross-coupling facility (XCF) to other RTCS instances; the other instances are in other LGC agents in the sysplex that are defined to the same DBC group. The RTCS instance in one LGC agent owns (allocates it, reads from, and writes to) the registry that contains the LGC datastore. If the owning agent is stopped, an RTCS instance in another LGC agent in the same DBC group assumes ownership of the registry. When using the RTCS system registry for the LGC datastore, the main RTCS registry task handles registry ownership (including transference) when necessary.

The FMID that corresponds to the LGC technology is ZLGCxxx, where xxx represents release number information.
Overview of the Next Generation Logger (NGL)

Next Generation Logger (NGL) technology allocates, initializes, and manages log files. NGL minimizes the cost of logging and the potential for resource contention.

The Next Generation Logger operates as agents within the DBC subsystems. Multiple NGL instances can be active that are uniquely identified by a product instance identifier (PIID). For example, the MainView Transaction Analyzer product might use NGL1 for the PIID, while the System and SQL Performance products use NGL2.

The FMID that corresponds to the NGL technology is ZNGLxxx, where xxx represents release number information.

Note
For more information about maintaining and supporting NGL, see “Working with the Next Generation Logger (NGL)” on page 93. For information about using NGL with a particular product, see that product’s documentation.

Overview of the Runtime Component System (RTCS)

The Runtime Component System (RTCS) technology provides programming services to BMC mainframe products. By supporting both component-based and traditional procedural programming, RTCS uses the latest z/OS system facilities to take advantage of modern enterprise servers.

RTCS simplifies product installation and configuration. Other products use the services and components made available by RTCS to support additional functions, replace or update functions, or extend existing functions.

The FMIDs that correspond to the RTCS technology are ZOSZxxx and LOSZxxx, where xxx represents release number information.
Required authorizations for user IDs

Multiple user IDs are associated with installing, configuring, and using the common components with BMC products. This section describes the permissions and security settings for these IDs:

- “Installation user ID” on page 17
- “DBC started task user ID” on page 18
- “NGLARCH started task user ID” on page 19
- “Online user ID” on page 19

Installation user ID

The user ID of the installer must have the following permissions and security settings:

- ALTER authority for the following data sets:
 - BMC Installation System installation data sets
 - SMP/E global, target, and distribution data sets
 - Runtime data sets
 - User data sets

- READ authority for the IBM Resource Access Control Facility (RACF) FACILITY class for the following resources:
 - BMC.DBC.*
 - BMC.DPR.*
 - BMC.LGC.* (if LGC is installed)
 - BMC.NGL.* (if NGL is installed)
USS SUPERUSER access

DBC started task user ID

The started task for the DBC must have the following permissions and security. For more information about DBC, see “Working with DB2 Component Services (DBC)” on page 21.

- READ authority for the RACF FACILITY class for the following resources:
 - BMC.DBC.*
 - BMC.DPR.*
 - BMC.LGC.* *(if LGC is installed)*
 - BMC.NGL.* *(if NGL is installed)*

- ALTER authority for the user data sets (that is, DBCREPOS and LOGSET files)

- READ and WRITE authority for the:
 - LGC private registry data set *(if LGC is installed)*
 - NGL private registry data set *(if NGL is installed)*

- An OMVS segment defined in the IBM RACF (normal user) security product or an equivalent security product

- When using APPTUNE object data collection, READ authority for:
 - DB2 Version 9 subsystems data sets:
 - db2cat.DSNDBD.DSNDB06.SYSDBASE.I0001.A001
 - db2cat.DSNDBD.DSNDB06.SYSUSER.I0001.A001
 - DB2 Version 10 subsystems data sets:
 - db2cat.DSNDBD.DSNDB06.SYSTSTAB.I0001.A001
 - db2cat.DSNDBD.DSNDB06.SYSTSIXS.I0001.A001
 - db2cat.DSNDBD.DSNDB06.SYSUSER.I0001.A001

- READ authority for System Authorization Facility (SAF) class DSNR for:
 - db2ssid .BATCH
NGLARCH started task user ID

The started task for the NGL must have the following permissions and security:

■ ALTER authority for the HLQ for the user data sets (that is, DCREPOS and LOGSET files)

■ READ and WRITE authority for the:
 — LGC private registry data set (*if LGC is installed*)
 — NGL private registry data set (*if NGL is installed*)

■ An OMVS segment defined in IBM RACF (normal user) or the equivalent in your security system

Online user ID

To use interface components of the products, the user ID must have:

■ READ authority for the runtime data sets

■ READ authority for the RACF FACILITY class for the following resources:
 — BMC.DBC.*
 — BMC.DPR.*

■ An OMVS segment defined in the RACF (normal user) security product or an equivalent security product
Working with DB2 Component Services (DBC)

This chapter explains how to start and manage the DBC subsystem and how to manage DBC security.

Working with the DBC subsystem

To use the DBC technology, you must start and manage a DBC subsystem. This section explains how to:

- Start a DBC subsystem
- Specify DBCPARMS parameters
- Stop a DBC subsystem

Note

If you are using a version of IBM z/OS earlier than Version 1 Release 12, ensure that the AF_UNIX MAXSOCKETS value in BPXPRMxx is set to a value of at least 1000 before starting the DBC subsystem. For more information about the MAXSOCKETS value, refer to IBM documentation.

Started task for the DBC subsystem

Normally, you start the DBC subsystem as a z/OS started task.
WARNING

When performing an IPL, wait until after OMVS initialization has completed to start the DBC. Otherwise, DBC might experience failures as OMVS initialization executes and might produce the following messages:

```
BMC24549 XA00 Error on DBC INIT, LOGSET=XA00L005,NGL AGENT=XA00,
RC=0000000C
BMC24948 XA00 LOGSET XA00L005 terminating
```

During OMVS initialization, wait to start the DBC subsystem until the following message is displayed:

```
D1N 4000000 AO 12232 02:33:03.95 0000010 BPX10041 OMVS
INITIALIZATION COMPLETE
```

You should add the JCL procedure for the started task into a system procedure library.

Note

For testing or trial installations, you can also start the DBC subsystem as a batch job. However, the JES initiator will be busy for the life of the DBC subsystem. BMC does not recommend this approach for non-trial installations.

Figure 1 on page 22 shows an example of the started task for DBC.

Figure 1: JCL procedure for the DBC started task

```c
//*********************************************************************
//*/
//* Description:
//*   BMC Software DBC subsystem JCL procedure for the started task.
//*/
//* Customization Steps:
//*   - Modify the DBC subsystem initialization parameters in the
//*     member DBC$PARM that the DBCPARMS DD statement identifies.
//*   - Modify the DBC subsystem security parameters in the member
//*     DBC$SECU that the DBCSECUR DD statement identifies.
//*   - Allocate Registry data set for products running under DBC
//*     Sample define:
//*       DEFINE CLUSTER (NAME(BMCDBC.ssid.REGISTRY) -
//*        LINEAR CYL(25 10) SHAREOPTIONS(1,3) STORCLAS(xxxxxx))
//*   - Add this JCL procedure to a system procedure library.
//*   - APF authorize the DBC STEPLIB data set.
//*/
//* Notes:
//*   The DBC subsystem is a long-running-service address space that
//*   normally remains active for the life of an IPL. Therefore, BMC
//*   does not recommend starting the DBC subsystem as a batch job.
//*   Doing so causes the JES initiator to be busy for the life of
//*   the DBC subsystem. If you want to run the DBC as a batch
//*   job, replace the PROC statement with a valid JCL job card.
//*/
//*********************************************************************
DBC      PROC SSID=,GRP=,REPMODE=
DBC      EXEC PGM=DBCMAIN,REGION=0M,ACCT=&ACC,TIME=&TIM,
         PARM='SSID=&SSID,GROUP=&G,TRACE=&T'
STEPLIB  DD DSN=BMCPERF.TEST.BMCLINK,
         DISP=SHR
DBCPRINT DD SYSOUT=*,RECFM=VA
SYSPRINT DD SYSOUT=*,RECFM=VA
```
Table 3 on page 23 describes DD statements that you define within the started task.

Table 3: DD statements for the DBC started task

<table>
<thead>
<tr>
<th>DD statement</th>
<th>Identifies the</th>
<th>Note:</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEPLIB</td>
<td>DBC load library</td>
<td>The DBC STEPLIB load library must be APF authorized.</td>
</tr>
<tr>
<td>DBCPRINT</td>
<td>Data set to dynamically write DBC messages</td>
<td></td>
</tr>
<tr>
<td>SYSPRINT</td>
<td>Data set to write potential non-DBC product application messages</td>
<td></td>
</tr>
<tr>
<td>BMCPSWD</td>
<td>Data set containing the product license keys</td>
<td></td>
</tr>
<tr>
<td>DBCPARMS</td>
<td>DBC initialization parameters file</td>
<td>For more information, see “DBC startup parameters” on page 23.</td>
</tr>
<tr>
<td>DBCSECUR</td>
<td>Security parameters file</td>
<td>For more information, see “DBC security parameters” on page 39.</td>
</tr>
<tr>
<td>REGISTRY</td>
<td>Registry file (used by the Next Generation Logger (NGL) component)</td>
<td></td>
</tr>
<tr>
<td>DOMTMPLT</td>
<td>(for System and SQL Performance products only) Data set that contains advisor text</td>
<td></td>
</tr>
<tr>
<td>DOMPARMS</td>
<td>(for System and SQL Performance products only) Data set that contains parameters for advisors</td>
<td></td>
</tr>
</tbody>
</table>

DBC startup parameters

The DBC subsystem has the following sets of logically discrete startup parameters:

- **DBCPARMS** parameters include the required DBC subsystem ID (SSID) and optional parameters, such as the XCF group name and repository data set name. You specify this general set of control parameters through the DBCPARMS DD statement. For more information, see “DBCPARMS parameters” on page 24.

- **DBCSECUR** parameters relate specifically to security customization. You identify these parameters through the DBCSECUR DD statement. DBC maintains the security parameters as a discrete set of parameters so that you can implement a
different level of data set security for these parameters, if needed. For more information, see “DBC security” on page 34.

Note
The only required DBC initialization parameter is the SSID; along with the XCF group name, you can also specify the SSID via the EXEC PGM=DBCMAIN,PARM='parms' JCL statement. If you specify the DBC SSID or GROUP through the JCL PARM= override statement, these values take precedence over any <SSID> or <GROUP> XML element values specified in DBCPARMS statement.

Figure 2 on page 24 shows an example of the started task JCL with parameters.

Figure 2: Started task for DBC

```
//DBC      PROC
//DBCEXEC  EXEC PGM=DBCMAIN,PARM='SSID=DO&SYSCLONE,GROUP=DBCGROUP,REPMODE='
//DBCxxx10 EXEC PGM=DBCMAIN,REGION=0M,ACCT=xxxx,TIME=1440,
PARM=('SSID=&SSID,MODE=&REPMODE,GROUP=&GRP')
//STEPLIB  DD DISP=SHR,DSN=BMC.DBC.XXLINK
//SYSPRINT DD SYSOUT=*,RECFM=VA
//DBCPARMS DD DISP=SHR,DSN=BMC.DBC.DBCSAMP(DBC$PARM)
//DBCSECUR DD DISP=SHR,DSN=BMC.DBC.DBCSAMP(DBC$SECU)
```

DBCPARMS parameters

The DBCPARMS DD JCL statement identifies the initialization parameters file for the DBC started task.

Note
Initialization parameters are separated from the DBC security startup parameters that you specify in the DBCSECUR DD statement. This separation allows you to manage the security parameters separately from other DBC parameters by implementing data set name security through your External Security Manager (ESM).

For more information about the started task, see “Started task for the DBC subsystem” on page 21. For more information about security parameters, see “DBC security parameters” on page 39.

Guidelines for sharing DBCPARMS across multiple DBC subsystems

If you want to share a single DBCPARMS parameters file across all DBC subsystems, consider the following guidelines:
The DBC SSID must be unique within an XCF group and unique on a single LPAR. You must specify the required DBC SSID by using the JCL parameter override statement (EXEC PGM=DBCMAIN,PARM='SSID=ssid').

You can use the &SYSCLONE symbolic from the IBM MVS system symbols as part of the SSID= parameter. Doing so allows you to create unique DBC SSIDs across the sysplex without having separate PROCs. You can create two-, three-, or four-character IDs by combining &SYSCLONE with other literal characters (for example, SSID=DC&SYSCLONE). To determine the value of &SYSCLONE at your site, contact your system programmer.

By default, the DBC starts an XCF group based on the name of the DBC group. You can specify the DBC group name by using the JCL parameter override statement (EXEC PGM=DBCMAIN,PARM='GROUP=group'). You can specify the XCF group name by using the <XCFGROUP> element in the DBCPARMS member.

You can specify the DBC repository data set name in the DBCPARMS parameters file by using one or more DBC system variables. Doing so ensures a unique repository data set name for each DBC subsystem instance. Table 4 on page 25 lists the DBC system variables that you can use to create a unique data set name.

Table 4: DBC system variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&SSID.</td>
<td>4-byte subsystem ID of the DBC subsystem</td>
</tr>
<tr>
<td>&SMFID.</td>
<td>4-byte SMF ID of the host system</td>
</tr>
<tr>
<td>&MVSNAME.</td>
<td>8-byte system name of the host system</td>
</tr>
</tbody>
</table>

For more information about the individual DBC initialization parameters, see "DBCPARMS elements" on page 26.

Structure of the XML stream

Figure 2 on page 24 shows a sample parameters file.

```xml
<DBCPARMS>
  <OPTIONS>
    <SSID>SSID</SSID>
    <GROUP>BMCGROUP</GROUP>
    <XCFGROUP>DBCXCF</XCFGROUP>
    <MODE>NORMAL</MODE>
  </OPTIONS>
</DBCPARMS>
```
For JCL sample files, see the files in *HLQ.BBSAMP or *HLQ.DBCSAMP, depending on your installation path.

DBCPARMS elements

(required) The `<DBCPARMS>` element is the root-level element in the XML stream that is used to define DBC parameters.

Data type: Not applicable.

Child elements: `<OPTIONS>`

OPTIONS

(required) The `<OPTIONS>` element contains the DBCPARMS values.

Data type: Not applicable.

Parent element: `<DBCPARMS>`

Child elements: `<SSID>`, `<GROUP>`, `<WTOUPPERCASE>`, `<XCFCGROUP>`, `<MODE>`, `<WLM>`, and `<DPRREPOS>`

SSID

(optional) The `<SSID>` element specifies the SSID of the DBC subsystem. The SSID is a required DBC startup parameter. You must specify the SSID either through the DBCPARMS XML document or in the EXEC statement; otherwise, initialization fails.

Consider the following requirements for the value of the `<SSID>` element:

- BMC recommends that you use different names for the DBC SSID and the DBC started task.
- The SSID value must not conflict with any MVS command verbs. If it does, DBC issues an error message and terminates.
The SSID value can contain A–Z, 0–9, #, or $. Any other characters are invalid and cause the DBC subsystem to issue an error message and terminate.

The SSID value should not begin with a numeric character (0–9). You can use the SSID to issue system commands to the DBC subsystem; consequently, if the SSID value started with a number, the system could misinterpret the value as the short form of the REPLY system command. (For more information about issuing system commands, see “DBC commands” on page 33.)

The SSID value should not conflict with any JES commands. This recommendation ensures that only the DBC subsystem processes system commands that you issue to the DBC subsystem by using the DBC SSID value.

Data type: VARCHAR(4)
Parent element: <OPTIONS>
Child elements: None.

GROUP

(optional) The <GROUP> element specifies the name of the DBC XCF group that relates DBC subsystems on different LPARs within the SYSPLEX.

Note
You can also specify the DBC XCF group through the EXEC PGM=DBCMAIN,PARM='parms' JCL statement.

Consider the following requirements for the value of the <GROUP> element:

- The GROUP value must not conflict with any MVS command verbs. If it does, DBC issues an error message and terminates.

- The GROUP value must not contain embedded blank characters.

- The GROUP value should not begin with a numeric character (0–9). You can use the group name to issue system commands to the DBC subsystem; consequently, if the group name started with a number, the system could misinterpret the value as the short form of the REPLY system command. (For more information about issuing system commands, see “DBC commands” on page 33.)

- The GROUP value should not conflict with any JES commands. This recommendation ensures that only the DBC subsystem processes system commands that you issue to the DBC subsystem by using the GROUP value.
A DBC XCF group can contain only one DBC subsystem per LPAR.

The default value is DBCGROUP.

- **Data type:** VARCHAR(8)
- **Parent element:** <OPTIONS>
- **Child elements:** None.

XCFGROUP

 (optional) By default, DBC uses the <GROUP> element as the name of an XCF group to join at startup. In rare situations, this behavior might not be acceptable. Use the <XCFGROUP> element to specify a different XCF group for DBC to join.

- **Data type:** VARCHAR(8)
- **Parent element:** <OPTIONS>
- **Child elements:** None.

MODE

MODE controls whether to initialize products stored in the repository when starting. Valid values for the <MODE> element are SAFE and NORMAL.

- SAFE mode tells the DBC subsystem to start without automatically initializing products stored in the repository.
- NORMAL mode (the default value) initializes products stored in the repository.

You can also specify the value for MODE through start arguments to DBCMAIN.

If DBC starts in SAFE mode, DBC issues the following message to the system log:

```
BMCDBC0250 ssid DBC has been requested to ignore INITPROD commands from the repository
```

If starting in default NORMAL mode, DBC issues the following message:

```
BMCDBC0234I  DBC operating in NORMAL mode.
```

- **Data type:** VARCHAR(6)
- **Parent element:** <OPTIONS>
- **Child elements:** None.

WLM

The <WLM> element sets the subsystem type to use for workload management. The default is BMCS.
SUBSYSTYPE

The `<SUBSYSTYPE>` element contains the name of the subsystem type.

Data type: VARCHAR(8)
Parent element: `<OPTIONS>`
Child elements: None.

WTOUPPERCASE

`(optional)` The `<WTOUPPERCASE>` element indicates whether to convert console messages to uppercase. Printed messages remain in mixed case.

The default value is YES. Valid values are YES and NO.

Data type: VARCHAR(3)
Parent element: `<OPTIONS>`
Child elements: None.

DPRREPOS

`(optional)` The `<DPRREPOS>` element contains the DPR repository name and allocation options. If you do not specify this element, the repository services of the DPR component are unavailable and the DBC issues a warning message during initialization; however, DBC subsystem services function normally with the exception of the `<AUTOEXEC>` features that require a persistent repository data set.

Data type: Not applicable.
Parent element: `<OPTIONS>`
Child elements: `<NAME>`, `<STORCLAS>`, `<VOLUMES>`, `<MGMTCLAS>`, `<DATACLAS>`, and `<IGNORE>`

NAME

`(optional)` The `<NAME>` element specifies the data set name for the DPR repository VSAM cluster. This value must specify a valid data set name:

- If the value specifies the name of an existing DPR repository VSAM cluster, DPR repository services use that cluster for the repository.
- If the specified data set does not exist, DPR repository services define the new cluster automatically by using the `<STORCLAS>` or `<VOLUMES>` options to determine physical allocation attributes.
If you do not provide a value in the `<NAME>` element, DBC issues a warning message during initialization, and the repository services are unavailable.

Only one active DBC subsystem can use a given DPR repository VSAM cluster.

You can share a single DBCPARMS parameters file for multiple DBC instances. To do so, specify DBC system variables within the `<NAME>` element to ensure that each DBC subsystem uses a unique repository data set name. DBC resolves the variables to their symbolic values. To enable variable substitution, prefix the system variables with an ampersand (`&`) and suffix them with a period (`.`).

Example

Assume that you use the system variables in a `<NAME>` element as shown in the following statement:

```
<NAME>BMC.&SSID..&SMFID..&MVSNAME..REPOS</NAME>
```

Also, assume that the symbolic values of SSID, SMFID, and MVSNAME are `DBC1`, `SYSP`, and `MVSPROD`, respectively.

The variable substitution resolves to the following data set name:

```
BMC.DBC1.SYSP.MVSPROD.REPOS
```

Data type: VARCHAR(44)

Parent element: `<DPRREPOS>`

Child elements: None.

STORCLAS

(optional) The `<STORCLAS>` element specifies the SMS storage class to be used for the DPR repository VSAM cluster when the DPR defines the cluster. The DPR defines the cluster automatically if the `<NAME>` element specifies the name of a cluster that has not yet been defined. Specify this element only if SMS is active and the cluster is to be SMS-managed. For more information, see the STORAGECLASS parameter of the DEFINE CLUSTER command in the IBM DFSMS Access Method Services documentation.

Data type: VARCHAR(8)

Parent element: `<DPRREPOS>`

Child elements: None.

VOLUMES

(optional) The `<VOLUMES>` element specifies the volumes on which the DPR repository VSAM cluster is to be defined when the DPR defines the cluster. The DPR defines the cluster automatically if the `<NAME>` element specifies the name of a cluster that has not yet been defined.
Note

This element is required only if you do not specify if a value for <STORCLAS>.

The <VOLUMES> value can specify up to 59 volumes, where each volume is delimited by a comma (,). The value can specify a volume serial number or, if the cluster is to be SMS-managed, an asterisk (*), which lets SMS choose the volume. For more information, see the VOLUMES parameter of the DEFINE CLUSTER command in the IBM DFSMS Access Method Services documentation.

Data type: VARCHAR(412)
Parent element: <DPRREPOS>
Child elements: None.

MGMTCLAS

(optional) The <MGMTCLAS> element specifies the management class for the repository data set to be created.

The <MGMTCLAS> element is used only if the repository data set does not yet exist.

Data type: VARCHAR(8)
Parent element: <DPRREPOS>
Child elements: None.

DATAACLAS

(optional) The <DATAACLAS> element specifies the data class for the repository data set to be created.

The <DATAACLAS> element is used only if the repository data set does not yet exist.

Data type: VARCHAR(8)
Parent element: <DPRREPOS>
Child elements: None.

IGNORE

(optional) The <IGNORE> element tells DBC to ignore the repository entries for the identified product at startup. Doing so allows the rest of the products running within the DBC subsystem to start normally without starting the specified product. You can include multiple <IGNORE> elements.

when DBC is started Data type: Not applicable.
Parent element: <DPRREPOS>
Child elements: <PRODUCT>, <FMID>, and <PIID>
PRODUCT

(required) The <PRODUCT> element identifies a unique BMC product code.

Data type: CHAR(3)
Parent element: <IGNORE>
Child elements: None.

 FMID

(required) The <FMID> element identifies the FMID of the product code release.

Data type: CHAR(7)
Parent element: <IGNORE>
Child elements: None.

 PIID

(optional) The <PIID> element is optional and identifies a unique product instance within the context of one product code and FMID.

Data type: VARCHAR(16)
Parent element: <IGNORE>
Child elements: None.

Stopping the DBC subsystem

Use the following procedure to stop the DBC subsystem through IBM MVS. You identify the DBC subsystem to stop through the subsystem ID (ssid) or XCF group value (group).

To stop the DBC subsystem

1 Enter one of the following MVS commands:

 ssid STOP
 group STOP
 MODIFY ssid,STOP
 F group.STOP

 Example

 For example, assume that a DBC subsystem has an SSID of DBC1. You can stop this subsystem by issuing the STOP command as a MODIFY command, as follows:

 F DBC1,STOP
WARNING

Some product processes might require an extended amount of time to terminate successfully. If DBC shutdown is delayed, review DBCPRINT for the following message to determine the cause of the delay:

```
BMCDBC0232I... DBC is waiting for product productName to shutdown.
```

If the DBC does not shut down after a reasonable amount of time, you can use the following command to terminate the delayed process:

```
ssid STOP,FORCE
```

Use caution when doing so; terminating a process that is still in use might cause unpredictable results. BMC recommends that you never use the STOP,FORCE command as the initial method to stop the DBC.

DBC commands

You can interact with the DBC subsystem via the use of commands.

Table 5 on page 33 lists these commands. The `ssid` value in the commands refers to the subsystem ID of the DBC subsystem.

Table 5: DBC commands

<table>
<thead>
<tr>
<th>Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/ssid DBC,DIAG</code></td>
<td>Sends diagnostic information to the DBCPRINT and DBCTRACE data sets. BMC Support might direct you to execute this command to assist in diagnosing problems.</td>
</tr>
<tr>
<td><code>/ssid DBC,DISPAGENTS</code></td>
<td>Displays all agents that are currently executing. This command generates message BMCDBC0126I, which indicates the TCB address of the agent and whether it is a job step TCB.</td>
</tr>
<tr>
<td><code>/ssid DBC,DISPDNSNS</code></td>
<td>Displays data sets allocated by each product. Data set names are displayed in the DBCPRINT data set. This command is only available when PTF BPU5453 is applied.</td>
</tr>
<tr>
<td><code>/ssid DBC,RESETPRINT</code></td>
<td>Closes the DBCPRINT data set and allocates a new one in order to clear data from DBCPRINT.</td>
</tr>
<tr>
<td><code>/ssid DBC,RESETTRACE</code></td>
<td>Clears the DBCTRACE data set and allocates a new one.</td>
</tr>
<tr>
<td><code>/ssid STOP</code></td>
<td>Stops the DBC subsystem.</td>
</tr>
</tbody>
</table>
Commands

<table>
<thead>
<tr>
<th>Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ssid DBC,TRACEON</td>
<td>Enables DBC tracing. DBC writes trace data to the DBCTRACE data set. The DBCTRACE data set is dynamically allocated. WARNING: If you leave tracing enabled, be aware that the DBCTRACE data set can grow to a significant size. BMC recommends using caution when using the TRACEON command.</td>
</tr>
<tr>
<td>/ssid DBC,TRACEOFF</td>
<td>Disables DBC tracing.</td>
</tr>
<tr>
<td>/ssid DBC,TRACEFLUSH</td>
<td>Forces unwritten trace information to the DBCTRACE data set. This command is useful if trace was disabled. DBC writes any trace data that exists in an internal buffer that is used to maintain trace information.</td>
</tr>
</tbody>
</table>

DBC security

This section introduces security for DBC.

Consider the following requirements and features of DBC security:

- DBC must meet the following UNIX requirements:
 - DBC must have read and write access to the `/tmp` directory.
 - DBC must have update access to the `FSACCESS` (UNIX file system access check) resource class.

- DBC uses the standard System Authorization Facility (SAF) interface to communicate with an External Security Manager (ESM). DBC is compatible with ESMs that support the SAF interface (including CA Technologies CA-ACF2 and CA-Top Secret products).

 The DBC security interface is compatible with the IBM Resource Access Control Facility (RACF) Version 1.9 or later. DBC issues security calls directly to the SAF interface.

 For more information, see “Configuring RACF security for the DBC subsystem” on page 36.

- DBC does not require you to define resources (that is, internal control points) to an ESM. However, if the security parameter `<ALLOW_SAF_RC4>` is set to NO and no resource names have been defined, all DBC requests fail with an authorization error. If `<ALLOW_SAF_RC4>` is set to NO, you must define DBC resource names so that access can be granted or denied as appropriate.

 DBC security control points include commands that are issued from an IBM z/OS system console and from the IBM System Display and Search Facility (SDSF). The DBC subsystem command processor extracts the user ID from the ACEE that is...
associated with the console address space and propagates this value through the system. Appropriate ESM customization is required to allow operator authorization to DBC commands.

- DBC stores its security parameters in the DBCSECUR data set.

DBC security parameters are independent of all other DBC parameters. This physical separation allows the security administrator to implement independent and discrete access to the security parameters (DBCSECUR) and potentially more general access to the subsystem parameters (DBCPARMS).

For more information about security parameters, see “DBC security parameters” on page 39.

Controlling access to DBC resources

The DBC subsystem always issues a Security Access Facility (SAF) security call for internal resource names. By default, if those resource names are not defined to an ESM, access to undefined DBC resources (internal functional control points) is granted for all users who can communicate to the DBC service address space. This behavior occurs because the value of the DBC <ALLOW_SAF_RC4> security parameter defaults to **YES**.

If you want to restrict access to DBC services that have not been defined as a resource to SAF, you must set the value of the <ALLOW_SAF_RC4> security parameter to **NO**. Doing so denies access to all undefined resources.

Figure 3 on page 35 shows an example of the ALLOW_SAF_RC4 value.

Figure 3: Example of the ALLOW_SAF_RC4 value

```
<DBCSECUR>
  <RESOURCE_NAME>
    ...
  </RESOURCE_NAME>
  <ALLOW_SAF_RC4>NO</ALLOW_SAF_RC4>
</DBCSECUR>
```

You control this value through DBC security parameters defined in a file identified through the DBCSECUR DD statement in the JCL procedure for the DBC started task.

- To specify the location of the DBC security parameters, see “DBC startup parameters” on page 23.

- To change the value of the <ALLOW_SAF_RC4> security parameter, see “DBC security parameters” on page 39.
Configuring RACF security for the DBC subsystem

The security administrator for a site should perform the following tasks to authorize the DBC subsystem:

- “Authorizing the DBC started task procedure” on page 36
- “Authorizing a user with access to the DBC services” on page 37
- “Creating a SAF resource class (optional)” on page 37
- “Defining a DBC control point resource profile” on page 38

Authorizing the DBC started task procedure

The DBC subsystem acquires security authorization from the USERID associated with the started task procedure that starts the DBC subsystem. Users must authorize the DBC started task.

To authorize the DBC started task

1. Associate the DBC started task with a USERID that has the appropriate security access.

 The DBC address space requires access to z/OS UNIX System Services (USS). Consequently, you must associate an OMVS segment with the USERID for the DBC subsystem. Also, if the RACF FACILITY class profile BPX.DEFAULT.USER has not been defined, the USERID profile that authorizes the DBC started task must have a z/OS UNIX user identifier (UID) and group identifier (GID) in the current connect group profile.

 Example

 The following example uses a RACF command to define a GROUP of DBCGRP:

   ```r
   ADDUSER DBCGRP OMVS(GID(groupIdentifier))
   ```

 The following example uses a RACF command to define a USERID of DBCUSR:

   ```r
   ADDUSER DBCUSR DFLTGRP(SYSMGMT) OWNER(SYSPROG)
   ```

2. Associate the USERID with the procedure name for the DBC started task.

 Example

 In the following example, the RACF command uses procedure name DBCSTC:

   ```r
   RDEFINE STARTED DBCSTC.* STDATA(USER(DBCUSR) GROUP(DBCGRP))
   ```
To ensure that RACF recognizes these security updates, issue the following command:

```plaintext
SETROPTS RACLIST(STARTED) REFRESH
```

Authorizing a user with access to the DBC services

To access DBC services, batch and TSO users require access to z/OS UNIX System Services (USS).

Also, their USERIDs require association with an OMVS segment. If the RACF FACILITY class profile BPX.DEFAULT.USER has not been defined, the user's profile must have a z/OS UNIX user identifier (UID) and group identifier (GID) in the current connect group profile.

Example

The following example uses a RACF command to modify the appropriate group for a user:

```plaintext
ALTGROUP groupName OMVS(GID(groupIdentifier))
```

The following example uses a RACF command to modify the user’s profile:

```plaintext
ALTUSER userName OMVS(UID(userIdentifier))
```

Creating a SAF resource class (optional)

This section explains how to create a new RACF resource class. Performing this task is not necessary if the predefined RACF FACILITY class is appropriate for all DBC resource definitions.

Note

This section provides general instructions. Your site might have additional considerations. BMC recommends consulting your security administrator when creating your SAF resource class.

To update the RACF resource class descriptor table (ICHRRCDE)

1. Code the ICHERCDE macro for each required resource class.

```plaintext
* TITLE 'RACF RESOURCE CLASS DESCRIPTOR TABLE - ICHRRRCDE'
* class ICHERCDE CLASS=class, X
  ID=id, X
  POSIT=posit, X
  FIRST=ANY, X
  OTHER=ANY, X
  MAXLTH=44, (or larger, if necessary) X
  RACLIST=ALLOWED, X
  OPER=NO
END
```
2 Assemble the source and link edit the resulting object module to replace the current ICHRRCDE load module.

To update the RACF router table (ICHRFR01)

1 Code the ICHRFRTB macro for each required resource class.

```plaintext
TITLE 'RACF ROUTER TABLE - ICHRFR01'
* 
class ICHRFRTB CLASS=class, ACTION=RACF
* 
ICHRFRTB TYPE=END
* 
END
```

2 Assemble the source and link edit the resulting object module to replace the current ICHRFR01 load module.

3 If necessary to activate the RACF table changes, perform an IPL of the system.

4 Issue the following RACF command for each new resource class:

```
SETROPTS CLASSACT(class)
```

5 *(optional)* If you use generic profiles, issue the following RACF commands for each new resource class:

```
SETROPTS GENERIC(class)
SETROPTS GENCMD(class)
```

Defining a DBC control point resource profile

The DBC subsystem and its components automatically call the SAF router to check user authorization to various services.

These services are identified by internal functional control points and are externally associated with a resource name. You control user access to the DBC component services by granting or denying authorization to the resource names that are associated with these internal functional control points. To control access to these services, you must define these resource names to the ESM.

To define a DBC control point resource profile

1 Define the resource profile (that is, the resource name) to the RACF ESM by using one or more RDEFINE FACILITY commands.
The following example protects access to various resource categories for a DBC subsystem. The profile applies to LPARs named PROD. You set the PROD value through the `<CONTEXT>` XML element in the DBC security parameters. The profile also applies to product codes DBC and DPR (inherent components of the DBC subsystem) and ABC (which relates to a DPR-initialized product with the 3-byte product code ABC). For example, the BMC System and SQL Performance products for DB2 use DBC, DPR, LGC, and NGL.

```
RDEFINE FACILITY (BMC.DBC.PROD.*) UACC(NONE)
RDEFINE FACILITY (BMC.DPR.PROD.*) UACC(NONE)
RDEFINE FACILITY (BMC.ABC.PROD.*) UACC(NONE)
```

The next example defines a generic profile that protects all currently defined subsystem resources and future resources that are associated with products that you have not yet defined to the DPR component of DBC:

```
RDEFINE FACILITY (BMC.*.PROD.*) UACC(NONE)
```

2. Activate the resource class by issuing one of the following commands:

- `SETROPTS CLASSACT(FACILITY)`

- `SETROPTS CLASSACT(FACILTY) RACLIST(FACILITY)` (to maintain profiles in memory)

3. (optional) Enable generic profile checking for the FACILITY class:

```
SETROPTS GENERIC(FACILITY)
```

DBC security parameters

The DBCSECUR DD statement, which is specified in the startup JCL for the DBC subsystem, identifies the security parameters data set for the DBC subsystem. The security parameters are optional. Each security parameter has a default value that applies if you do not specify the DBCSECUR DD statement, or if you omit a particular security option from the parameters file. Thus, you are not required to specify these parameters to use the DBC security features.

You do not specify the security parameters with the main DBC startup parameters identified in the DBCPARMS DD statement. You can choose to administer and secure the security parameters separately from the main DBC startup parameters by implementing RACF data set name security. For more information about the started task, see “Started task for the DBC subsystem” on page 21.
Structure of the XML stream

Figure 4 on page 40 shows a sample security parameters file.

Figure 4: Structure of the DBCSECUR XML stream

```xml
<DBCSECUR>
  <RESOURCE_NAME>
    <HLQ>BMC</HLQ>
    <CONTEXTS>
      <CONTEXT>
        <SMFID>MVSA</SMFID>
        <TO_VALUE>PROD</TO_VALUE>
      </CONTEXT>
      <CONTEXT>
        <SMFID>MVSB</SMFID>
        <TO_VALUE>TEST</TO_VALUE>
      </CONTEXT>
    </CONTEXTS>
  </RESOURCE_NAME>
  <RESOURCE_CLASS>
    <COMPONENT>DBC</COMPONENT>
    <COMMAND>MYCLASS</COMMAND>
  </COMPONENT>
  <COMPONENT>DPR</COMPONENT>
  <COMPONENT>DBC</COMPONENT>
  <COMPONENT>MYCLASS</COMMAND>
  <COMPONENT>DPR</COMPONENT>
  <COMPONENT>DBC</COMPONENT>
  <SUBSYS>DBCS</SUBSYS>
  <ALLOW_SAF_RC4>NO</ALLOW_SAF_RC4>
</DBCSECUR>
```

DBCSECUR elements

(optional) The `<DBCSECUR>` element is the root-level element of the DBCSECUR structure.

Data type: Not applicable.

Child elements: `<RESOURCE_NAME>`, `<RESOURCE_CLASS>`, `<SUBSYS>`, `<ALLOW_SAF_RC4>`, and `<DB2AUTH>`

RESOURCE_NAME

(optional) The `<RESOURCE_NAME>` element contains the options for the customizable resource name nodes.

Data type: Not applicable.

Parent element: `<DBCSECUR>`

Child elements: `<HLQ>` and `<CONTEXTS>`

HLQ

(optional) The `<HLQ>` element specifies a value for the HLQ node of the resource name structure. This value defaults to **BMC**.

Data type: VARCHAR(8)

Parent element: `<RESOURCE_NAME>`

Child elements: None.
CONTEXTS

(optional) The <CONTEXTS> element contains one or more context specifications.

Data type: Not applicable.
Parent element: <RESOURCE_NAME>
Child elements: <CONTEXT>

CONTEXT

(required) The <CONTEXT> element specifies a value for the context node of the resource name structure. This option defaults to the SMFID that is associated with the IBM z/OS image on which the DBC subsystem is active. The <CONTEXT> element must specify a <SMFID> and <TO_VALUE> element.

Data type: Not applicable.
Parent element: <RESOURCE_NAME>
Child elements: <SMFID> and <TO_VALUE>

SMFID

(required) The <SMFID> element specifies the SMFID that is associated with the z/OS image on which the DBC subsystem is active.

Data type: VARCHAR(4)
Parent element: <CONTEXT>
Child elements: None.

TO_VALUE

(required) The <TO_VALUE> element specifies the value that the DBC subsystem uses for the context node of the resource name.

Data type: VARCHAR(4)
Parent element: <CONTEXT>
Child elements: None.
The following example tells the DBC subsystem to use **PROD** as the context node of the resource name if the subsystem is started on the **z/OS** image with an **SMFID** of **LPR1**:

```
<CONTEXT>
  <SMFID>LPR1</SMFID>
  <TO_VALUE>PROD</TO_VALUE>
</CONTEXT>
```

If not started on this **z/OS** image, the DBC subsystem ignores the `<CONTEXT>` specification. This behavior allows you to define a single SAF options file for multiple DBC subsystems that run on different **z/OS** images.

By modifying the `<CONTEXT>` element to point a specific LPAR to a logical name, you can define RACF resource names that are consistent across multiple LPARs.

RESOURCE_CLASS

(*optional*) The `<RESOURCE_CLASS>` element allows you to customize the SAF resource class that is associated with internal DBC security control points. If omitted, the RACF resource class for all DBC commands (and associated components) defaults to the **FACILITY** class.

Note

This value does not affect the SAF resource class for DPR-initialized product objects. You can customize those classes by using the `<SAFCLASS>` XML tag in the product definition XML document.

In the sample shown in Figure 4 on page 40, all DBC and DPR command resource profiles must be defined in RACF resource class **MYCLASS**.

The `<COMPONENT>` and `<COMMAND>` subelements are required only if you use the `<RESOURCE_CLASS>` element.

Data type: Not applicable.
Parent element: `<DBCSECUR>`
Child elements: `<COMPONENT>`

COMPONENT

(*required*) The `<COMPONENT>` element identifies the specific component for which you are defining the resource class.

Data type: `CHAR(3)`
Parent element: `<RESOURCE_CLASS>`
Child elements: `<COMMAND>`
COMMAND

(required) The <COMMAND> element identifies the SAF resource class name that is used in all SAF security calls for commands issued from the associated component.

Data type: VARCHAR(8)
Parent element: <COMPONENT>
Child elements: None.

SUBSYS

(optional) The <SUBSYS> element specifies the value to be passed to SAF on each authorization check to the SUBSYS parameter on the RACROUTE macro. The value defaults to DBCS.

Data type: VARCHAR(8)
Parent element: <DBCSECUR>
Child elements: None.

Note
DBC uses BMCDBC as the application name that is passed to SAF through the APPL parameter on the RACROUTE REQUEST=AUTH macro call. This parameter specifies the name of the application that is making the authorization request. The RACROUTE service makes the parameter available to the installation exit routine, or any routines that the service invokes.

ALLOW_SAF_RC4

(optional) The <ALLOW_SAF_RC4> element specifies whether the DBC subsystem allows access to a given resource if SAF returns return code 4. SAF returns 4 if a security decision could not be made.

Valid values are YES and NO:

■ YES (the default) tells the DBC subsystem to allow user access to a resource if SAF returns return code 4.

■ NO tells the DBC subsystem not to allow user access to the resource.

Data type: VARCHAR(3)
Parent element: <DBCSECUR>
Child elements: None.

Note
The IBM RACROUTE macro reference documentation (SA22-7692-04) documents the SAF return codes.
DB2AUTH

(optional) The `<DB2AUTH>` element contains the DB2 authorization options for the DBC subsystem.

Data type: Not applicable.

Parent element: `<DBCSECUR>`

Child elements: `<AUTO>` and `<USERID>`

AUTO

(optional) The `<AUTO>` element indicates whether the DBC DB2 command services can acquire DB2 authorization automatically. Valid values are **YES** (default) and **NO**.

Automatic DB2 authorization allows the DBC to automatically authorize each DB2 command processor agent (DBCDB2CP) by changing the authorization ID of the agent’s DB2 thread to an authorized user ID. You can specify the user ID by using the `<USERID>` element. If you do not specify a user ID, the agent uses the installation SYSADM user ID of the DB2 subsystem.

Note

If you do not use automatic DB2 authorization, you must ensure that the DBC subsystem runs with a user ID that has a sufficient DB2 authority level to issue DB2 commands. You must grant authorization to the DBC subsystem for each DB2 subsystem to which the DBC will issue DB2 commands.

Data type: VARCHAR(3)

Parent element: `<AUTO>`

Child elements: None.

USERID

(optional) The `<USERID>` element specifies the user ID that will be used by the DBC DB2 command services to acquire DB2 authorization automatically. See the `<AUTO>` element for more information about automatic DB2 authorization.

If the `<AUTO>` element specifies **NO**, the DBC ignores the `<USERID>` element.

Data type: VARCHAR(8)

Parent element: `<AUTO>`

Child elements: None.
Authorizing the DBC DB2 command services

The DBC DB2 command services provide an interface for BMC products to issue DB2 commands. By default, these services acquire DB2 authorization automatically. For more information about automatic DB2 authorization, see the `<DB2AUTH>` element in the XML structure for the DBC security parameters.

If automatic DB2 authorization is disabled, you must ensure that the DBC subsystem runs with a user ID that has a sufficient DB2 authority level to issue DB2 commands. You must grant authorization to the DBC subsystem for each DB2 subsystem to which the DBC will issue DB2 commands.

You can use the DBC security features to restrict unwanted access to the DBC DB2 command services.
DBC security parameters
Working with DB2 Product Configuration (LGC)

The DB2 Product Configuration (LGC) component separates product or solution installation from configuration. This chapter describes how to use the LGC interface, how to create and manage option sets, and how to issue commands to the LGC.

Through its online interface, LGC simplifies the configuration as follows:

- Saves time by:
 - Providing default option values for you, but allowing you to change them if needed
 - Consolidating the process into scrollable panels that feature a simple navigation model (expanding sections on the panel)
 - Retaining data for subsequent installations and upgrades
- Validates any option values that you enter
- Lets you link to the configuration interface from within a product or solution
- Captures option value changes that you make after installation and initial configuration
- Provides maintenance via PTFs
- Supports multiple screen sizes (for example, MOD 2, MOD 4, MOD 5, or custom-sized terminals)

LGC creates XML files called option sets to contain all of your product’s configuration values. Some products allow multiple option sets. For those products, you can use different option sets, or configurations, to run different jobs.
Overview of the LGC interface

DB2 Product Configuration (LGC) provides ISPF panels in which you can enter or change product or solution option set values.

The Product Option Sets panel (Figure 5 on page 48) is one of the basic panels that you use to create new option sets. It lists each product and solution for which you can configure option sets.

Expandable sections

The LGC interface provides expandable and collapsible sections that group options into categories. Expandable sections are identified with a plus sign (+) to the left of the section's title.
Navigation in sections

Figure 6 on page 49 shows an example of the Product Option Sets panel, which has a section for each product.

Figure 6: Product Option Sets panel (not expanded)

<table>
<thead>
<tr>
<th>Command ====></th>
<th>Product Option Sets</th>
<th>Scroll ====> CSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution/Product</td>
<td>Version Changed</td>
<td>More:</td>
</tr>
<tr>
<td>+ BMC Workbench</td>
<td>V01.0.0</td>
<td></td>
</tr>
<tr>
<td>+ PACLOG for DB2</td>
<td>V11.1.0</td>
<td></td>
</tr>
<tr>
<td>+ RECOVERY MANAGER for DB2</td>
<td>V11.1.0</td>
<td></td>
</tr>
<tr>
<td>+ System and SQL Performance for DB2</td>
<td>V10.1.0</td>
<td></td>
</tr>
<tr>
<td>+ System and SQL Performance for DB2</td>
<td>V11.1.0</td>
<td></td>
</tr>
</tbody>
</table>

********************************* End of List ********************************

B browse, E edit, C copy, D delete, I insert, R rename, ? Action

In this panel, you can expand a section by placing your cursor on the adjacent plus sign (+) and pressing Enter. For example, expanding a section displays your option sets for that product or solution (Figure 7 on page 49).

Figure 7: Product Option Sets panel (expanded to show option sets)

<table>
<thead>
<tr>
<th>Command ====></th>
<th>Product Option Sets</th>
<th>Scroll ====> CSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution/Product</td>
<td>Version Changed</td>
<td>More:</td>
</tr>
<tr>
<td>- BMC Workbench</td>
<td>V01.0.0</td>
<td></td>
</tr>
<tr>
<td>- GUDOPT</td>
<td>BMC Workbench for DB2</td>
<td>2013/05/07 17:14:09 RDADAC</td>
</tr>
<tr>
<td>- PACLOG for DB2</td>
<td>V11.1.0</td>
<td></td>
</tr>
<tr>
<td>- ALMSOPTS</td>
<td>PACLOG for DB2</td>
<td>2013/05/07 13:14:09 RDADAC</td>
</tr>
<tr>
<td>- RECOVERY MANAGER for DB2</td>
<td>V11.1.0</td>
<td></td>
</tr>
<tr>
<td>- ARMSOPTS</td>
<td>RECOVER MANAGER for DB2</td>
<td>2013/05/07 19:14:09 RDADAC</td>
</tr>
<tr>
<td>- System and SQL Performance for DB2</td>
<td>V11.1.0</td>
<td></td>
</tr>
<tr>
<td>- DCPLEX</td>
<td>BMC System and SQL Performance</td>
<td>2013/05/09 09:26:15 RDADAC4</td>
</tr>
</tbody>
</table>

********************************* End of List ********************************

B browse, E edit, C copy, D delete, I insert, R rename, ? Action

Tip
To collapse an expanded section, place your cursor on the minus sign (-) and press Enter. To expand or collapse multiple sections, type S on all of their signs and press Enter. Attempting to expand an empty section simply changes the + sign to a - sign.

Instance indicators for a section

If a section title has a number after it in parentheses, more than one instance for that section exists.
Overview of the LGC interface

For example, Figure 8 on page 50 shows an LGC interface panel for the SQL Performance solution.

Figure 8: Example of instance indicators

<table>
<thead>
<tr>
<th>File</th>
<th>Filter</th>
<th>Confirm</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command ===></td>
<td>DBCRIOPT - DOMPLEX FOR DBCR1101</td>
<td>Scroll ===> CSR</td>
<td></td>
</tr>
<tr>
<td>Filter: Modified</td>
<td>More:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ DOMPLEX Parameters</td>
<td>Parameters that apply to entire DOMPLEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Data Collector List (1)</td>
<td>Data Collector(DBC) subsystems in DOMPLEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ DB2 Monitor List (12)</td>
<td>DB2 Sub-systems to be monitored</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ OutGp DCID DspSize (6)</td>
<td>Output Groups - valid range: 001-256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/+ expandable section (enter ? for action menu), > zoomable field</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this example, the option set contains:

- One instance of the **Data Collector List** section
- Twelve instances of the **DB2 Monitor List** section
- Six instances of the **OutGp DCID DspSize** section

If no number exists, that section is unique and can have only one set of values.

If you expand a section that has an instance indicator, each instance is displayed. For example, Figure 9 on page 50 shows six output groups that are associated with the **OutGp DCID DspSize** section. This example also shows the first output group expanded to show its subsections.

Figure 9: Example of multiple instances within a section

<table>
<thead>
<tr>
<th>File</th>
<th>Filter</th>
<th>Confirm</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command ===></td>
<td>DBCRIOPT - DOMPLEX FOR DBCR1101</td>
<td>Scroll ===> CSR</td>
<td></td>
</tr>
<tr>
<td>Filter: Off</td>
<td>More:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ DOMPLEX Parameters</td>
<td>Parameters that apply to entire DOMPLEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Data Collector List (1)</td>
<td>Data Collector(DBC) subsystems in DOMPLEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ DB2 Monitor List (12)</td>
<td>DB2 Sub-systems to be monitored</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- OutGp DCID DspSize (6)</td>
<td>Output Groups - valid range: 001-256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/+ expandable section (enter ? for action menu), > zoomable field</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 012 N11J 20 | Dataspace buffer size: 1-2000 (MB) |
- 014 N11J 20 | Dataspace buffer size: 1-2000 (MB) |
| +/+ expandable section (enter ? for action menu), > zoomable field |

----------- End of List ****************************

Overview of the LGC interface

50 **BMC Global Infrastructure Administration Guide**
Note
If a field has a greater than sign (>) to the left of it, you can zoom the field to see more details by positioning the cursor on > and pressing Enter. For example, assume that the panel includes the following field entry:

> DB2 IFCIDs to be discarded

You can position the cursor on > and press Enter to see the entire list of discarded IFCIDs.

Drop-down menus

The top of an LGC interface panel provides drop-down menus (File, Filter, Confirm, and Help). You can use these menus to manage your files, filter the option sets that are displayed in expanded sections of the panel, and obtain Help.

Action list

The action list at the bottom of an LGC interface panel indicates allowable actions or line commands for that panel. From an option sets panel, you can perform the following actions on option sets:

- Browse (B)
- Edit (E)
- Copy (C)
- Delete (D)
- Insert (I)
- Rename (R)

To perform an action, type the corresponding letter next to the option set upon which you want to perform that action. For example, to edit an option set, enter E next to the option set's name.

Online Help

LGC provides online Help for panels, fields in panels, and messages.
You can access Help in the following ways:

- To access Help for a panel, use the Help drop-down menu and then select **General Help** or **Product Help**. The Product Help choice will not be available unless you are editing or browsing an option set.

- To access Help for an entry field, place the cursor on the field and press **F1**.

- To access additional information about any message that the LGC interface displays, press **F1** when the message is displayed. The interface will then display a longer form of the message.

Working with option sets

LGC creates XML files called **option sets** to contain all of your product’s configuration values. Some products allow multiple option sets. For those products, you can use different option sets, or configurations, to run different jobs.

Option set names can be up to eight characters long and can contain any of the following characters:

- Uppercase A through Z
- 0 through 9
- Special characters !, @, $, or #

The first character of the name must be an uppercase alphabetic character (A through Z) or one of the following symbols: @, $, or #. The name must conform to PDS member naming standards.

Note

Individual BMC products that use LGC might include different naming standards. However, the information in the noted guidelines describes the default standard.

For more specific information about the option sets that your product uses and the values that the option sets contain, see the documentation for your product.

This topic explains how to:

- Access the online LGC interface
- Create a new option set
- Edit an existing option set
- Rename an option set
- Delete an obsolete option set
- Filter the values to display within an option set

Accessing the online interface

Use this procedure to access the online interface for managing option sets.

1. **Invoke the appropriate CLIST, as follows:**
 - Use BMCINSTL for initial installations or TDS installations on shared DASD.
 - Use the relevant product CLIST:
 - (for System or SQL Performance products) Use DOMCLIST or SPDCLIST (generated in the installation JCL data set and copied to the CLIB data set) or hyperlink from MainView to launch the product.
 - (for all other products) Use the LGCISPF CLIST (generated in the installation JCL data set and copied to the CLIB data set).

2. **If you invoked the BMCINSTL CLIST, complete this step:**
 - Select **Product Customization**.
 - Select whichever option you performed for runtime data sets, and specify values for **Specify product customization values**.
 - From the Process Menu for Customizing Initial Runtime Instance panel, choose **Customize product options** under the DB2 product configuration heading.
 - Edit the option set name:
 - If you are migrating from an earlier release, select the option set name that matches the name used previously.
 - For a new installation, select the option set that was created as part of the installation jobs.

Note

By default, the installation dialog shows only the required options. To see all options when editing the option set, type `FILTOFF` on the **COMMAND** line.
3 If you invoked DOMCLIST or SPDCLIST from your JCL or CLIB data set (or hyperlinked from MainView), complete this step:

 a Select Administration => DOMPLEX Option Sets.

 b Add the DOMPLEX option set name:

 ■ If you are migrating from an earlier release, select the DOMPLEX option set name that matches the DOMPLEX name used previously.

 ■ For a new installation, select the option set that was created as part of the installation job. This name will match the DOMPLEX parameter in the DOM$STRT job.

 Note
 By default, the product CLISTs set **FILTOFF** and show all values.

4 If you invoked the LGCISPF CLIST, complete this step:

 a From the DB2 Product Configuration Main Menu, select Manage Product Options.

 The Product Option Sets panel shows all products that use option sets.

 b Select the product to expand the list of option sets.

 c Select the specific option set that you want to edit.

 Note
 By default, the LGCISPF panel shows only the modified options that are different from the shipped defaults. To see all options when editing the option set, type **FILTOFF** on the **COMMAND** line.

Creating a new option set

This task provides a high-level overview of creating a new option set. For more specific instructions for a particular product, refer to the documentation for your product.

To create an option set

1 On the Product Option Sets panel, create a new option set by using one of the following methods:
- Enter I next to the product or solution name for which you want to create an option set.

- Enter C next to an option set that you want to copy and modify to create a new option set.

2 Press Enter.

3 Expand each section and review or change the values.

 Tip

 For repeatable sections, you can:

 - Enter I next to the section to insert a new section that uses all default values.

 - Enter R next to a section to duplicate the section with its current values. You can then edit the repeated section to create a unique section.

 Repeatable sections include a number in parentheses behind the section name.

4 Save your option set by pressing F3.

 Note

 You can stop an editing session before you are finished and save your changes, even if the option set still has validation errors. To do so, press F3 and select **Save With Errors**.

 Do not try to use an option set that contains validation errors. Doing so can cause unpredictable results. Always ensure that your option set is valid before using it.

Editing an option set

You can edit the option sets either through the Installation System dialog or by executing the product's CLIST or the LGCISPF CLIST. All methods invoke the same LGC dialog.

Before you begin

The DBC started task must be running and the LGC agents must be active.

To edit an option set

1 On the Options Set panel, type E next to the option set that you want to edit and press Enter.
2 Expand each section and review or change the values.

 Tip
 For repeatable sections, you can:
 - Enter I next to the section to insert a new section that uses all default values.
 - Enter R next to a section to duplicate the section with its current values. You can then edit the repeated section to create a unique section.

Repeatable sections include a number in parentheses behind the section name.

 Note
 While editing the option set, you might receive validation error messages if fields contain invalid entries. Validation errors change the filter setting to Filter: Invalid, and only fields that have validation errors are displayed. When you correct an validation error, the associated field is no longer displayed on the panel. When you have corrected all the validation errors, the filter reverts to its previous setting (for example, Filter: Required or Filter: Off).
 You can manually change the filters if you want to see all options. For more information about filtering, see “Filtering option sets” on page 60.

3 Save your option set by pressing F3.

Example of working with default values for option sets

This example explains how to create default values for a section in an option set. Doing so allows you to define your own default values so that whenever you insert new instances of a section, you will have fewer values to update.

The values that you specify for section defaults are used whenever you insert a new instance. If you change a value in a section default, any value in an instance that matched that value prior to the change is eligible for being updated to the new value. This process allows you to change the values in multiple instances of a section at once, without opening and closing each instance.
1 Access the LGC panel for editing the option set (as described in Accessing the online interface on page 53).

Figure 10 on page 57 shows an example of a panel for a new DOMPLEX option set.

Figure 10: Panel for a new option set

<table>
<thead>
<tr>
<th>File</th>
<th>Filter</th>
<th>Confirm</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DBCRIOPT - DOMPLEX FOR DBCRI101</td>
<td>Scroll ====> CSR</td>
<td></td>
</tr>
</tbody>
</table>

Command ===>

Filter: Modified
+ DOMPLEX Parameters
+ Data Collector List (3)
+ DB2 Monitor List (16)
+ OutGp DCID DspSize (9)

Parameters that apply to entire DOMPLEX
Data Collector(DBC) subsystems in DOMPLEX
DB2 Sub-systems to be monitored
Output Groups - valid range: 001-256

+/- expandable section (enter ? for action menu), > zoomable field

Tip

The number in parentheses behind the section name indicates the number of instances that exist for a section. Any section that has an instance count of 0 or more is eligible for using section default values. (In the example panel, the DOMPLEX Parameters section does not contain any instances.)
2 To update section default values, type **E** next to the relevant section.

The LGC interface displays a panel that allows you to define the default values pertinent to that section.

For example, typing **E** next to **DB2 Monitor List** displays the panel shown in Figure 11 on page 58.

Figure 11: Example panel for defining defaults

```
File  Filter  Confirm  Help
-----------------------------------------------------------------------------
LGCP1001             DB2 Monitor List - Section Defaults
Command ===>                                                  Scroll ===> CSR
Filter: Off                                                         More:   +
DB2 Subsystem ID . . . . . . . . . . . . SSID
 Is this a production DB2? . . . . . . N     (Y=Yes,N=No)
 Monitor with MAINVIEW for DB2 - DC . . Y     (Y=Yes,N=No)
 Monitor with Pool Advisor/System Perf. Y     (Y=Yes,N=No)
 Monitor with APPTUNE . . . . . . . . . . Y     (Y=Yes,N=No)
 Dynamic Explain plan name. . . . . . DAA111D1
 > DB2 IFCIDs to be traced automatically
 > DB2 IFCIDs to be discarded
 > BMC IFCIDs to be discarded
 Class 2-In-DB2 elapsed timing info . . . Y     (Y=Yes,N=No)
 Class 3-DB2 suspend timing info ... Y     (Y=Yes,N=No)
 Class 5-Time spent doing IFI requests Y     (Y=Yes,N=No)
 Class 7-DB2 events (packages, DBRMs). Y     (Y=Yes,N=No)
 Class 8-Wait time for packages . . . . Y     (Y=Yes,N=No)
 Class 10-Optional package detail data . Y     (Y=Yes,N=No)
 Collect dynamic SQL stats in stmt cache N     (Y=Yes,N=No)
 Collect static SQL stats in stmt cache N     (Y=Yes,N=No)
 Collect dynamic SQL stats in stmt cache N     (Y=Yes,N=No)
+ SQL Performance/APPTUNE options
**************************************************************************** End of List *****************************************************************
```

3 Make the changes to the option set.

For example, assume that all of the **Class** fields were changed to **N** and the previous value of **Y** matched the existing instances of the defined DB2 subsystems.

4 Press **F3** to save the changes and display the Figure 12 on page 58 panel.

Figure 12: Apply Sections Defaults Updates

```
------------- Apply Section Defaults Updates --------------
LGCW1004 Changes applied
Updates to the model can be applied to the following 12 rows.
  _ Enter "/" to select all rows or select individual rows in the list.

_DB2 Monitor List_                             More:   +
 _ DB2A _ DB2B _ DB2C _ DB2D _ DB2E _ DB2F _ DB2G _ DB2H _ DB2I _ DB2J _ DB2K _ DB2L
 Press END to update the selected rows.
```

5 Take one of the following actions:
To change the value from Y to N for all instances, type / next to Enter "/" to select all rows or select individual rows in the list field.

To change the value from Y to N for only select instances, type / on the action lines next to those specific entries.

6 Press F3 to save your changes.

Renaming an option set

Use this procedure to rename an existing option set.

1 Type R next to the option set that you want to rename and press Enter.

The Rename Option Set panel (Figure 13 on page 59) is displayed.

Figure 13: Rename Option Set panel

```
+----------------- Rename Option Set - DBCRIOPT -----------------+
| Enter the option set name and description then press Enter. Press CANCEL or END to cancel this action. |
| Name   . . . . . DBCRIOPT                               |
| Description . . DOMPLEX FOR DBCRI101                   |
+--------------------------------------------------------+
```

2 Enter the new name of the option set and an updated description.

3 Press Enter to save your changes and return to the previous panel.

Deleting an option set

Use this procedure to delete an obsolete option set that you no longer need.

1 On the Option Sets panel, type D next to the option set that you want to delete and press Enter.
At the Confirm Option Set delete panel (Figure 14 on page 60), press **Enter** to confirm that you want to delete this option set.

Figure 14: Confirm Option Set Delete panel

<table>
<thead>
<tr>
<th>Option set name:</th>
<th>DBCRIOPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>DOMPLEX FOR DBCRI101</td>
</tr>
<tr>
<td>_ Enter "/" to turn Confirm Option Set Delete off_</td>
<td></td>
</tr>
<tr>
<td>Press ENTER to confirm delete.</td>
<td></td>
</tr>
<tr>
<td>Press CANCEL or END to cancel delete.</td>
<td></td>
</tr>
</tbody>
</table>

Filtering option sets

Use this procedure to filter values in an option set so that not all options are displayed.

To filter option sets from the menu

1. From the Filter menu, select the filter option that you want to use.

<table>
<thead>
<tr>
<th>File</th>
<th>Filter</th>
<th>Confirm</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Off</td>
<td>DOMPLEX FOR DBCRI101</td>
<td>Scroll ==> CSR</td>
<td></td>
</tr>
<tr>
<td>2. Required Options</td>
<td>Parameters that apply to entire DOMPLEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Modified Options</td>
<td>Data Collector(DBC) subsystems in DOMPLEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Invalid Options</td>
<td>DB2 Sub-systems to be monitored</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Default Options</td>
<td>Output Groups - valid range: 001-256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Reset Filter</td>
<td>End of List</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can:

- Display only a particular type of option (required, modified, invalid, or default)

 Note

 Modified options are those for which the current value differs from the default value that shipped with the product.

- Turn off filtering so that all options are displayed

- Reset filters

2. Press **Enter**.
To filter option sets by issuing a command

1. At the Command line for the panel, type one of the following commands:
 - FILTOFF
 - FILTREQ
 - FILTMOD
 - FILTINV
 - FILTDEF

 Tip
 For more information, see “LGC interface commands” on page 61.

2. Press Enter.

LGC command reference

LGC includes commands that you can issue through the LGC interface and operator commands that you issue from the console. This section includes descriptions of those commands.

LGC interface commands

You can enter commands in the Command line of the DB2 Product Configuration (LGC) interface.

Table 6 on page 61 lists these commands.

Table 6: Command line commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOUT</td>
<td>Displays information about LGC including the DBC connected to and applied maintenance for LGC and the components that it uses</td>
</tr>
<tr>
<td>CANCEL</td>
<td>Cancels any changes</td>
</tr>
<tr>
<td>FILTDEF</td>
<td>Shows default options</td>
</tr>
<tr>
<td>FILTINV</td>
<td>Shows invalid options</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>FILTMOD</td>
<td>Shows all modified options</td>
</tr>
<tr>
<td>FILTOFF</td>
<td>Turns off filtering and shows all options</td>
</tr>
<tr>
<td>FILTREQ</td>
<td>Shows all required options</td>
</tr>
<tr>
<td>GENHELP</td>
<td>Opens the general Help panel for LGC</td>
</tr>
<tr>
<td>HELP</td>
<td>Opens ISPF Help</td>
</tr>
<tr>
<td>PRODHELP</td>
<td>Opens the Help panel for the BMC product</td>
</tr>
<tr>
<td>SAVE</td>
<td>Saves changes to the current option set</td>
</tr>
<tr>
<td>SAVEAS</td>
<td>Saves changes to a new option set</td>
</tr>
</tbody>
</table>

Some of these commands require you to select an option set before issuing the command (for example, FILTDEF, FILTINV, FILTMOD, FILTOFF, FILTREQ, PRODHELP, SAVE, and SAVEAS).

LGC operator commands

You can enter the LGC operator commands in the console or from SDSF either by:

- issuing the command using the DBC subsystem ID directly

 `/dbcSsid LGC,TRACE,SET,CONFIG`

- issuing MODIFY command

 `/F dbcSsid,LGC,TRACE,SET,CONFIG`

Table 7 on page 62 lists the commands that are defined by the LGC datastore manager when it starts and are deleted when it stops. In addition, you can define and use the `LGC,START` command to start all LGC agents.

Table 7: LGC commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGC,COMMANDS</td>
<td>Displays metrics related to the different commands (mostly internal) that have been processed by the option set manager agent.</td>
</tr>
<tr>
<td>LGC,REFRESH</td>
<td>Loads new copies of LGC modules and stops or starts agents. Note: You typically use this command after applying an LGC PTF.</td>
</tr>
</tbody>
</table>
| LGC,REGSTAT | Displays the status of the RTCS registry that is currently being used in the LGCDSMPR output DD statement.
 The same information is displayed when the LGC agents first come up. |
| LGC,RELQUES | Releases the internal queues (excluding the sessions queue) used by the option set manager. |
LGC,STATUS
Displays information about option sets that are currently being edited in the LGCOSMPR output DD statement. The displayed information includes:
- The product name and version
- The user ID
- The option set name
- The option set description
If no option sets are being edited, a message indicating that is issued.

LGC,STOP
Stops all LGC agents.

LGC,STORAGE
Displays information about the amount of storage that is being used by LGC agents.
For more information about the STORAGE command, see “LGC,STORAGE command” on page 64.

LGC,TRACE
Sets the trace control data and enable or disable tracing.
For more information about the LGC,TRACE command, see “LGC,TRACE command” on page 63.

LGC,TRACE command

Use the LGC,TRACE command to set the trace control data and to enable or disable tracing. The command can take the following syntax constructions. Optional parameters are shown in brackets.

```
LGC,TRACE,SET,DSN=dsnname[(member)][,SAVE | ACTIVATE]
```

```
LGC,TRACE,SET,CONFIG
```

```
LGC,TRACE,[ON|OFF],[ALL|DSM|OSM]
```

The following tables provide syntax examples for the LGC,TRACE command. Table 8 on page 63 shows examples of the commands that you can issue to set trace options from sequential data sets, PDS members, or datastore configurations.

Table 8: Syntax examples that set trace options

<table>
<thead>
<tr>
<th>To set trace options from</th>
<th>Issue this command</th>
</tr>
</thead>
<tbody>
<tr>
<td>a sequential data set a</td>
<td>LGC,TRACE,SET,DSN=RDAMSM.LGC OPTS</td>
</tr>
<tr>
<td>a sequential data set and save the options in the datastore configuration</td>
<td>LGC,TRACE,SET,DSN=RDAMSM.LGC OPTS,SAVE</td>
</tr>
</tbody>
</table>
To set trace options from | Issue this command
---|---
a sequential data set and immediately activate them | `LGC,TRACE,SET,DSN=RDAMSM.LGCOPTS,ACTIVATE`
a PDS member | `LGC,TRACE,SET,DSN=RDAMSM.PDSV(OPTS)`
a PDS member and save the options in the datastore configuration | `LGC,TRACE,SET,DSN=RDAMSM.PDSV(OPTS),SAVE`
a PDS member and immediately activate them | `LGC,TRACE,SET,DSN=RDAMSM.PDSV(OPTS),ACTIVATE`
the datastore configuration | `LGC,TRACE,SET,CONFIG`

If you use the ACTIVATE syntax, you do not have to issue an LGCTRACE ON command. If you do not use the ACTIVATE syntax, the trace info will not be written to the OSM agent.

Table 9 on page 64 shows examples of commands that you can issue to enable tracing from the datastore or option set manager.

Table 9: Syntax examples that enable tracing

<table>
<thead>
<tr>
<th>To enable tracing in</th>
<th>Issue this command</th>
</tr>
</thead>
<tbody>
<tr>
<td>only the datastore manager</td>
<td><code>LGC,TRACE,ON,DSM</code></td>
</tr>
<tr>
<td>only option set manager</td>
<td><code>LGC,TRACE,ON,OSM</code></td>
</tr>
<tr>
<td>all LGC agents</td>
<td><code>LGC,TRACE,ON,ALL</code></td>
</tr>
</tbody>
</table>

Table 10 on page 64 shows examples of commands that you can issue to disable tracing from the datastore or option set manager.

Table 10: Syntax examples that disable tracing

<table>
<thead>
<tr>
<th>To disable tracing in</th>
<th>Issue this command</th>
</tr>
</thead>
<tbody>
<tr>
<td>only the datastore manager</td>
<td><code>LGC,TRACE,OFF,DSM</code></td>
</tr>
<tr>
<td>only the option set manager</td>
<td><code>LGC,TRACE,OFF,OSM</code></td>
</tr>
<tr>
<td>all LGC agents</td>
<td><code>LGC,TRACE,OFF,ALL</code></td>
</tr>
</tbody>
</table>

LGC,STORAGE command

Use the `LGC,STORAGE` command to display the amount of storage being used by one or more LGC agents. The agents that will process the command are determined by the parameter following the STORAGE verb.
The syntax for this command is as follows:

\texttt{LGC,STORAGE,[\text{ALL}|\text{DSM}|\text{OSM}]}

Table 11 on page 65 shows examples of commands you can issue to display the amount of used storage.

Table 11: Syntax examples for displaying storage

<table>
<thead>
<tr>
<th>To display storage by using</th>
<th>Issue this command</th>
</tr>
</thead>
<tbody>
<tr>
<td>only the datastore manager</td>
<td>\texttt{LGC,STORAGE,DSM}</td>
</tr>
<tr>
<td>only the option set manager</td>
<td>\texttt{LGC,STORAGE,OSM}</td>
</tr>
<tr>
<td>all LGC agents</td>
<td>\texttt{LGC,STORAGE,ALL}</td>
</tr>
</tbody>
</table>

LGCUTIL batch utility

The LGCUTIL batch utility allows you to pass commands to the LGC component.

All commands are passed to LGCUTIL within the \texttt{<lgcutil>} element (as described in “\texttt{lgcutil}” on page 67).

\texttt{<lgcutil version=“1010”>}
\hspace{1cm} \texttt{<commandName>}
\hspace{1cm} \texttt{<commandContent></commandContent>}
\hspace{1cm} \texttt{</commandName>}
\hspace{1cm} \texttt{</lgcutil>}

Table 12 on page 65 lists the command elements that you can issue through the LGCUTIL utility.

Table 12: Command elements for the LGCUTIL utility

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>create</td>
<td>Creates a new option set</td>
<td>“create” on page 67</td>
</tr>
<tr>
<td>deregister</td>
<td>Removes an object's registration entry from the LGC datastore</td>
<td>“deregister” on page 68</td>
</tr>
<tr>
<td>export</td>
<td>Exports products, solutions, or option sets to a sequential file</td>
<td>“export” on page 68</td>
</tr>
<tr>
<td>import</td>
<td>Imports option sets or product and solution definitions into the LGC datastore</td>
<td>“import” on page 69</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>Reference</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>list</td>
<td>Lists the registration information for one or more products or a DBC SSID or group</td>
<td>“list” on page 70</td>
</tr>
<tr>
<td>migrate</td>
<td>Migrates option sets to a new release</td>
<td>“migrate” on page 71</td>
</tr>
<tr>
<td></td>
<td>Note: Do not issue this command unless directed to do so by BMC Support.</td>
<td></td>
</tr>
<tr>
<td>register</td>
<td>Registers an object to the LGC datastore</td>
<td>“register” on page 72</td>
</tr>
<tr>
<td>rename</td>
<td>Renames one or more option sets.</td>
<td>“rename” on page 72</td>
</tr>
<tr>
<td>update</td>
<td>Updates option sets.</td>
<td>“update” on page 73</td>
</tr>
<tr>
<td></td>
<td>Note: Do not issue this command unless directed to do so by BMC Support</td>
<td></td>
</tr>
</tbody>
</table>

In the description of the elements, the notation following the child elements indicate occurrence information.

- The first number denotes the minimum occurrences of the element (0 indicates that the element is optional).
- The second number denotes the maximum occurrences of the element (* means unlimited).

Descriptions of elements that are used within these elements are described in “Supporting elements” on page 73.

Figure 15 on page 66 shows an example of sending a command to LGCUTIL.

Figure 15: Example of sending a command to LGCUTIL

```plaintext
//LGCCR5  JOB  PAFR,&SYSUID,CLASS=Q,MSGCLASS=X,REGION=OM,
//    NOTIFY=&SYSUID,TIME=1444
//*ROUTE XEQ BMCPLX1
//*--------------------------------------------------
//* Example: Create a new option set
//*--------------------------------------------------
//LGC    EXEC  PGM=LGCUTIL
//STEPLIB  DD  DISP=SHR,DSN=LGC.LOAD
//LGCUTLPR DD  SYSOUT=* 
//LGCUTLER DD  SYSOUT=* 
//STDIN    DD  *
<lgcutil version="1010">
    <create>
        <optionset>
            <prodcode>DOM</prodcode>
            <prodvrsn>1010</prodvrsn>
            <name>MSM$OPT8</name>
            <description>New option set</description>
        </optionset>
    </create>
</lgcutil>
```
The required `<lgcutil>` element is the root node of the document that sends commands to LGCUTIL. This element must be the first node in the document. Its immediate children are the command elements that drive the LGCUTIL program.

Parent element: Not applicable.
Child elements: `<register> (0:*), <create> (0:*), <deregister> (0:*), <import> (0:*), export (0:*), <list> (0:*), and <rename> (0:*)`

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>Specifies the version number of the LGCUTIL utility.</td>
</tr>
</tbody>
</table>

Example:

```
<lgcutil version="1010">
  <list>
    <product>
      <prodcode>AFR</prodcode>
      <prodvrsn>1020</prodvrsn>
    </product>
    <dbc ssid="LGQR"/>
    <dbc dbcgroup="DBCMSM"/>
  </list>
  <register>
    <dbc ssid="DBCM" dbcgroup="DBCMSM">
      <rtcsreg xcfgroup="DBCMGRP">
        <regdsn>LGC.WMSM1011.RTCS.REGISTRY</regdsn>
      </rtcsreg>
    </dbc>
  </register>
</lgcutil>
```

create

The `<create>` command creates a new option set.

Parent element: `<lgcutil>`
Child elements: `<optionset> (0:*)`

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duplicate</td>
<td>string</td>
<td>no</td>
<td>error</td>
<td>Specifies how to handle duplicate objects. Valid values are error and warning. If you specify warning, any duplicate object errors are reported as warnings.</td>
</tr>
</tbody>
</table>

Example:

```
<lgcutil version="1010">
  <create>
    <optionset>
```

LGUTIL batch utility

Chapter 3 Working with DB2 Product Configuration (LGC) 67
deregister

Use the <deregister> command element to remove an option set, product, or solution from the LGC data store or to deregister a DBC subsystem.

Parent element: <lgcutil>

Child elements: <dbc> (0:*), <defaultdbc> (0:*), <optionset> (0:*), <solution> (0:*), and <product> (0:*)

Attributes: None.

Example:

```xml
<lgcutil version="1010">
  <deregister>
    <optionset>
      <prodcode>DOM</prodcode>
      <prodvrsn>1010</prodvrsn>
      <name>ADS8</name>
    </optionset>
  </deregister>
</lgcutil>
```

export

Use the <export> command element to export an object or a set of objects to a sequential file.

The export command can export:

- A single option set
- A group of option sets
- A product with or without its option sets
- A solution definition with or without its products and option sets
- Data store configurations

Output from an <export> command includes an <import> element to identify the imported data as the product of an <export> command. Output from an <export> command can be imported unchanged into another LGC repository.
Parent element: <lgcutil>
Child elements: <ddname> (1:1), <products> (0:*)<solutions> (0:*), <optionset> (0:*), <optionsets> (0:*), and <config> (0:*)
Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>format</td>
<td>string</td>
<td>no</td>
<td></td>
<td>Valid values are xml, none, and keyword. An export command can create XML as either formatted or unformatted. If the utility creates formatted XML, it includes an XML declaration. Output from the <export> command includes an <import> element. Only a single option set may be exported in keyword format.</td>
</tr>
</tbody>
</table>

Example:

```xml
<lgcutil version="1010">
  <export format="xml">
    <products>
      <product>
        <prodvrsn>1010</prodvrsn>
      </product>
    </products>
    <ddname>V1010</ddname>
  </export>
</lgcutil>
```

import

Use the <import> command element to import objects into the LGC datastore:

These objects can include:

- A single option set
- Many option sets
- Products with their defined option sets
- Solutions with their defined option sets and products
- Datastore configurations

Input to the <import> command can be the output from an <export> command.

Parent element: <lgcutil>
Child elements: <ddname> (1:1)
Attributes:
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace</td>
<td>string</td>
<td>no</td>
<td>no</td>
<td>Valid values are yes and no. If you specify yes, any solution definition, product definition, or option set that you import will replace any existing object of the same name.</td>
</tr>
<tr>
<td>duplicate</td>
<td>string</td>
<td>no</td>
<td>error</td>
<td>Valid values are error and warning. If you specify warning, any duplicate object errors are reported as warnings.</td>
</tr>
<tr>
<td>setstats</td>
<td>string</td>
<td>no</td>
<td>no</td>
<td>Valid values are yes and no. If you specify yes, the statistics in each object reflect the date, time, and user ID of the job. Otherwise, the statistics are unchanged from the imported file.</td>
</tr>
</tbody>
</table>

Example:

```xml
<lgcutil version="1010">
  <import replace="yes">
    <ddname>IMPXML</ddname>
  </import>
</lgcutil>
```

list

Use the `<list>` command element to list the registration information for a product, DBC subsystem, or DBC group definition.

Parent element: `<lgcutil>`

Child elements: `<db>` (0:*), `<product>` (0:*), `<products>` (0:*), `<solution>` (0:*), and `<solutions>` (0:*)

Attributes: None.

Example:

The following example shows a `<list>` command element that includes a single product:

```xml
<lgcutil version="1010">
  <list>
    <product>
      <prodcode>AFR</prodcode>
      <prodvrsn>1020</prodvrsn>
    </product>
    <dbc ssid="LGQR"/>
    <dbc dbcgroup="DBCMSM"/>
  </list>
</lgcutil>
```

The following example shows a `<list>` command element that includes the `<products>` element.

```xml
<lgcutil version="1010">
  <list>
    <products>
      <product>
```

BMC Global Infrastructure Administration Guide
migrate

Use the `<migrate>` command element to migrate object sets to a new release. Do not issue this command unless directed to do so by BMC Support.

Parent element: `<lgcutil>`

Child elements: `<optionsets>` (1:1)

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
</table>
| replace | string | no | no | Specifies whether to replace option sets with the same name.
Valid values are yes and no. If you specify yes, the `<migrate>` command will replace any option set of the same name. |
| duplicate | string | No | error | Specifies whether duplicate entries are handled as warnings or errors.
Valid values are error and warning. If you specify warning, any duplicate object errors are reported as warnings. |
| savewitherrors | string | No | no | Specifies whether the `<migrate>` command will save an option set even if it contains existing errors or if errors occur in the updates from the LGCUPD DD statement. Only valid updates are saved.
Valid values are yes and no. If you specify yes, option sets will be saved with errors. |

Example:

```xml
<lgcutil version="1010">
  <migrate>
    <optionsets>
      <product>
        <prodcode>AFR</prodcode>
        <prodvrsn>1020</prodvrsn>
      </product>
      <fromvrsn>1010</fromvrsn>
      <name type="regex">^AFR\$[a-z,A-Z][1,4]$</name>
    </optionsets>
  </migrate>
</lgcutil>
```
register

Use the `<register>` command element to add an option set or product to the LGC datastore or to register a DBC subsystem.

Parent element: `lgcutil`

Child elements: `product (0:*), optionset (0:*), dbc (0:*), and defaultdbc (0:*)`

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duplicate</td>
<td>string</td>
<td>no</td>
<td>error</td>
<td>Indicates whether to manage duplicate objects as errors or warnings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Valid values are error and warning. If you specify warning, any duplicate object errors are reported as warnings.</td>
</tr>
</tbody>
</table>

Example:

```xml
<lgcutil version="1010">
  <register>
    <dbc ssid="DBCM" dbcgroup="DBCMSM">
      <rtcsreg xcfgroup="DBCMGRP">
        <regdsn>LGC.WMSM1011.RTCS.REGISTRY</regdsn>
      </rtcsreg>
    </dbc>
  </register>
</lgcutil>
```

rename

Use the `<rename>` command to rename one or more option sets. An option set with the same name must not already exist. Also, the rename command should not leave any option set instances without a base option set.

Parent element: `lgcutil`

Child elements: `optionsets` (1:1)

Attributes: None.

Example:

```xml
<lgcutil version="1010">
  <rename>
    <optionsets>
      <optionset>
        <prodcode>AFR</prodcode>
        <prodvrsn>1020</prodvrsn>
        <name>AFR$OPTS$</name>
        <newname>AFRDB2A</newname>
        <newdescription>This is an option set used on LPAR DB2A</newdescription>
      </optionset>
    </optionsets>
  </rename>
</lgcutil>
```
update

Use the <update> command element to update option values within specified option sets. Do not issue this command unless directed to do so by BMC Support.

Parent element: `<lgcutil>`

Child elements: `<optionsets>` (1:1)

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>savewitherrors</td>
<td>string</td>
<td>no</td>
<td>no</td>
<td>Indicates whether to save the option set if it contains errors. Valid values are yes and no. If you specify yes, the <update> command saves the option set even if it contains existing errors or if the updates from the LGCUPD DD statement contains errors. Only valid updates are saved.</td>
</tr>
</tbody>
</table>

Example:

```xml
<lgcutil version="1010">
  <update>
    <optionsets>
      <product>
        <prodcode>AFR</prodcode>
        <prodvrsn>1020</prodvrsn>
      </product>
      <name>AFR$*</name>
    </optionsets>
  </update>
</lgcutil>
```

Supporting elements

Different LGCUTIL command elements include different supporting elements. This section describes the elements and indicates which elements can contain the specified element, any child elements that you can include, attributes of the element, and example of the syntax.

In the description of the elements, the notation following the child elements indicate occurrence information.

- The first number denotes the minimum occurrences of the element (0 indicates that the element is optional).
- The second number denotes the maximum occurrences of the element (* means unlimited).

The following elements are included in this section:

- “config” on page 75
LGCUTIL batch utility

- “dbc” on page 75
- “ddname” on page 76
- “defaultdbc” on page 76
- “description” on page 77
- “dsn” on page 77
- “file” on page 78
- “files” on page 79
- “help” on page 79
- “instance” on page 80
- “member” on page 80
- “name” on page 81
- “newdescription” on page 81
- “newname” on page 82
- “optionset” on page 82
- “optionsets” on page 84
- “prodcode” on page 84
- “product” on page 85
- “products” on page 87
- “prodvrsn” on page 88
- “regdsn” on page 88
- “rtdsreg” on page 88
- “solution” on page 89
- “solutions” on page 90
- “template” on page 91
- “templates” on page 92
config

The `<config>` element identifies the LGC configuration data associated with a particular DBC subsystem. You can use the `<export>` command to export the data to an external file, which then can be imported.

Parent element: `<export>`

Child elements: None.

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssid</td>
<td>string</td>
<td>no</td>
<td><code><connected ssid></code></td>
<td>Identifies the name of the DBC subsystem whose configuration is referenced.</td>
</tr>
</tbody>
</table>

Example:

```xml
<export format="xml">
  <ddname>XML</ddname>
  <config ssid="DBCM"/>
  <config ssid="LGQR"/>
</export>
```

dbc

This `<dbc>` element defines a DBC subsystem or group for which to list information or to register or deregister.

Parent element: `<register>`, `<deregister>`, or `<list>`

Child elements: `<rtcsreg>` (0:1)

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssid</td>
<td>string</td>
<td>no</td>
<td></td>
<td>Defines the subsystem identifier of the DBC subsystem.</td>
</tr>
<tr>
<td>dbcgroup</td>
<td>string</td>
<td>no</td>
<td></td>
<td>Defines the group name of the DBC subsystem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- When used within a <code><list></code> command and <code>default="yes"</code> is specified, this value acts as a qualifier.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- When used within a <code><register></code> or <code><deregister></code> command, this value specifies the name of the DBC group to be registered. The maximum length of this value is 8.</td>
</tr>
</tbody>
</table>

Example:

```xml
<register>
  <dbc ssid="DBCM" dbcgroup="DBCMGROUP">
    <rtcsreg xcfgroup="DBCMGRP">
      <regdsn>LGC.WMSM1011.HTC.REGISTER</regdsn>
    </rtcsreg>
  </dbc>
</register>
```
ddname

The `<ddname>` element refers to a valid JCL DD name in the JCL for LGCUTIL.

- If used within the `<export>` command, the DD name refers to the target location for the export.
- If used within the `<import>` command, the DD name refers to the location of the data to be imported. Input to the `<import>` command can be the output from an `<export>` command from another LGC repository.

Parent element: `<import>` or `<export>`
Child elements: None.
Attributes: None.
Example:

```xml
<export format="xml">
  <ddname>DOM</ddname>
  <optionsets>
    <optionset>
      <name>ADS8</name>
      <prodcode>DOM</prodcode>
      <prodvrsn>1010</prodvrsn>
    </optionset>
    <optionset>
      <name>AFDPLEX</name>
      <prodcode>DOM</prodcode>
      <prodvrsn>1010</prodvrsn>
    </optionset>
  </optionsets>
</export>
```

defaultdbc

The `<defaultdbc>` element identifies the name of the default DBC group for the system. The value of the `<defaultdbc>` element must be a valid DBC group name.

- If used within a `<register>` command, the named group becomes the default group for the system. If a default group already exists, you must include the `replace="yes"` attribute to replace the existing group.
- If used within the `<deregister>` command, the value must correspond to the existing default group name for the command to complete successfully.

Parent element: `<register>` or `<deregister>`
Child elements: None.
Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace</td>
<td>string</td>
<td>no</td>
<td>no</td>
<td>Valid values are yes and no. If you specify yes within a <code><register></code> command, the value specified within the element replaces any existing default DBC group name.</td>
</tr>
</tbody>
</table>
Example:

The following example illustrates how to use the `<defaultdbc>` element within a `<register>` command:

```xml
<register>
  <defaultdbc replace="yes">DBCRI101</defaultdbc>
</register>
```

The following example illustrates how to use the `<defaultdbc>` element within a `<deregister>` command:

```xml
<deregister>
  <defaultdbc>DBCRI101</defaultdbc>
</deregister>
```

description

The `<description>` element contains a description of the option set. The default length for a description is 30 bytes.

Parent element: `<optionset>`
Child elements: None.
Attributes: None.
Example:

```xml
<deregister>
  <optionset>
    <prodcode>C01</prodcode>
    <prodvrsn>VC</prodvrsn>
    <name>CO01OPTS</name>
    <description>Option Set for C001</description>
  </optionset>
</deregister>
```

dsn

This `<dsn>` element defines a data set name. You use this element in a template definition to define the data set name where the template is stored. It must be a legal data set name.

Parent element: `<template>` or `<help>`
Child elements: None.
Attributes: None.
Example:

```xml
<register>
  <product replace="yes" id="ZLGCA10" prodlist="no">
    <prodcode>LGC</prodcode>
    <prodvrsn>1011</prodvrsn>
    <name>DB2 Product Configuration</name>
    <templates>
      <template type="help">
        <dsn>ROHMXN.IVP101MV.BMCXML</dsn>
        <member>LGCHELP</member>
        <help>
          <dsn>ROHMXN.IVP101MV.BMCXML</dsn>
          <member>LGCHELP</member>
        </help>
      </template>
    </templates>
  </product>
</register>
```
The `<file>` element defines a file name within a product or solution definition or as part of a template definition.

- When the `<file>` element is part of a product or solution definition, this element is a child of the `<files>` element and you use it to specify a file used by product or solution exits.

- When the `<file>` element is a child of the `<template>` element, you use this element to identify a ZFS or HFS file where the template resides.

Parent element: `<files>` or `<template>`

Child elements: None.

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>string</td>
<td>no</td>
<td>dsn</td>
<td>Indicates the type of file defined. Valid values are dd and dsn.</td>
</tr>
<tr>
<td>fmt</td>
<td>string</td>
<td>no</td>
<td>load</td>
<td>The only valid value for this attribute is load.</td>
</tr>
<tr>
<td>id</td>
<td>string</td>
<td>no</td>
<td></td>
<td>Identifies a unique string identifier for the file. Use this attribute to refer to the file with the refid attribute on another <code><file></code> definition.</td>
</tr>
<tr>
<td>refid</td>
<td>string</td>
<td>no</td>
<td></td>
<td>Identifies the id attribute of another file from which to pick up its characteristics.</td>
</tr>
</tbody>
</table>

Example:

```xml
<register>
  <product id="ZLGCA10" proclist="no" replace="yes">
    <name>BMC Product Management</name>
    <prodcode>LGC</prodcode>
    <prodvrsn>1011</prodvrsn>
    <files>
      <file id="kjdexit">RDAKJD.WKJD.LOAD.EXIT</file>
    </files>
  </product>
  <templates>
    <template type="help">
      <dsn>LGC.WDBB1011.USERXML</dsn>
      <member>LGCHELP</member>
      <help>
        <dsn>LGC.WDBB1011.USERXML</dsn>
        <member>LGCHELP</member>
      </help>
    </template>
    <template type="optcoll">
      <dsn>LGC.WDBB1011.USERXML</dsn>
      <member>OPTCOLL</member>
      <help>
        <dsn>LGC.WDBB1011.USERXML</dsn>
      </help>
    </template>
  </templates>
</register>
```
files

The `<files>` element groups a set of `<file>` elements in the product or solution definition. The set of file names are used by product or solution exits.

Parent element: `<product>` or `<solution>`

Child elements: `<file>` (0:*)

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hlq</td>
<td>string</td>
<td>no</td>
<td></td>
<td>The high-level qualifier used to prefix any file names defined within this element.</td>
</tr>
</tbody>
</table>

Example:

```xml
<register>
  <product id="ZLGCA10" prodlist="no" replace="yes">
    <name>BMC Product Management</name>
    <prodcode>LGC</prodcode>
    <prodvrsn>1011</prodvrsn>
    <files>
      <file id="kjdexit">RDAKJD.WKJD.LOAD.EXIT</file>
    </files>
  </product>
</register>
```

help

The `<help>` element indicates the location of a help file for a template. This element is used during product registration and indicates where the help file for a template resides.

Parent element: `<template>`

Child elements: `<dsn>` (1:1) and `<member>` (0:1)
Attributes: None.
Example:

```
<register>
  <product replace="yes" id="ZLGCA10" prodlist="no">
    <prodcode>LGC</prodcode>
    <prodvrsn>1011</prodvrsn>
    <name>DB2 Product Configuration</name>
    <templates>
      <template type="help">
        <dsn>ROHMXXN.IVP101MV.BMCXML</dsn>
        <member>LGCHELP</member>
      </help>
    </templates>
  </product>
</register>
```

instance

The `<instance>` element names an 8-character instance of an option set.

Parent element: `<optionset>` or `<optionsets>`
Child elements: None.
Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>string</td>
<td>no</td>
<td></td>
<td>The type of instance string.</td>
</tr>
</tbody>
</table>

Example:

```
<optionsets>
  <product>
    <prodcode>AFR</prodcode>
    <prodvrsn>1020</prodvrsn>
  </product>
  <instance>EDR</instance>
</optionsets>
```

member

The `<member>` element defines a PDS member name. If a template or help file exists in a PDS member, this element is used to indicate the member name. It must be a legal PDS member name.

Parent element: `<template>` or `<help>`
Child elements: None.
Attributes: None.
Example:

```
<register>
  <product replace="yes" id="ZLGCA10" prodlist="no">
    <prodcode>LGC</prodcode>
    <prodvrsn>1011</prodvrsn>
    <name>DB2 Product Configuration</name>
    <templates>
```

80 **BMC Global Infrastructure Administration Guide**
name

The <name> element contains the name of a product, solution, or option set. For option set names, the name must conform to PDS naming conventions.

Parent element: <product>, <solution>, <optionset>, or <optionsets>
Child elements: None.
Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>string</td>
<td>no</td>
<td></td>
<td>The type of name string.</td>
</tr>
</tbody>
</table>

Example:

```xml
<export format="xml">
  <ddname>DOM</ddname>
  <optionsets>
    <optionset>
      <name>ADS8</name>
      <prodcode>DOM</prodcode>
      <prodvrsn>1010</prodvrsn>
    </optionset>
    <optionset>
      <name>AFDPLEX</name>
      <prodcode>DOM</prodcode>
      <prodvrsn>1010</prodvrsn>
    </optionset>
  </optionsets>
</export>
```

newdescription

The <newdescription> element specifies a new description for an option set. Use this element within <optionset> elements defined within <rename> commands. If the <newdescription> element is specified in either of these commands, the command must identify only one option set.

Parent element: <optionset>
Child elements: None.
Attributes: None.

Example:

```xml
<rename>
  <optionsets>
    <optionset>
      <prodcode>AFR</prodcode>
      <prodvrsn>1020</prodvrsn>
      <name>AFR$OPTS</name>
      <newname>AFR$OPT1</newname>
      <newdescription>Option set OPT1</newdescription>
    </optionset>
  </optionsets>
</rename>
```

newname

The `<newname>` element identifies the name to use for an option set when the `<rename>` command is issued. The option set name must conform to PDS naming conventions.

Parent element: `<optionset>`

Child elements: None.

Attributes: None.

Example:

```xml
<rename>
  <optionsets>
    <optionset>
      <prodcode>AFR</prodcode>
      <prodvrsn>1020</prodvrsn>
      <name>AFR$OPTS</name>
      <newname>AFR$OPT1</newname>
    </optionset>
  </optionsets>
</rename>
```

optionset

The `<optionset>` element defines the name of the option set to manage.

The following table describes what the option set specifies within each command.

<table>
<thead>
<tr>
<th>Command</th>
<th>What option set defines</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><register></code> command a</td>
<td>Specifies an option set defined in an external file to import</td>
</tr>
<tr>
<td><code><export></code> command</td>
<td>Specifies the name of an option set to export</td>
</tr>
<tr>
<td><code><create></code> command</td>
<td>Specifies the name of the option set to create</td>
</tr>
<tr>
<td><code><rename></code> command b</td>
<td>Specifies the name of the option to rename</td>
</tr>
</tbody>
</table>

a When you use the `<optionset>` element within a `<rename>` command, the `<newname>` and `<instance>` elements are the only valid children.

b When you use the `<optionset>` element within a `<rename>` command, the `<newdescription>` element is the only valid child.
Parent element: <register>, <create>, <deregister>, <export>, or <optionsets>

Child elements: <name> (0:1), <instance> (0:1), <prodcode> (0:1), <prodvrsn> (0:1), <description> (0:1), <newname> (0:1), and <newdescription> (0:1)

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dd</td>
<td>string</td>
<td>no</td>
<td></td>
<td>Identifies the DD statement that contains the option set definition. It is only valid when used with the <register> command element</td>
</tr>
<tr>
<td>replace</td>
<td>string</td>
<td>no</td>
<td>no</td>
<td>Identifies whether to replace an existing option set. Valid values are yes and no.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>■ If you specify yes when registering an option set, the option set replaces any existing option set with the same name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>■ If you specify yes when creating an option set, the option set replaces any existing option set with the same name.</td>
</tr>
<tr>
<td>type</td>
<td>string</td>
<td>no</td>
<td>display_config</td>
<td>Indicates the type of template to use for the option set.</td>
</tr>
</tbody>
</table>

Example:

The following example shows how to use the <optionset> element when exporting the option set.

```xml
<export format="xml">
  <ddname>DOM</ddname>
  <optionsets>
    <optionset>
      <name>ADS8</name>
      <prodcode>DOM</prodcode>
      <prodvrsn>1010</prodvrsn>
    </optionset>
    <optionset>
      <name>AFDPLEX</name>
      <prodcode>DOM</prodcode>
      <prodvrsn>1010</prodvrsn>
    </optionset>
  </optionsets>
</export>
```

The following example shows how to use the <optionset> element when registering an option set.

```xml
<register>
  <!-- Note that no child elements are required -->
  <!-- because the option set is defined completely -->
  <!-- in an external file. -->
  <optionset dd="OPSET" replace="yes"/>
</register>
```
The following example shows how to use the `<optionset>` element when removing an option set.

```xml
<deregister>
  <optionset>
    <prodcode>DOM</prodcode>
    <prodvrsn>1010</prodvrsn>
    <name>ADS8</name>
  </optionset>
</deregister>
```

optionsets

The `<optionsets>` element groups `<optionset>` elements. Use this element to contain option set definitions in the `<export>` command when multiple option sets are exported or to identify option sets using the `<rename>` command.

Parent element: `<export>`, or `<rename>`

Child elements: `<optionset>` (0:*), `<name>` (0:1), `<instance>` (0:1), `<product>` (1:1), and `<fromvrsn>` (0:1)

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>string</td>
<td>no</td>
<td></td>
<td>Indicates that only option sets of the specified template type are to be selected.</td>
</tr>
</tbody>
</table>

Example:

```xml
<export format="xml">
  <ddname>DOM</ddname>
  <optionsets>
    <optionset>
      <name>ADS8</name>
      <prodcode>DOM</prodcode>
      <prodvrsn>1010</prodvrsn>
    </optionset>
    <optionset>
      <name>AFDPLEX</name>
      <prodcode>DOM</prodcode>
      <prodvrsn>1010</prodvrsn>
    </optionset>
  </optionsets>
</export>
```

prodcode

The `<prodcode>` element contains the internal BMC product code. Specify a valid three-character product code. If this element is used within an `<export>` command, you can use wildcards (for example, specify `<prodcode>A*</prodcode>` to identify all product codes that begin with the letter `A`). You can include the wildcard only at the beginning of the product code value.

Parent element: `<product>`, `<solution>`, or `<optionset>`

Child elements: None.
product

The <product> element defines or selects a product.

The way that you use the element depends upon the command in which you are using it.

- When you use it with the <register> command, the <prodcode>, <prodvrsn>, and <templates> elements are required children.

- If you use it within an <export> command, the <product> element specifies a product to select.

 When you use it to select a product, the <prodcode> and <prodvrsn> elements become optional. The command supports limited wildcard characters within the <prodcode> element (for example, <prodcode>AF*</prodcode>).

Parent element: <register>, <deregister>, <products>, <optionsets>, or <list>
Child elements: <name> (0:1), <prodcode> (0:1), <prodvrsn> (0:1), <templates> (0:1), and <files> (0:1)
Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>string</td>
<td>no</td>
<td></td>
<td>A 7-character attribute that indicates the FMID for the product. When you register a new product, this value is required.</td>
</tr>
<tr>
<td>prodlst</td>
<td>string</td>
<td>no</td>
<td></td>
<td>Indicates whether a product is to be included in a list of all installed products. Valid values are yes and no.</td>
</tr>
<tr>
<td>list</td>
<td>string</td>
<td>no</td>
<td></td>
<td>Controls whether the product is shown on the list of products when Option 2 is selected from the main menu.</td>
</tr>
<tr>
<td>refid</td>
<td>string</td>
<td>no</td>
<td></td>
<td>A 7-character attribute that is required for a product definition in a solution registration. It refers to the id attribute for the product in its definition.</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Required?</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>replace</td>
<td>string</td>
<td>no</td>
<td>no</td>
<td>Indicates whether to replace an existing product. Valid values are yes and no. If you specify yes within the <register> command, the registered product replaces any existing product of the same prodcode/version</td>
</tr>
</tbody>
</table>

Example:

The following example illustrates the use of a `<prodcode>` element within an export command:

```xml
<export>
  <ddname>XML</ddname>
  <!-- select all products for version 1010 -->
  <products>
    <product>
      <prodcode>DOM</prodcode>
      <prodvrsn>1010</prodvrsn>
    </product>
  </products>
</export>
```

The following example illustrates the use of a wildcard character within the `<prodcode>` element:

```xml
<export>
  <ddname>XML</ddname>
  <!-- select all products with prodcode beginning -->
  <!-- with 'A' but only for version 1020 -->
  <products>
    <product>
      <prodcode>A*</prodcode>
      <prodvrsn>1020</prodvrsn>
    </product>
  </products>
</export>
```

The following example illustrates a `<prodcode>` element within the `<register>` command:

```xml
<register>
  <!-- register a product -->
  <product replace="yes" id="ZLGCA10" prodlist="no">
    <prodcode>LGC</prodcode>
    <prodvrsn>1011</prodvrsn>
    <name>DB2 Product Configuration</name>
    <templates>
      <template type="help">
        <dsn>ROHMXN.IVP101MV.BMCXML</dsn>
        <member>LGCHELP</member>
        <help>
          <dsn>ROHMXN.IVP101MV.BMCXML</dsn>
          <member>LGCHELP</member>
        </help>
      </template>
    </templates>
    <files>
    </files>
    <created>
      <date>20110307</date>
      <time>124732939819</time>
      <userid>RDADAC2</userid>
    </created>
  </product>
</register>
```
products

The <products> element groups a set of products.

Use the <products> element in the <solution> element and in the <export> command element. It can either define all products contained in a solution or specify which products are to be exported. If only a subset of product definitions for a solution are to be exported, specify products="no" on the <solution> element and then specify each product to be exported explicitly.

Parent element: <export>, <solution>, or <list>
Child elements: <product> (0:*)
Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>string</td>
<td>no</td>
<td>no</td>
<td>Indicates whether to export all product definitions when included within an <export> command. Valid values are yes and no. If you specify yes, the utility exports all product definitions.</td>
</tr>
<tr>
<td>optionsets</td>
<td>string</td>
<td>no</td>
<td>yes</td>
<td>Indicates whether to process option sets when included in the <export> and <list> commands. Valid values are yes and no. If you specify no, option set definitions will not be processed.</td>
</tr>
<tr>
<td>insolution</td>
<td>string</td>
<td>no</td>
<td>yes</td>
<td>Indicates whether to export products that exist in a solution when using an <export> command. Valid values are yes and no. If you specify no, the utility will not export any product that exists in a solution.</td>
</tr>
</tbody>
</table>

Example:

```xml
<export format="xml">
  <products>
    <product>
      <prodvrsn>1010</prodvrsn>
    </product>
  </products>
  <ddname>V1010</ddname>
</export>
```
prodvrsn

The `<prodvrsn>` element defines the version of the product. Specify the product version in `vvrnm` format, where `vv` is the version, `r` is the release, and `m` is the modification level (for example, 1010).

Parent element: `<product>`, `<solution>`, or `<optionset>`

Child elements: None.

Attributes: None.

Example:

```
<export format="xml">
  <products>
    <product>
      <prodvrsn>1010</prodvrsn>
    </product>
  </products>
  <ddname>V1010</ddname>
</export>
```

regdsn

The `<regdsn>` element defines the RTCS registry data set name. If an instance of LGC uses a private RTCS registry, this element names the linear VSAM data set where the private registry resides.

Note

The RTCS registry data set is unique to the DBC group and cannot be shared among DBC groups.

Parent element: `<rtcsreg>`

Child elements: None.

Attributes: None.

Example:

```
<register>
  <dbc ssid="DBCM" dbcgroup="DBCMSM">
    <rtcsreg xcfgroup="DBCMGRP">
      <regdsn>LGC.WMSM1011.RTCS.REGISTRY</regdsn>
    </rtcsreg>
  </dbc>
</register>
```

rtcsreg

The `<rtcsreg>` element defines an RTCS registry entry for a DBC subsystem. If the RTCS private registry needs to be accessed from multiple LPARs, you must specify an XCF group name. If you do not specify an XCF group name, the RTCS private registry can only be accessed from one LPAR. Attempting to start the LGC agents in a second DBC in the same DBC group will fail if the RTCS private registry is not shared.

Parent element: `<dbc>`

Child elements: `<regdsn>` (0:1)

Attributes: None.
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xcfgroup</td>
<td>string</td>
<td>No</td>
<td></td>
<td>Defines an XCF group name for the RTCS registry. This value must conform to the guidelines for XCF group names. XCF member names are automatically created from the DBC STC name and job number. (for example, LGCTSA1064426). The maximum length of this value is 8. Note: The XCF group name must not match what is specified in the REGISTRY-XCF-GROUP parameter defined in member OSZINI** in SYS1.PARMLIB.</td>
</tr>
</tbody>
</table>

Example:

```
<register>
  <dbc ssid="DBCM" dbcgroup="DBCMSM" >
    <rtcsreg xcfgroup="DBCMGRP">
      <regdsn>LGC.WMSM1011.RTCS.REGISTRY</regdsn>
    </rtcsreg>
  </dbc>
</register>
```

solution

The `<solution>` element defines or selects a solution. The elements that you include within the `<solution>` element depend on the command that you are specifying.

- If you are using the `<solution>` element within a `<register>` command, you must specify the following required elements:
 - `<name>`
 - `<prodcode>`
 - `<prodvrdsn>`
 - `<templates>`

- If you using the `<solution>` element within a `<deregister>` or `<export>` command, you need to specify only the `<prodcode>` and `<prodvrdsn>` child elements.

Parent element: `<register>`, `<deregister>`, `<solutions>`, or `<list>`

Child elements: `<name>` (0:1), `<prodcode>` (0:1), `<prodvrdsn>` (0:1), `<products>` (0:1), `<templates>` (0:1), and `<files>` (0:1)

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>string</td>
<td>no</td>
<td></td>
<td>A 7-character attribute that defines the FMID. This value is required when registering a solution.</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Required?</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>prodlist</td>
<td>string</td>
<td>no</td>
<td></td>
<td>Indicates whether the solution is included in reports or displays of all installed solutions.</td>
</tr>
<tr>
<td>replace</td>
<td>string</td>
<td>no</td>
<td>no</td>
<td>Indicates whether to replace existing solutions with the same product code and version when using the <code><register></code> command. Valid values are yes and no. If you specify yes when using the <code><register></code> command, the solution registered will replace any existing solution of the same prodcode/version</td>
</tr>
</tbody>
</table>

Example:

The following example shows how to use the `<solution>` element to register a solution:

```
<register>
  <solution id="ZRMDA10" prodlist="yes" replace="no">
    <name>Recovery Management for DB2</name>
    <prodcode>RMD</prodcode>
    <prodvrsn>1010</prodvrsn>
    <products>
      <product refid="ZAFRA10" deploy="required"/>
      <product refid="ZACPA10" deploy="required"/>
      <product refid="ZARMA10" deploy="required"/>
      <product refid="ZALPA10" deploy="required"/>
    </products>
    <templates>
      <template type="display_config">
        <dsn>LGC.AFD1010.XML</dsn>
        <member>PRODOPTS</member>
      </template>
      <template type="display_deploy">
        <dsn>LGC.AFD1010.XML</dsn>
        <member>DEPLYOPTS</member>
      </template>
      </templates>
  </solution>
</register>
```

The following example shows how to use the `<solution>` element to deregister a product:

```
<deregister>
  <solution products="yes">
    <prodcode>RMD</prodcode>
    <prodvrsn>1010</prodvrsn>
  </solution>
</deregister>
```

solutions

The `<solutions>` element selects a group of solutions within a command.

Parent element: `<export>` or `<list>`

Child elements: `<solution>` (0:*)

Attributes:
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>string</td>
<td>no</td>
<td>no</td>
<td>Indicates whether to include all solutions. Valid values are yes and no. If you specify yes, the process will include all solutions.</td>
</tr>
<tr>
<td>optionsets</td>
<td>string</td>
<td>no</td>
<td>yes</td>
<td>Indicates whether to process solutions without their option sets. Valid values are yes and no. If you specify no, solutions are processed without their option sets.</td>
</tr>
<tr>
<td>products</td>
<td>string</td>
<td>no</td>
<td>yes</td>
<td>Indicates whether to list solutions without their associated product definitions. Valid values are yes and no. If you specify no, solutions are exported or listed without the constituent product definitions. To export or list only a subset of product definitions for the solution, specify products="no" and then specify a <product> element for each desired product definition.</td>
</tr>
</tbody>
</table>

Example:

```xml
<export format="xml">
  <solutions all="no" optionsets="yes" products="yes"/>
  <ddname>ARM</ddname>
</export>
```

template

The `<template>` element defines a template. This element can define several template types, specified by the `type` attribute.

Parent element: `<templates>`

Child elements: `<dsn>` (0:1), `<member>` (0:1), `<help>` (0:1), and `<file>` (0:1)

Attributes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>string</td>
<td>no</td>
<td>display_config</td>
<td>Identifies the type of the template. The maximum length of this value is 16. The name must conform to PDS member characteristics, except that it can include the underscore character.</td>
</tr>
</tbody>
</table>

Example:

```xml
<register>
  <product replace="yes" id="ZLGCA10" prodlist="no">
    <prodcode>LGC</prodcode>
    <prodvrsn>1011</prodvrsn>
    <name>DB2 Product Configuration</name>
    <templates>
      <template type="help">
        <dsn>ROHMXN.IVP101MV.BMCXML</dsn>
        <member>LGCHELP</member>
        <help>
          <dsn>ROHMXN.IVP101MV.BMCXML</dsn>
        </help>
      </template>
    </templates>
  </product>
</register>
```
templates

The `<templates>` element groups a set of templates. If you define a template, the `<template>` element must exist as a child of the `<templates>` element.

Parent element: `<product>` or `<solution>`
Child elements: `<template>` (0:*)
Attributes: None.
Example:

```xml
<register>
  <product replace="yes" id="ZLGCA10" prodlst="no">
    <prodcode>LGC</prodcode>
    <prodvrsn>1011</prodvrsn>
    <name>DB2 Product Configuration</name>
    <templates>
      <template type="help">
        <dsn>ROHMXN.IVP101MV.BMCXML</dsn>
        <member>LGCHELP</member>
        <help>
          <dsn>ROHMXN.IVP101MV.BMCXML</dsn>
          <member>LGCHELP</member>
        </help>
      </template>
    </templates>
  </product>
</register>
```
Working with the Next Generation Logger (NGL)

This chapter provides instructions for working with the Next Generation Logger (NGL) technology.

Next Generation Logger (NGL) is a technology that manages logging and retrieval functions including allocating, initializing, and managing log files. NGL minimizes the cost of logging and the potential for resource contention.

NGL uses a file system maintained on z/OS linear data sets for recording captured data into its log files. The NGL uses a "Round Robin" system in which the most current records eventually start replacing the least current records. The number of linear data sets comprising a file system is configurable by the user. When a linear data set is exhausted during insert processing, a switch is made to the next available data set. If all data sets in the file system have been used, the oldest data set is selected as the current logging data set and insertion continues.

Customizing the NGLARCH started task

NGL provides a process to archive the data written to the log files. A sample PROC, NGLARCH, is delivered in the SAMP data set and might need to be customized and copied to your SYS1.PROCLIB (or equivalent) started task library (depending on the products installed).

The NGLARCH started task is spawned by the DBC started task when an archive is requested. DBC spawns NGLARCH when one of the following conditions occur:

- A log file is full.
- The DBC is shut down.
- SWITCH command is issued.

The definition for the NGL agent identifies the name of the NGLARCH started task.
To update or change the name in the agent definition

1. Edit the NGLINIT step from the $G65INIT installation job.

2. Locate the <PROCNAME> element:

 <PROCNAME>NGLARCH</PROCNAME>

3. Change the name to match the member name in your system PROCLIB and rerun that step.

 Execute the NGL,REFRESH,piid command, where piid indicates the product instance identifier. For more information about NGL commands, see “NGL commands” on page 95.

 Note

 If the DOM agent is active, issue the DOM,STOP command before issuing the NGL,REFRESH command. Once NGL has started, issue the DOM,START command.

Figure 16 on page 94 shows an example of this started task.

Figure 16: NGLARCH started task

```plaintext
//NGLARCH   PROC
//NGLARCH   EXEC   PGM=NGL9ARCH,
   //   ACCT=????,REGION=0M
   //STEPLIB   DD   DISP=SHR,DSN=??BMC_HLQ?.NGLLINK
   //   DD   DISP=SHR,DSN=??BMC_HLQ?.DBCLINK
   //   DD   DISP=SHR,DSN=??BMC_HLQ?.DOMLINK
   //SYSPRINT  DD   SYSOUT=* 
   //BMCMSGLG  DD   SYSOUT=* 
   //REPORT     DD   SYSOUT=* 
   //NGL$DUMP   DD   DUMMY
```

Table 13 on page 94 describes the DD statements included in the NGL started task.

Table 13: DD statements for NGLARCH started task

<table>
<thead>
<tr>
<th>DD statement</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEPLIB</td>
<td>The location for NGL, DBC, and DOM load libraries. Depending on the options chosen during the install, the NGL, DBC, and DOM load libraries might be three separate libraries or they might be all in the same library.</td>
</tr>
<tr>
<td>SYSPRINT</td>
<td>Identifies the data set to write potential non-DBC product application messages.</td>
</tr>
<tr>
<td>BMCMSGLG</td>
<td>Identifies the data set that lists the maintenance for NGL modules.</td>
</tr>
<tr>
<td>REPORT</td>
<td>Identifies the data set that contains the output of the NGLARCH process.</td>
</tr>
</tbody>
</table>
NGL commands

NGL supports console commands to stop, start, or refresh the NGL agents for a specific NGL product instance identifier (PIID).

Table 14 on page 95 lists the commands that are available for the NGL. In this table, the dbcssid value indicates the DBC subsystem ID under which the NGL is running, and the piid value indicates the NGL PIID.

Table 14: NGL commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dbcssid NGL,STOP,piid</td>
<td>Stops the NGL agent for the specified piid.</td>
</tr>
<tr>
<td>/dbcssid NGL,START,piid</td>
<td>Starts the NGL agent for the specified piid.</td>
</tr>
<tr>
<td>/dbcssid NGL,REFRESH,piid</td>
<td>Stops and then starts the NGL agent for the specified piid.</td>
</tr>
<tr>
<td>/dbcssid NGL,DUMP,piid</td>
<td>Takes a dump of the NGL address space and any connected client address spaces. Use when directed to do so by BMC Support.</td>
</tr>
</tbody>
</table>

Some products include options that you can use to configure the NGL for use with that product. For additional information about using NGL with a particular product or solution, see your production documentation.

Reporting logset information

You can execute a REXX Exec to display the time span of data of each logfile in a specific output group.

The syntax is:

NGLBATCH dbc-id ngl-id command logset_name

where:

- **dbc-id** is the DBC subsystem ID
- **ngl-id** is the piid of the NGL agent
- The command can be LIST LOGSET or STATUS LOGSET.
- logset_name follows the template of the dbc-id, followed by the letter L followed by the output group number.
 For example: the logset_name of data collector DC01 and output group 001 is DC01L001.

Example
The following example issues a LIST LOGSET command for logset DC01 to DBC server DBCC and NGL PIID NGL1.

```bash
NGLBATCH DC01 NGL1 LIST LOGSET DC01L001
```

A REXX EXEC and the JCL to execute it are contained in the SAMP library (XXSAMP or NGLSAMP) in members NGLBATCH and NGLBCMD respectively.

Figure 17: Sample JCL to execute REXX Exec

```bash
//NGLBATCH JOB ... 
//TSOB   EXEC PGM=IKJEFT01,DYNAMNBR=10
//SYSPRINT DD SYSOUT=* 
//SYSTERM DD SYSOUT=* 
//SYSTSPRT DD SYSOUT=* 
//STEPLIB DD DSN=your.loadlib,DISP=SHR DBC/NGL loadlib 
//SYSPROC DD DISP=SHR,DSN=your.NGL.SAMP NGL SAMP library 
//SYSTSIN DD *
%NGLBATCH DC01 NGL1 LIST LOGSET DC01L001
```

where:
- DC01 is the DBC subsystem ID.
- NGL1 is the NGL piid.
- DC01L001 is the DBC subsystem ID (DC01) and 001 is the logset number.

Figure 18: Example of output

```bash
----- Output for command: LIST LOGSET DC01L001 -----
NGL MESSAGE RC: 00000000  RSN: FFFFFFFF
BMCNGL59704I RESPONSE FROM JOB:DBCPROC2 NGL:NGL1 DBCID:DC01 ASID:0X0178
BMCNGL59695I LOGSET STATUS  DSNAME
BMCNGL59696I    RECORDS   DATA BYTES   COMP BYTES    PERCENT
BMCNGL59700I DC01L001    ACT/INU-C    NGL.GRP1.DC01.NGLC.C0000003
BMCNGL59701I 249268            96.73MB          25.19MB 26
BMCNGL59700I DC01L001    ACTIVE -C    NGL.GRP1.DC01.NGLC.C0000002
BMCNGL59701I 390260           151.14MB          37.17MB 24
BMCNGL59697I DC01L001    ACTIVE -C    NGL.GRP1.DC01.NGLC.C0000001
```

96 *BMC Global Infrastructure Administration Guide*
STATUS

The STATUS command returns the status of active output groups. The command can be issued only from the system operator console.

The minimum command entry is STATUS which returns the status on each active output group. The additional parameters allow STATUS to provide status on a particular output group and also list statistics for all or a particular output group.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$DCssid$</td>
<td>Data Collector ID</td>
</tr>
<tr>
<td>LOGSET</td>
<td>LOGSET returns read and write statistics for an output group</td>
</tr>
<tr>
<td>LOGSTAT</td>
<td>LOGSTAT returns a one line status of an output group</td>
</tr>
<tr>
<td>Output_group_name</td>
<td>specifies which output group details to be displayed</td>
</tr>
<tr>
<td></td>
<td>The output_group_name is in following template: $DCssid$ followed by the letter "L" followed by the output group number.</td>
</tr>
<tr>
<td></td>
<td>For example: $DC01L001$ for data collector DC01 and output group 001</td>
</tr>
</tbody>
</table>

Figure 19: SYNTAX of the STATUS command

Example

$DC01$ STATUS

returns the output group status for all output groups

Example

$DC01$ STATUS $DC01L001$

returns the status for output group 001 from data collector DC01
Example
DC01 STATUS LOGSTAT
returns the status for all output groups (same as STATUS without parameters)

Example
DC01 STATUS LOGSET
returns statistics for all output groups

Example
SDC01 STATUS LOGSTAT DC01L001
returns the status for output group 001 from data collector DC01

Example
DC01 STATUS LOGSET DC01L001
returns statistics for output group 001 from data collector DC01
Deploying products that use the global infrastructure components

This chapter explains how to deploy the following global infrastructure components:

- **DB2 Component Services (DBC)**
- **DB2 Product Configuration (LGC)**
- **Next Generation Logger (NGL)**
- **Runtime Component System (RTCS)**

Carefully review the information in this document to help you plan how to install and deploy your products across your environment.

Overview of deployment

Deploying products that use the global infrastructure components requires careful planning. This overview illustrates how you might combine these components into different configurations across LPARs.

Although each user's environment is unique, this document attempts to cover a variety of typical situations. For example, many users prefer to clone the setup from their original installation rather than execute the installation dialog again on other LPARs. The installation dialog can replicate the data sets from the original installation and transport them to LPARs on non-shared DASD, or copy the data sets to new names to be used in the same shared DASD sysplex.

In contrast, some users already have their own procedures; these users simply want to know what additional steps are required to set up the new components for different environments.
Changes in terminology from prior releases

Table 15 on page 100 compares the terminology used in previous versions of products and that used in the current versions.

Table 15: Changes in terminology

<table>
<thead>
<tr>
<th>Products</th>
<th>Item</th>
<th>Older terminology</th>
<th>Current terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>System and SQL Performance products for DB2</td>
<td>Started task</td>
<td>DOMPROC started task</td>
<td>DBC$STC started task</td>
</tr>
<tr>
<td></td>
<td>Data Collector</td>
<td>DOM started task</td>
<td>DOM agent running under the DBC started task</td>
</tr>
<tr>
<td></td>
<td>Data Collector ID</td>
<td>DOMPROC SSID</td>
<td>DBC SSID</td>
</tr>
<tr>
<td></td>
<td>DOMPLEX name</td>
<td>DOMPLEX profile</td>
<td>DOMPLEX option set</td>
</tr>
<tr>
<td></td>
<td>APPTUNE filter</td>
<td>FILTER profile</td>
<td>FILTER option set</td>
</tr>
<tr>
<td></td>
<td>Output groups</td>
<td>Output groups</td>
<td>LOGSETS</td>
</tr>
<tr>
<td></td>
<td>Trace data sets</td>
<td>Trace data sets</td>
<td>LOGFILES</td>
</tr>
<tr>
<td></td>
<td>Archiving</td>
<td>DOMBCOPY batch job</td>
<td>NGLARCH started task</td>
</tr>
<tr>
<td>Select Backup and Recovery for DB2 products:</td>
<td>Product options</td>
<td>DOPTS module</td>
<td>Option set</td>
</tr>
<tr>
<td>■ Recovery Management for DB2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ RECOVERY MANAGER for DB2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ PACLOG for DB2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMC Workbench</td>
<td>Product options</td>
<td>not applicable</td>
<td>Option set</td>
</tr>
</tbody>
</table>

Requirements for each LPAR

Each LPAR must have the following components (depending on the product installed):

■ RTCS started task
■ DBC started task
■ (optional) NGLARCH started task
- BMC Workbench (GUD), LGC, NGL, and DOM agents defined and running under the DBC subsystem
- NGL private registry data set
- LGC private registry data set, which can be shared across multiple DBC subsystems within the same DBC group
- DBC repository data set
- *(Pool Advisor only)* DCC$VARS and PMD$HIST data sets

You can combine these components into different configurations across LPARs, depending on whether you are sharing DBC groups, RTCS system registries, and LGC private registries.

Note

If you are migrating from version 6.x of the System or SQL Performance products, you should replace each Data Collector with a DBC subsystem from version 10.1 or later. Each STATUS data set from version 6.x will be converted to use a new LGC private registry from version 10.1 or later.

Examples of possible deployment environments

Figure 20 on page 102 illustrates an environment in which different LPARs have different RTCS registries but share the LGC private registry and the DBC group name. In this example, both LPARs share:

- Runtime data sets
- LGC registry
- DBC group
- DOMPLEX option set
- GUDOPT option set
The DOM and LGC agents and the DBC subsystem communicate across the coupling facility (XCF).

Figure 20: System with non-shared RTCS system registry, shared LGC private registry, and shared DBC group name

Figure 21 on page 103 illustrates an environment in which different LPARs share:

- RTCS registries
- LGC private registry
- DBC group name

This example is similar to the previous one but demonstrates that the same setup can be achieved whether the RTCS system registry is shared or unshared.
Figure 21: System with shared RTCS system registry, shared LGC test, and shared DBC group

Figure 22 on page 104 illustrates an environment in which different LPARs have:

- Different RTCS registries
- Different LGC private registries
- Different DBC group names
- Different GUD GUDOPT option sets
- Different DOMPLEX option sets

The configuration in this example enables you to keep TEST separate from PROD so that the LGC, DOM, and DBC do not communicate across the coupling facility.
Because the example shown in Figure 22 on page 104 uses a separate LGC private registry on each LPAR, the names of the DOM and GUD option sets might be the same on each LPAR but will be different instances.

Choosing a configuration

The configuration that best suits your environment depends on:

- Whether RTCS is already configured (and if so, whether it is configured as shared or non-shared)

- How many DBC groups you want to have in a sysplex

- Whether you need to have more than one DBC started tasks running on the same LPAR
Preparing for installation

Reviewing this section before starting the installation will help you plan for deployment.

Verifying that the required RTCS level is installed

Each LPAR will have only one RTCS started task running. If you already have RTCS installed and running, use the following procedure to ensure that you are using the required minimum level of RTCS.

Note
If you are installing RTCS for the first time from Installation System version 2.3.40 or later, BMC recommends obtaining all current maintenance for all FMIDs before deploying your product to other environments.

1. Issue the following command to determine which level of RTCS you are running:
   ```
   F RTCS,PACKAGE MAINT KERNEL
   ```

2. The PACKAGE RMID for PROGRAM OBJECT=OSZKERNL will display a PTF number. If that PTF number does not meet the minimum PTF level required by the products that interact with RTCS, obtain the current maintenance for RTCS.

Note
HOLD doc for RTCS PTFs might indicate that an IPL should occur after you apply maintenance. However, doing so is not generally required.

Controlling sharing of the RTCS system registry

You must have an RTCS started task on each LPAR where a DBC has a member. You can share the RTCS system registry among all or some of the LPARs in a sysplex.

Use the appropriate procedure (for a new RTCS installation or an existing installation) to control whether and how the registry is shared.
Controlling whether a new RTCS system registry is shared

If you are installing RTCS for the first time, use this procedure to control sharing of the RTCS system registry.

Note
The BMC products can operate with a shared or non-shared RTCS system registry. However, in some situations, using a non-shared RTCS registry is better. For more information, see “Avoiding ZDBCssid” on page 152.

1 Review the ALOCRTCS step from the $G10VSAM job and the OSZINI\(nn\) member in your JCL data set (where \(nn\) is your SYSCLONE value).

 The ALOCRTCS step creates the RTCS system registry; this data set name is referenced on the SREGVLDS parameter in the OSZINI\(nn\) member that RTCS uses at startup.

 Depending on how the installation generates this data set name (as determined by specifying SYSTEM or SYSPLEX in the Specify runtime system values field), the name will include one of the following items. (For more information, see Table 21 on page 132.)

 ■ The sysplex name as a node (if you indicated to generate at the sysplex level)
 ■ SYSC lone as part of a node in the name (if you indicated to generate at the system level)

2 Take the appropriate action based on whether you want to share the RTCS system registry:

 ■ If you want to share the registry across some or all LPARs in a sysplex, ensure that OZINI\(nn\) contains:

 — An SREGVLDS parameter that references the same system registry data set for those RTCS instances
 — The NOPRIVATE-REGISTRY and SHARED-REGISTRY parameters
 — The same REGISTRY-XCF-GROUP value for those RTCS instances to allow communication

 ■ If you do not want to share the registry, ensure that OZINI\(nn\) contains:

 — An SREGVLDS parameter that refers to a unique data set
 — The PRIVATE-REGISTRY and NOSHARED-REGISTRY parameters
 — No REGISTRY-XCF-GROUP value
For more information about RTCS parameters, see the *BMC Runtime Component System Configuration and Administration Guide*.

Determining whether an existing RTCS system registry is shared

1. Issue the following console command:

   ```
   RO *ALL,F RTCS,REGISTRY STATUS
   ```

2. Look for message OSZ0240I in the output.
 - If the message shows the same data set name from each LPAR, the registry is shared.
 - If the data set names differ, the registry is not shared.

3. Run steps LGCDFLT and LGCRGRP from the $G63LGCD job as follows, based on whether the registry is shared:
 - If the registry is shared, run the steps from *any* LPAR in the sysplex to register all DBC groups.
 - If the registry is not shared, run the steps on *each* LPAR where the DBC has a member.

Checking your cross-system coupling facility (XCF) groups names

BMC products that use the global infrastructure components use the following cross-system coupling facility (XCF) groups:

- The DBC starts an XCF group based on the DBCGROUP parameter in the $G65INIT and $U20INIT jobs.

- The System and SQL Performance for DB2 products use a DOM agent that runs in the DBC. The DOM agent starts an XCF group based on the DOMPLEX option set name specified in the `<PARMS>` element DOMPLEX= keyword in the DOM$STRT job.

This XCF group should not be shared with other processes. If the DOMPLEX option set name is the same as the DBC GROUP name, the DOM code will add $ to the end of the name (or change the last character to $) to make the name unique. Doing so ensures that the XCF group differs from the one used by the DBC, even if the DBC group name matches the DOMPLEX option set name.
XCF group must be the same for all DOM agents in order to show data collected for remote DB2 subsystems.

- The LGC agent starts an XCF group based on what you specify in the $G63LGCD job (LGCRGRP step).

WARNING

Use caution when specifying the @ symbol on the XCF group. This symbol can cause translation issues.

All three XCF groups must have different names.

Example

- Assume that the DBC group and DOMPLEX option set have the same name, DCPLEX. The group names could be as follows:

 DBC XCF group = DCPLEX

 DOM XCF group = DCPLEX$ (with DCPLEX automatically changed to DCPLEX$ by the DOM code)

 LGC XCF group = LGCGRP01

- Assume that the DBC group and DOMPLEX option set have different names. The group names could be as follows:

 DBC XCF group = DCPLEX

 DOM XCF group = TESTPLEX

 LGC XCF group = LGCTEST

To check XCF group names and enable communication between groups

1. To display XCF groups that are already in use, issue the following console command:

   ```
   D XCF,GROUP
   ```

2. To determine the names of the XCF groups that are in use, review the DBC$STC started task log and search for XCF.

Note

You can specify a different name for the XCF group. To do so, use the `<XCFGROUP>myxcf</XCFGROUP>` element in the member referenced in the DBCPARMS DD in the DBC$STC started task PROC. The variable `myxcf` represents the XCF group name to be used by the DBC.
To enable communication across XCF groups for all three components from one LPAR to another, observe the following guidelines:

- Both DBC subsystems should be defined to the same DBC group and should reside in the same sysplex.
- Both DBC subsystems should join the same XCF group that the DBC uses.
- Both DOM agents should join the same XCF group as defined by using the same DOMPLEX option set.
- Both LGC agents should join the same XCF group.

Enabling communication between a DOM agent and an older product

As you phase in version 10.1 or later of the System and SQL Performance products and begin using the DBC, you can enable products to report on data collected by earlier releases of the Data Collector. The following guidelines apply:

- The DBC group name must be different from the DOMPLEX profile name of the older release.
- The DOMPLEX option set name must be the same as the DOMPLEX profile name in the 6.x release.

 Specify the DOMPLEX option set name in the DOM$STRT job by using the DOMPLEX= keyword. Ensure that a DOMPLEX option set with that name exists before running the DOM$STRT job.
- If you want to have a version 10.1 or later DBC subsystem running on the same LPAR as a 6.x Data Collector, use a different ssid for the DBC than you used for that Data Collector.

 For example, if you used DC01 for version 6.1, you could use DBC1 for version 10.1.
- Ensure that the output groups in the option set are correct for your DBC IDs. You can use the same high-level qualifier (HLQ) for the trace data sets because the low-level qualifiers (LLQs) in the versions differ.

Modifying the DBC started task

Running the DBC$STC started task procedure starts the DBC subsystem.
Before you begin

The DBC SSID and NGL registry data set referenced in the started task procedure must match what you are using for this LPAR. The NGL registry is created in the ALOCNGL step in the $G10VSAM job. You can use the same started task member on each LPAR by specifying the SSID value in the startup command.

Figure 23 on page 110 illustrates that the DBC SSID is the same as the NGL PIID, so the &ssid variable is used for both.

Figure 23: Example of DBC started task

```plaintext
//DBC    PROC  ACC=4111,
//       SSID=DC01,       ====> SSID
//        G=FDR1PLEX,      ====> GROUP
//        T=NO,            ====> TRACE
//        TIM=1440         ===>
///*
//DBC      EXEC PGM=DBCMAIN,REGION=0M,ACCT=&ACC,TIME=&TIM,
//       PARM='SSID=&SSID,GROUP=&G,TRACE=&T'
//STEPLIB  DD DSN=BMCPERF.TEST.BMCLINK,
//       DISP=SHR
//DBCPRINT DD SYSOUT=*,RECFM=VA
//SYSPRINT  DD SYSOUT=*,RECFM=VA
//SYSPRINT  DD SYSOUT=*,RECFM=VA
//SYSTERM  DD SYSOUT=*,RECFM=VA
//DBCAPRMS DD DISP=SHR,
//       DSN=BMCPERF.TEST.BMCLINK
//DBCSECUR  DD DISP=SHR,
//       DSN=BMCPERF.TEST.BMCSAMP($DBC&SSID)
//REGISTRY  DD DISP=SHR,
//       DSN=BMCPERF.TEST.BMCSAMP($SEC&SSID)
//DOMTMPLT DD DISP=SHR,
//       DSN=BMCPERF.TEST.BMCTMPLT
//DOMAPRMS DD DISP=SHR,
//      DSN=BMCPERF.TEST.BMCPARM
```

Note

The REGISTRY DD statement is used only for the NGL component. The DOMTMPLT and DOMAPRMS DD statements are used only by System and SQL Performance products. These DD statements might be missing or commented out if you do not have those products.

To modify the DBC started task

1. (optional) Change the ACC= value at the top of the PROC (if necessary) for accounting information.

2. (optional) Add a step in the PROC to APF authorize anything in your STEPLIB, as shown in the following example:

```plaintext
//AUTH1    EXEC  PGM=JTHAPF00,ACCT=&ACC,PARM='DBC,STEPLIB'
```
To setup another DBC

The DBC$STC started task references two members for the DBC SSID:

- **$DBC&ssid**
- **$SEC&ssid**

1 Replicate the members in the appropriate user or runtime data set to use the naming convention for the DBC SSID for this LPAR.

2 Edit the $DBC&ssid member by either:

- Changing the DBC repository name for this LPAR
- Using the &SSID symbolic for the repository name in that member.

```
<NAME>BMCPERF.&SSID..DBCREPOS</NAME>
```

Note
The $SEC&ssid member contains only one parameter. If you want this parameter to be the same for all DBC subsystems in this DBC group, hard code the member and share it among all DBC subsystems.

Determining the default DBC group

You can have only one default DBC group per RTCS system registry. After the default DBC group is established, changing it can have unexpected results.

If you are not certain which DBC group is the default, use the following procedure to find the default.

To find the default DBC group

1 Add the following XML string as input to the LGCUTIL step:

```
<lgcutil version="1010">
  <list><dbc /></list>
</lgcutil>
```
Note

This XML code is also available in the LGCSLIST member in the LGCSAMP library.

In the LGCUTLPR output, the name of the default DBC group (DCPLEX in the following example) is marked with an asterisk.

<table>
<thead>
<tr>
<th>BMCLGC0178I</th>
<th>DBC GROUP & SSID DATASTORE (private registry or z/FS path)</th>
<th>XCF GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMCLGC0179I</td>
<td>DBC GROUP & SSID DATASTORE (private registry or z/FS path)</td>
<td>XCF GROUP</td>
</tr>
<tr>
<td>BMCLGC0180I</td>
<td>DCPLEX* DBD1 LGC.DEV1011.RTCS.REGISTRY LGCGRP1</td>
<td></td>
</tr>
<tr>
<td>BMCLGC0180I</td>
<td>DCPLEX* LGD1 LGC.DEV1011.RTCS.REGISTRY LGCGRP1</td>
<td></td>
</tr>
<tr>
<td>BMCLGC0181I</td>
<td>/var/bmc/lgc/v00/datastore/</td>
<td></td>
</tr>
<tr>
<td>BMCLGC0180I</td>
<td>DMRQAGRP AA1D DMRQA.DB2A.PLEX1.REGISTRY DMRQ@GRP</td>
<td></td>
</tr>
</tbody>
</table>
| BMCLGC0180I | UBF1PLEX UBF1 DIS.IVP101.DEBF1.LGCRGRY BF01@
| BMCLGC0182I | 4 DBC system(s) matched the search criteria |
| BMCLGC0183I | * Default DBC group name |

2 Determine if the LGCDFLT step from the $G63LGCD job needs to be run.

If the DBC group name matches the group name of the DBC subsystem that is being registered, you do not need to run the LGCDFLT step.

3 Determine if the LGCRGRP step from the $G63LGCD job needs to be run.

You might need to run the LGCRGRP step depending on how your RTCS system registry is set up. For more information, see “Controlling sharing of the RTCS system registry” on page 105.

Working with agents

This section describes some considerations for applying maintenance to agents that run within the DBC subsystem.

The $G65INIT and $U20INIT jobs define agents to the DBC subsystem. As generated by the installation, these jobs contain <LOADLIB> elements for each agent that starts under the DBC subsystem. Depending on the option you chose for configuring user libraries and runtime data sets, multiple <LOADLIB> elements per agent might reference the specific data sets that the agent uses.

The DBC started task is meant to be a long-running address space service that remains active for the life of an IPL, similar to the RTCS started task. The purpose of the <LOADLIB> elements is to enable bouncing an agent (not the DBC started task) when maintenance is applied.

As generated by the Installation System, only the load libraries that the agent needs are used in the definition. If you specified to use a single runtime load library, that same library will be in the definition for each agent. The DBC started task needs to be bounced only when DBC maintenance is applied, even if the task contains load library members used by other agents.
The DBC creates a TASKLIB consisting of any libraries in an agent's <LOADLIB> elements, followed by any libraries in the STEPLIB. If neither of those have data sets defined to them, the load modules should be in LINKLIST. The product searches in the following order:

- <LOADLIB> elements, if present
- STEPLIB data sets, if present
- LINKLIST

You can change the load library information in the <LOADLIB> elements by using one of the following methods:

- "Removing references to the load library" on page 116
- "Changing references to the load library" on page 113

You can deploy maintenance to the agents while the DBC address space continues to run. You can use either of the following procedures:

- "To create an option set" on page 54 (when applying a few PTFs, or when you know which agents need to be refreshed)
- "To apply maintenance to all agents" on page 119 (when applying PUT maintenance)

Changing references to the load library

Use the following procedure if you want to keep the <LOADLIB> elements but reference a different data set or change the LOADLIB to reference an alias.

Note

You can use this procedure even if you have already run the $G65INIT or $U20INIT job.

1. Edit the $G65INIT and $U20INIT installation jobs.
2. Change the data set names in the <LOADLIB> elements in each agent definition.

Table 16 on page 114 lists the non-merged and merged load libraries required by each agent.
Table 16: Load library names required by agents

<table>
<thead>
<tr>
<th>Step name</th>
<th>Merged load library names</th>
<th>Non-merged load library names</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUDINIT</td>
<td>BBLINK</td>
<td>PSSLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACSLINK, ACTLINK, ACTLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AEXLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCCLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data set that contains ACTDOPTS</td>
</tr>
<tr>
<td>DBLINK</td>
<td></td>
<td>LGCLINK, MRELINK, MRELINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USCLINK</td>
</tr>
<tr>
<td>XXLINK</td>
<td></td>
<td>DIGBLB, DIGB4LB, GUDLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LGCLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MRELINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USCLINK</td>
</tr>
<tr>
<td>DOMINIT</td>
<td>BBLINK</td>
<td>PSSLINK, DASLINK, DASLINK, DOMLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Also, the following names apply if the associated products are installed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDSLINK (MainView for DB2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IODLINK (APPTUNE for DB2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMDLINK (Pool Advisor for DB2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSELINK (SQL Explorer for DB2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPDLINK (System Performance for DB2)</td>
</tr>
<tr>
<td>DBLINK</td>
<td></td>
<td>SCCLINK</td>
</tr>
<tr>
<td>XXLINK</td>
<td></td>
<td>DIGBLB, DIGB4LB, LGCLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MRELINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NGLLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USCLINK</td>
</tr>
</tbody>
</table>
Table 17 on page 115 lists load libraries that the DBC needs.

Table 17: Load library names required by the DBC

<table>
<thead>
<tr>
<th>Merged libraries</th>
<th>Non-merged libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBLINK</td>
<td>SCCLINK</td>
</tr>
<tr>
<td>SCCLINK</td>
<td></td>
</tr>
<tr>
<td>XXLINK</td>
<td>DIGBLB, DIGB4LB</td>
</tr>
<tr>
<td></td>
<td>LGCLINK, USCLINK</td>
</tr>
<tr>
<td>NGLINIT</td>
<td>DBLINK</td>
</tr>
<tr>
<td></td>
<td>SCCLINK</td>
</tr>
<tr>
<td>XXLINK</td>
<td>DIGBLB, DIGB4LB</td>
</tr>
<tr>
<td></td>
<td>NGLLINK</td>
</tr>
</tbody>
</table>

Note
The referenced load library data sets listed in Table 16 on page 114 and Table 17 on page 115 must be APF authorized.

3. Run the jobs.

4. Issue the REFRESH command for each agent that is affected by the change.

Table 18 on page 115 lists the command to issue for each component. Issue the commands in the order shown. The `dbcid` value represents the identifier of the DBC subsystem.

Table 18: Commands to refresh agents

<table>
<thead>
<tr>
<th>To refresh agent</th>
<th>Issue this console command</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGC</td>
<td><code>/dbcid LGC,REFRESH</code></td>
</tr>
</tbody>
</table>
To refresh agent | Issue this console command
--- | ---
NGL c | `/dbcid NGL,REFRESH, piid`
 The *piid* value identifies the NGL ID.
GUD b | `/dbcid GUD,STOPALL`
 followed by
 `/dbcid GUD,STARTALL`
DOM a | `/dbcid DOM,REFRESH`

 a The NGL and LGC agents should be active before issuing this command.
 b The LGC agent should be active before issuing this command.
 c If installed, the DOM agent should be stopped before issuing this command.

Removing references to the load library

The `$G65INIT` and `$U20INIT` jobs reference the product LOADLIB in a few places. Use the following procedure if you want to remove references to the LOADLIB data sets.

Note

You can use this procedure even if you have already run the `$G65INIT` or `$U20INIT` job.

1. Edit the `$G65INIT` and `$U20INIT` installation jobs.
2. Delete all `<LOADLIB>` lines in the job.
3. Run the jobs.
4. Issue the REFRESH command for each agent that is affected by the change.

For information about the REFRESH commands, see Table 18 on page 115.

Deploying maintenance to agents

This task describes how to apply maintenance to either a group of specific agents that run within DBC or to all agents and the DBC (such as you would when applying PUT maintenance). Use the procedure that is applicable to your situation.

To apply maintenance for specific agents

1. Run the DBCDSNS job, replacing `productLoadlib` with the name of your product load library and `dbcGroup` with your DBC group name.
Figure 24 on page 117 shows an example of the DBCDSNS job.

Figure 24: DBCDSNS job

```
//DBCDSNS  EXEC PGM=DBCUTIL
//STEPLIB  DD DISP=SHR,DSN=productLoadlib
//DBCPRINT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTERM  DD SYSOUT=*
//SYSIN    DD *
<DBCUTIL>
  <OPTIONS>
    <GROUP>dbcGroup</GROUP>
  </OPTIONS>
  <COMMANDS>
    <COMMAND>
      <DISPLAY>
        <DSNS/>
      </DISPLAY>
    </COMMAND>
  </COMMANDS>
</DBCUTIL>
/*
```

2 Review the output in the DBCPRINT DD in the active DBC started task.

This job displays the data sets allocated within the DBC.

3 Review the PTFs that are being applied to determine which FMIDs will be affected.

4 Based on how you organized your runtime load libraries in the installation, cross-reference these lists with Table 16 on page 114 to determine which agents will need to be refreshed.

5 Issue the STOP command for each agent that is receiving new maintenance.

BMC recommends deploying new maintenance when no users will be attempting to use the product. Stopping agents when users are in the product can cause error messages that indicate the agent is stopping or is unavailable.

Table 19 on page 117 lists commands to stop agents. Issue these commands in the order shown. The *dbcid* value represents the identifier of the DBC subsystem.

Table 19: Commands to stop agents

<table>
<thead>
<tr>
<th>To stop agent</th>
<th>Issue this console command</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOM</td>
<td>/dbcid DOM,STOP</td>
</tr>
<tr>
<td>GUD</td>
<td>/dbcid GUD,STOPALL</td>
</tr>
</tbody>
</table>
To stop agent | Issue this console command
---|---
NGL | `/dbcid NGL,STOP, piid`
The `piid` value identifies the NGL ID.
Note: If the DOM agent is installed, stop it before stopping the NGL agent.
LGC | `/dbcid LGC,STOP`

6. Copy the changed members from your target zone to your runtime libraries, observing the following guidelines:

Note
Maintenance usually updates the load library but can sometimes include other libraries such as PLIB, XML, and so on. Do not forget to copy these libraries to the runtime data sets, too.

- If you have an alias defined to your runtime load library, and you typically copy new maintenance to a second load library, delete the alias from the old library and define it to the new library.

- If you apply maintenance to a new set of libraries and want to use them in place of the current runtime data sets, follow the instructions in “Changing references to the load library” on page 113.

- If you are using LINKLIST instead of `<LOADLIB>` elements or the DBC STEPLIB, issue the **LLA REFRESH** command.

7. Issue the START command for each agent that is receiving new maintenance and that was previously stopped.

Table 20 on page 118 lists commands to start agents. Issue the commands in the order shown. The `dbcid` value represents the identifier of the DBC subsystem.

Table 20: Commands to start agents

<table>
<thead>
<tr>
<th>To start agent</th>
<th>Issue this console command</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGC</td>
<td><code>/dbcid LGC,START</code></td>
</tr>
</tbody>
</table>
| NGL | `/dbcid NGL,START, piid`
The `piid` value identifies the NGL ID.
Note: The NGL and LGC components should be active before you issue the START command to the DOM agent.
To start agent | Issue this console command
--- | ---
GUD | `/dbcid GUD,STARTALL`

To apply maintenance to all agents

1. Ensure that all users have been notified of the maintenance window.

2. Stop the DBC started task by using the following console command, where `dbcid` is the DBC subsystem ID:
   ```
p dbcid
   ```

3. Copy the changed members from your target zone to your runtime libraries.

 Note
 Maintenance usually updates the load library but can sometimes also include other libraries such as PLIB, XML, and so on. Do not forget to copy these libraries to the runtime data sets too.

 - If you have an alias defined to your runtime load library, and you typically copy new maintenance to a second load library, you must delete the alias from the old library and define it to the new library.

 - If you apply maintenance to a new set of libraries and want to use them in place of the current runtime data sets, follow the instructions in “Changing references to the load library” on page 113.

 - If you are using LINKLIST instead of `<LOADLIB>` elements or the STEPLIB of the DBC, issue the **LLA REFRESH** command.

4. Start the DBC started task by issuing the following console command, where `dbcproc` is the name of the DBC$STC started task member in your PROCLIB:
   ```
s dbcproc
   ```

Reusing global infrastructure components

The DBC is meant to be a long-running address space that starts shortly after an IPL and stops immediately before the next IPL. The DBC allows BMC products to be dynamically defined. You can recycle product agents within the DBC without interfering with other products that use the DBC and without requiring you to stop the DBC started task.
The global infrastructure components are designed to have one release that is updated solely through applying PTFs. If a component does require a new release, the upgrade to the new release will be seamless.

Note
Although the NGL component has a new release (FMID changes), its definition to the DBC retains the same version number from release to release so you can upgrade the NGL in place.

Installing these components automatically downloads the component files and the maintenance as of the delivery date. The Installation System offers a path to reuse these components if they already exist. In this manner, the components will be updated in place and the agents will be recycled in order to refresh the code.

If you already have any of the global infrastructure components, you should choose the option in the Installation System to reuse these components. The Installation System guides you through recycling the DBC started task if DBC maintenance has been applied; otherwise, only the agents running in the DBC will be recycled. The installation jobs will be generated to reference the new load libraries, update any product definitions, and then stop and restart the agents with the new code. Any new product agents will be defined to the DBC and started. Some products do not have agents but use existing component agents (that is, LGC and NGL). Products that use option sets are registered to the LGC private registry with their new template definitions.

Reusing RTCS

In some environments, RTCS is managed by a different group in a different SMP/E zone. In this scenario, you should choose the option in the Installation System to deselect RTCS. Doing so prevents it from being downloaded in your new zone and from having more than one copy of the code, which could cause confusion over maintenance levels.

Note
When deselecting RTCS, a panel in the Installation System will indicate the PTF level required by the products that will be interacting with RTCS. Ensure that you apply this level of maintenance before using those products.

If you decide to download RTCS into the new SMP/E zone, you will have the opportunity to reuse your existing RTCS. An LPAR can have only one active RTCS started task. If you already have RTCS installed and you plan to apply all the maintenance from the new zone, indicate that you want to reuse RTCS in the Installation System. Doing so prevents you from having to answer configuration questions in the Installation System for RTCS. To have RTCS use the new code, perform the following steps:
1. Stop all RTCS clients first. These clients could include all MainView address spaces (including PAS, CAS, and TAS (Alternate Access) address spaces) and the DBC started task.

2. Ensure that the STEPLIB references the data with the new code.

3. Restart the RTCS started task.

Note
The products that interact with RTCS require a minimum maintenance level. If the minimum level is already present, you can delay recycling RTCS until a more convenient time. If the products do not detect the required minimum PTF level, they display an error message.

If you are installing RTCS for the first time, do not deselect it from being downloaded, and do not indicate that you want to reuse it. The Installation System will help you configure RTCS and provide instructions about how to start RTCS.

Reusing DBC

If you already have a DBC started task, you also have a DBC repository that contains product and agent definitions and commands. You should reuse this repository from release to release to prevent any disruption from upgrading products or adding new products. If you have an existing DBC, you should indicate that you want to reuse the DBC in the Installation System. Doing so prevents you from having to answer configuration questions in the Installation System for DBC.

The Installation System downloads the DBC component files along with maintenance as of the delivery date. After you apply DBC maintenance, you must recycle the DBC started task to load the new code. You should compare your current DBC started task and parameters with the newly generated task to determine whether the products that you are installing require any changes.

Reusing NGL

If you already have an NGL agent running in the DBC, you have an NGL registry data set that contains information about each of its PIIDs and LOGSETS. To avoid losing that information and having to reconfigure the component, indicate that you want to reuse the NGL in the Installation System. Even if the NGL has a new release number and FMID, you can upgrade the NGL in place.

The Installation System downloads the NGL component files along with the maintenance as of the delivery date. The generated installation jobs will reference the new libraries and stop and restart the NGL agents.
Reusing LGC

If you already have an LGC agent running in the DBC, you have an LGC datastore that contains option sets for other BMC products. To avoid losing that information, you should indicate that you want to reuse the LGC in the Installation System. The Installation System downloads the LGC component files along with the maintenance from the latest PUT tape. The generated installation jobs will reference the new libraries, register the new LGC templates, and then stop and restart the LGC agent.

Adding new products to the DBC

All product definitions will be added or updated in the DBC repository in either of the following cases:

- You have an existing DBC with BMC products defined to it.
- You are installing the DBC for the first time.

Installing and upgrading the DOM agent for System and SQL Performance products

This procedure applies only to System and SQL Performance products which began using the global infrastructure components in version 10.1.00. The installation process varies depending on whether you are migrating from a previous version.

- For System and SQL Performance products, if you are installing the DOM agent for the first time (not migrating from a previous release), follow all of the installation instructions and run the jobs in order.

- If you are migrating from version 6.x of the System and SQL Performance products, which used the Data Collector, perform the procedure described in “Migrating to the DBC from a version 6.x Data Collector” on page 122.

- If you are migrating from version 10.1 or later of the System and SQL Performance products, which use the DOM agent, perform the procedure described in “Upgrading the DOM agent” on page 127.

Migrating to the DBC from a version 6.x Data Collector

Different options are available for switching from version 6.x of the Data Collector to the new release, which uses the DOM agent running in the DBC address space.
You can use either of the following methods if you are migrating from version 6.x to the new release:

- Replace all DB2 subsystems for a Data Collector.
 BMC recommends that you totally replace the previous version Data Collector with the new version when you roll out the products. For more information, see “Replacing all DB2 subsystems for a Data Collector” on page 123.

- Switch Data Collectors on specific DB2 subsystems to use DBC.
 Switch specific DB2 subsystems from the previous release to the new release when the $C jobs run for that subsystem. For more information, see “Switching the Data Collector on a specific DB2 subsystem” on page 124.

Replacing all DB2 subsystems for a Data Collector

When rolling out products to each LPAR, use the following procedure to switch all DB2 subsystems that are monitored by Data Collector 6.x to be monitored by the new version.

Before you begin

Review the following considerations:

- You must switch all of the monitored DB2 subsystems to the new version at the same time.

- The Data Collector ID for version 6.x becomes the Data Collector and DBC subsystem ID (SSID). The previous DOMPLEX profile name becomes the DOMPLEX option set name for the new release.

- Before the DBC subsystem is started on this LPAR, BMC recommends that you execute all $C jobs on all of the DB2 subsystems that are being monitored by the DBC.

- Review “Enabling communication between a DOM agent and an older product” on page 109.

To replace all DB2 subsystems for a Data Collector

1. Shut down the 6.x Data Collector.

2. To reuse the Data Collector ID from the older release as the DBC SSID, edit and run the #SSIDMIG job in the DOMSAMP or BBSAMP data set before starting the DBC subsystem:
a Specify the parm value as **PARM='MIGRATE dataCollectorID'.** For example, if your Data Collector ID is DC01, specify **PARM='MIGRATE DC01'** for the parm value.

b Complete the STEPLIB and run the job. The job output indicates whether the request completed successfully.

Note

The $G50STRT job indicates when the started task should be activated. For subsequent LPARs, if you used the TDS installation path, the DBC$STC started task will be customized for each LPAR.

For information about the DBC$STC started task, see “Modifying the DBC started task” on page 109.

3 Run the customization jobs in order:

- $R
- $G
- $U
- Edit option sets if necessary
- $C
- DOM$STRT

After the DOM$STRT job runs, the Data Collector will start monitoring all of the applicable DB2 subsystems on this LPAR. You specify which DB2 subsystems to monitor in the DOMPLEX option set through the **Monitor** settings.

BMC recommends that you use MSSID installation to complete the installation on subsequent DB2 subsystems that the Data Collector is monitoring. Failure to do so will result in the SQLCODE -805 error. For more information, see “Replicating the installation to other DB2 subsystems” on page 127.

Switching the Data Collector on a specific DB2 subsystem

Use this procedure to switch specific DB2 subsystems from using the version 6.x Data Collectors to the DBC when the $C jobs run for that subsystem.

Before you begin

Review the following considerations:
The $C jobs are run only for the specific DB2 subsystem that you are migrating to the new release.

The 6.x Data Collectors and the DBC subsystems run simultaneously; they can monitor the same DB2 subsystems until all of the subsystems are switched and the 6.x Data Collector can be shut down. No conflicts exist with trace data set names between releases because the DBC uses linear data sets, which have a different low-level qualifier (LLQ). Both releases can use the same high-level qualifier (HLQ) for the trace data sets (version 6.x) or logsets (version 10.1 or later).

You cannot use the version 6.x Data Collector ID for version 10.x or later of the product. You will need to:

— Edit the option set for the new collector ID and reference it in the output groups

— Specify a DBC SSID in the Installation System that is different from the version 6.x Data Collector SSID

To switch the Data Collectors on a specific DB2 subsystem

1 Replicate the runtime data sets as instructed in “Replicating runtime data sets for different environments” on page 129, but make the following changes when editing the DOMPLEX option set and before running the DOM$STRT job:

■ Type FILTOFF on the COMMAND line if the filter is not already set to OFF.

■ Expand the DB2 Monitor List section.

■ Expand each DB2 subsystem listed.

■ If you do not want the DBC to start monitoring and collecting data for this DB2 subsystem, set the monitor switch for that type to N for that DB2 subsystem.

The following list shows the monitoring types for which you can set values:

— Monitor with MainView for DB2 - DC

— Monitor with Pool Advisor / System Performance

— Monitor with APPTUNE

■ Press F3 to save your changes.

Subsequently, when DOM$STRT is running and the DBC is cycled, data collection will occur only for DB2 subsystems that have the monitor switch set to Y.

2 Turn off monitoring by the 6.x Data Collector:
a Run the $C jobs for this DB2 subsystem.

b Invoke the product's 6.x DOMCLIST or SPDCLIST (or hyperlink from MainView).

c Select **Administration => DOMPLEX Profiles**.

d Choose **M** to modify the DOMPLEX profile.

e Select **DB2 Monitor List**.

f Select the DB2 subsystem that should switch to using the DBC for data collection.

g Change the monitoring settings for that DB2 subsystem to **N**.

h Press **F3** to save the changes.

This change prevents automatic collection from starting if the 6.x Data Collector is bounced.

3 Enable data collection by the DBC:

 a Invoke the product's new version of DOMCLIST or SPDCLIST (or hyperlink from MainView).

 b Select **Administration => DOMPLEX Option Sets**.

 c Select the DOMPLEX option set.

 d Expand the **DB2 Monitor List**.

 e Expand the DB2 subsystem for which you want to turn on DBC data collection.

 f Set the monitor switches to **Y**.

 g Press **F3** to save the changes.

The next time the DOM agent for DBC started task is cycled, data collection will automatically start up for this DB2 subsystem.

4 Issue the following console command for the DBC to start data collection for this DB2 subsystem:

 /dbcssid APPON db2ssid

The variable **dbcssid** represents the DBC SSID for the new DBC subsystem, and **db2ssid** represents the DB2 subsystem ID. An example follows:

 /DBC1 APPON DEBF
Note
You should have previously defined output groups that included this DB2 subsystem.

5 Issue the following command for the 6.x Data Collector to stop data collection for this DB2 subsystem:

```
/dc1d APPOFF db2ssid
```

The variable `dcid` represents the ID of the 6.x Data Collector, and `db2ssid` represents the DB2 subsystem ID. An example follows:

```
/DC01 APPOFF DEBF
```

6 Repeat these steps for each DB2 subsystem that should switch to using the DBC for data collection.

Upgrading the DOM agent

The previous version of the System and SQL Performance products used global infrastructure components.

The System and SQL Performance products define a DOM agent (that is, the Data Collector) that runs in the DBC address space. Only one version of the DOM agent can be active in the DBC. When migrating the DOM agent from the previous release (version 10.1), the Installation System will generate a DBC$ssid member that contains an `<IGNORE>` element for the previous version of the DOM agent. Doing so prevents the previous version from starting and allows the new version to become active.

Note
Ensure that the DBC$STC job references the generated DBC$ssid member that contains the new syntax.

Replicating the installation to other DB2 subsystems

The procedures in this section offer two methods for replicating DB2 objects to other DB2 subsystems. You can use the Multiple Subsystem Install (MSSID) method through the Installation System, or you can manually replicate the original JCL.
Note

BMC products use product-specific DB2 objects for some features. The same product code base can be used with many DB2 subsystems at differing DB2 versions and modes (DB2 Version 9 or 10). The procedures in this section are based on the following assumptions:

- Only the DB2 objects need to be created.
- The product suite of data sets from another installation will be used to run the relevant jobs.

Use the procedure that best suits your situation:

- The Installation System’s MSSID method replicates the DB2 objects to other DB2 subsystems with just a few changes to the original DB2 subsystem values. This method generates a JCL data set for each subsequent subsystem.
- Replicating the original JCL data set manually requires copying the JCL data set and then editing the $C jobs for each subsystem.

To replicate DB2 objects by using MSSID

1. Invoke the installation CLIST and select Product Customization.
2. Select whichever option you performed for runtime data sets, and then select DB2 subsystem options under Additional Customization Options.
3. On the Additional Customization Options menu, select Customize for multiple similar DB2 subsystems (MSSID).
4. Select the RTE or TDS instance to process.
5. Complete the MSSID options for the DB2 subsystems for which you want to replicate the installation.

 You can change the job card and other options for each subsystem, if necessary.

 When you finish specifying options, the Installation System generates the $S00JCL job.
6. Run the generated $S00JCL job.

 This job replicates a JCL data set for each DB2 subsystem. Each data set contains jobs to run for that subsystem, customized with the correct DB2 libraries.
7. Run the $C jobs for each DB2 subsystem.
To manually replicate the original JCL

1. Copy the original JCL data set.

2. Edit all $C jobs to have the correct DB2 subsystem and libraries.

3. (System and SQL Performance products and CATALOG MANAGER only) Before running $C45CNTL, create the correct PSS2:ssid members in your JCL data set (where ssid is the DB2 subsystem ID), with the correct subsystem and DB2 libraries in it.

 For example, PSS2DB2A would be used for DB2 subsystem DB2A. You should have a PSS2:ssid member for each DB2 subsystem or member of a data sharing group, and a member for the group attach name.

4. Run all of the $C jobs (if generated for the original installation) except:
 - $C05ALOC
 - $C10VSAM
 - $C15PSWD
 - $C20APF
 - $C68DOM

Replicating runtime data sets for different environments

Several methods exist for replicating runtime data sets for different environments. For example, you can use the Target Destination System (TDS) method that the Installation System offers, or you can manually replicate the data sets.

TDS can package the runtime data sets and re-create them with different names (for shared DASD deployment) or transport them via FTP to a non-shared DASD environment. TDS also allows for additional customization by packaging the
installation data sets when it is necessary to transport to a non-shared DASD environment.

Replicating runtime data sets by using the Target Destination System (TDS) installation

User libraries can be configured in different ways with runtime data sets. For the DB2 products, a TDS installation is allowed on all of the options except Concatenate the user libraries ahead of SMP/E data sets.

For the products that use the global infrastructure components, this topic provides an overview of what values to specify for the runtime enablement (RTE) and TDS systems to accommodate different scenarios.

Figure 25 on page 130 shows the Runtime Enablement (RTE) Process Menu. This menu is part of the Installation System and includes the options that you will use to install the System and SQL Performance products.

Figure 25: Runtime Enablement (RTE) Process Menu

```
Command ==> ___________________________________________________________
```

Select from the following options:

- Runtime environments definitions
 - Specify runtime system values
 - Create initial runtime instance data sets
 - Specify global infrastructure values
 - Initial runtime instance
 - Specify product customization values
- Target destination systems (TDS)
 - Transport runtime data sets
 - Specify product customization values
- Additional customization options
 - DB2 subsystem options

This topic provides procedures for the following major steps:

“Step 1. Specify runtime system values” on page 131

“Step 2. Create initial runtime instance data sets” on page 133

“Step 3. Specify global infrastructure values” on page 133

“Step 4. Specify product customization values” on page 135

“Step 5. DB2 subsystem options” on page 138

“Step 6. Transport runtime data sets” on page 138
Step 1. Specify runtime system values

1 After selecting the runtime environment for your site, select **Specify runtime system values** on the Runtime Enablement (RTE) Process Menu.

2 On the Runtime Customization Instances panel (BMIPRT1), specify the RTE001 row for your first instance. At the end, specify option 1 to define TDS rows.

Note

BMC recommends that you use SMS-managed data sets. Exercise caution when choosing the Create an alias relationship to the runtime data sets option in the Installation System; the alias names will be dropped (if they exist) and redefined into the new runtime data sets when the runtime data sets are created. Either specify new alias names in the Installation System, or manually manage switching the aliases when you are ready.

The TDS rows might represent different scenarios that deploy the runtime environment to different sysplexes or LPARS. For example, consider the environment shown in Figure 26 on page 131.

Figure 26: Scenario for TDS installation

Assume that the following conditions apply to this scenario:

- The sandbox area has two LPARs (S1 and S2) in sysplex X1, and you want these two LPARs to share the same RTE data sets.

- In the development environment, sysplexes X1 and X2 share DASD. You want development LPARs D1 and D2 to use different RTE data sets than the sandbox so that you can control when maintenance gets applied.

- The test and production environments have two LPARs each (T1 and T2 for test, and P1 and P2 for production) in sysplex X3. Because X3 does not share DASD with the sandbox, the RTE data sets will need to be transported to X3. The LPARs in X3 share DASD with each other (that is, T1, T2, P1, and P2 share DASD), but...
you want to use different RTE data sets between test and production so that you can control when maintenance is applied. Data sets for test and production will need to be transported separately and given different HLQs to keep them distinct.

For this environment, the values for the runtime customization instances could be as shown in Table 21 on page 132:

Table 21: Example of runtime customization values

<table>
<thead>
<tr>
<th>TDS</th>
<th>Shared DASD</th>
<th>Sysplex</th>
<th>LPAR</th>
<th>Runtime data set HLQ</th>
<th>Sysplex or system</th>
<th>TDS installation data set</th>
<th>Product data set</th>
<th>VSAM data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTE1</td>
<td>Y</td>
<td>X1</td>
<td>S1</td>
<td>HLQ: SAND</td>
<td>System</td>
<td>N/A</td>
<td>SAND.PRD</td>
<td>SAND.VSAM</td>
</tr>
<tr>
<td>TDS1</td>
<td>Y</td>
<td>X1</td>
<td>S2</td>
<td>HLQ: SAND</td>
<td>System</td>
<td>N/A</td>
<td>SAND.PRD</td>
<td>SAND.VSAM</td>
</tr>
<tr>
<td>TDS2</td>
<td>Y</td>
<td>X2</td>
<td>D1</td>
<td>HLQ: DEV</td>
<td>System</td>
<td>N/A</td>
<td>DEV.PRD</td>
<td>DEV.VSAM</td>
</tr>
<tr>
<td>TDS3</td>
<td>Y</td>
<td>X2</td>
<td>D2</td>
<td>HLQ: DEV</td>
<td>System</td>
<td>N/A</td>
<td>DEV.PRD</td>
<td>DEV.VSAM</td>
</tr>
<tr>
<td>TDS4</td>
<td>N</td>
<td>X3</td>
<td>T1</td>
<td>HLQ: TEST</td>
<td>System</td>
<td>TEST.install</td>
<td>TEST.PRD</td>
<td>TEST.VSAM</td>
</tr>
<tr>
<td>TDS5</td>
<td>N</td>
<td>X3</td>
<td>T2</td>
<td>HLQ: TEST</td>
<td>System</td>
<td>TEST.install</td>
<td>TEST.PRD</td>
<td>TEST.VSAM</td>
</tr>
<tr>
<td>TDS6</td>
<td>N</td>
<td>X3</td>
<td>P1</td>
<td>HLQ: PROD</td>
<td>System</td>
<td>PROD.install</td>
<td>PROD.PRD</td>
<td>PROD.VSAM</td>
</tr>
<tr>
<td>TDS7</td>
<td>N</td>
<td>X3</td>
<td>P2</td>
<td>HLQ: PROD</td>
<td>System</td>
<td>PROD.install</td>
<td>PROD.PRD</td>
<td>PROD.VSAM</td>
</tr>
</tbody>
</table>

a If the TDS shares DASD with the RTE1 row, the shared DASD should be set to Y. This setting indicates to the Installation System that the runtime data sets need to be transported.

b BMC recommends specifying System for BMC products for DB2.

c These data sets are used with MainView products and the Runtime Component System (RTCS).

Note

Not all fields from the installation dialog are shown in this table. Also, some fields shown in the table might not be displayed on your panel depending on the products that you are installing and your installation options.

Because TESTPLEX and PRODPLEX (which you want to keep separate) are on the same sysplex (X3), you need to specify system instead of sysplex to duplicate this example. Doing so allows you to configure the RTCS system registry to be shared between T1 and T1 but separated from P1 and P2. Table 22 on page 133 illustrates the desired configuration.

Tip

Specify system when you want to have more than one set of runtime data sets in a sysplex.
Step 2. Create initial runtime instance data sets

After you finish specifying runtime system values, return to the Runtime Enablement (RTE) Process Menu and select Create initial runtime instance data sets. Depending on your choices of merged or non-merged data sets and concatenating or consolidating user libraries, this option might allow you to change low-level qualifiers (up to four distinct values) if you need to separate some FMID product data sets from others. (For example, you might want to group all of the data sets for the global infrastructure components into the same runtime data set, HLQGBLINK.)

Step 3. Specify global infrastructure values

After running the $R05RTEC job to create the initial runtime data sets, return to the Runtime Enablement (RTE) Process Menu and select Specify global infrastructure values. Global infrastructure components include:

- DBC
- LGC
- NGL
- RTCS

Note

If MainView is also installed, additional infrastructure components for the MainView coordinating address space (CAS) and product address space (PAS) will also be present.

For the environment in the example shown in this section, the global infrastructure data sets should be set up as shown in Table 22 on page 133.

Table 22: Infrastructure components

<table>
<thead>
<tr>
<th>Component</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td>D1</td>
</tr>
<tr>
<td>RTCS</td>
<td>Shared between S1 and S2</td>
<td>Shared between D1 and D2</td>
<td>Shared between T1 and T2</td>
</tr>
<tr>
<td>LGC</td>
<td>Shared between S1 and S2</td>
<td>Shared between D1 and D2</td>
<td>Shared between T1 and T2</td>
</tr>
<tr>
<td>DBC</td>
<td>Unique</td>
<td>Unique</td>
<td>Unique</td>
</tr>
<tr>
<td>NGL</td>
<td>Unique</td>
<td>Unique</td>
<td>Unique</td>
</tr>
</tbody>
</table>

The RTCS system registry and LGC private registry will be shared per set up for the sandbox, development, test, and production environments. In other words, for each
separate set of data sets, the RTCS and LGC components will be shared. The DBC and NGL components will have an instance on each LPAR and, thus, will have unique repository data sets. However, the runtime data sets for those components will be shared per sandbox, development, test, or production environment.

Table 23 on page 134 shows an example of names of components and members of the global infrastructure components. The example shows unique DBC SSIDs, DBC repositories, NGL registries, NGL IDs, and shared LGC repositories; the example also shows the LGC XCF groups used per each RTE and TDS row.

Table 23: Example of global infrastructure values

<table>
<thead>
<tr>
<th>Share RTCS system registry</th>
<th>DBC SSID</th>
<th>DBC group</th>
<th>DBC repository</th>
<th>NGL registry</th>
<th>NGL ID</th>
<th>LGC repository</th>
<th>LGC XCF group</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTE1</td>
<td>Y</td>
<td>SND1</td>
<td>SANDPLEX</td>
<td>HLQ.SND1.DBCREPOS</td>
<td>HLQ.SND1.NGLRGRY</td>
<td>SND1</td>
<td>HLQ.SND1.LGCRRGRY</td>
</tr>
<tr>
<td>TD51</td>
<td>Y</td>
<td>SND2</td>
<td>SANDPLEX</td>
<td>HLQ.SND2.DBCREPOS</td>
<td>HLQ.SND2.NGLRGRY</td>
<td>SND2</td>
<td></td>
</tr>
<tr>
<td>TD52</td>
<td>Y</td>
<td>DEV1</td>
<td>DEVPLEX</td>
<td>HLQ.DEV1.DBCREPOS</td>
<td>HLQ.DEV1.NGLRGRY</td>
<td>DEV1</td>
<td>HLQ.DEV1.LGCRRGRY</td>
</tr>
<tr>
<td>TD53</td>
<td>Y</td>
<td>DEV2</td>
<td>DEVPLEX</td>
<td>HLQ.DEV2.DBCREPOS</td>
<td>HLQ.DEV2.NGLRGRY</td>
<td>DEV2</td>
<td></td>
</tr>
<tr>
<td>TD54</td>
<td>Y</td>
<td>TST1</td>
<td>TESTPLEX</td>
<td>HLQ.TST1.DBCREPOS</td>
<td>HLQ.TST1.NGLRGRY</td>
<td>TST1</td>
<td>HLQ.TST1.LGCRRGRY</td>
</tr>
<tr>
<td>TD55</td>
<td>Y</td>
<td>TST2</td>
<td>TESTPLEX</td>
<td>HLQ.TST2.DBCREPOS</td>
<td>HLQ.TST2.NGLRGRY</td>
<td>TST2</td>
<td></td>
</tr>
<tr>
<td>TD56</td>
<td>Y</td>
<td>PRD1</td>
<td>PRODPLEX</td>
<td>HLQ.PRD1.DBCREPOS</td>
<td>HLQ.PRD1.NGLRGRY</td>
<td>PRD1</td>
<td>HLQ.PRD1.LGCRRGRY</td>
</tr>
<tr>
<td>TD57</td>
<td>Y</td>
<td>PRD2</td>
<td>PRODPLEX</td>
<td>HLQ.PRD2.DBCREPOS</td>
<td>HLQ.PRD2.NGLRGRY</td>
<td>PRD2</td>
<td></td>
</tr>
</tbody>
</table>

Note

- Not all fields from the installation dialog are shown in this table. Also, some fields shown in the table might not be displayed on your panel depending on the products that you are installing and your installation options.
- The NGL ID is shown to match the DBC SSID, but they can be different. BMC recommends that you use the NGL ID as a node in the NGL registry data set.
- The DBC group name is the same per sandbox, development, test, and production environment, respectively. This organization allows communication between the DBC subsystems on LPARS in the sandbox, development, test, and production environment, but not across DBC groups.
- The LGC registry and LGC XCF group are the same per sandbox, development, test, and production environment, respectively. This organization allows sharing option sets in each of those environments, but not between environments. For example, option sets for production will not be shared with the test, development, or sandbox environments.
BMC recommends not using a version-specific name for registries and repositories so that they can persist and be easily reused from release to release. Enter the global infrastructure values for the RTE and, optionally, the TDS rows. You can return to this option to complete the TDS rows later, if needed.

Step 4. Specify product customization values

1. After specifying the global infrastructure values, return to the Runtime Enablement (RTE) Process Menu and select **Specify product customization values**.

2. Define the process values for the initial runtime instances information:
 - a. From the Process Menu for Customizing Initial Runtime Instances panel, select **Process values for initial runtime instance** under **Global infrastructure** to process values for the initial runtime instance.
 - b. Select the RTE001 row.
 - c. On the Global Infrastructure configuration option panel (ZMCP100), specify a data set to which the RTCS PROCs (OS*) will be copied.

 Note
 If you chose to deselect RTCS or reuse RTCS, you will not see panel ZMCP100 in the Installation System. If this panel is displayed, exercise caution in specifying a system PROC library to avoid inadvertently replacing existing same-named PROC members.

 d. Generate and run the $G jobs for RTE001.

 Be sure to read the instructions in the $G00DOC member and in each job; some started tasks might need to be running before you execute the job.

3. Customize the initial runtime instance:
 - a. From the Process Menu for Customizing Initial Runtime Instance panel, select **Specify product values for the initial runtime instance** option under **Product Configuration**.
 - b. Select the RTE001 row, and specify the values for the initial DB2 subsystem.

4. Initialize the DBC agents:
 - a. On the Process Menu for Customizing Initial Runtime Instances panel, select **Initialize DB2 Component Services (DBC) Agents** under **Product configuration**.
b Select the RETE001 row.

c If you are installing the System and SQL Performance products, specify the DOMPLEX option set for that environment on the BMC System and SQL Performance Options (DAAPU10) panel:

- If you are not migrating from an earlier version of the performance products, specify a DOMPLEX option set name to use. The DOMPLEX option set contains configuration values for the DB2 subsystem to monitor and output groups for each Data Collector.

- If you are migrating from version 6.x, specify the DOMPLEX profile name from the previous release. The $U30RGMEM job will extract all of the DOMPLEX configuration information from the version 6.x STATUS data set. The job will then create an XML document that will be imported as a DOMPLEX option set into the LGC registry. You will need to edit this option set for new required values before starting the DOM agent.

- If you are migrating from version 10.1 or later, specify the DOMPLEX option sets that the previous release used. These option sets will be migrated to the new release.

The DOMPLEX option set name should be shared per sandbox, development, test, and production LPARS.

Example

<table>
<thead>
<tr>
<th>Row</th>
<th>Option set name</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTE1</td>
<td>SANDOPT</td>
</tr>
<tr>
<td>TDS1</td>
<td></td>
</tr>
<tr>
<td>TDS2</td>
<td>DEVOPT</td>
</tr>
<tr>
<td>TDS3</td>
<td></td>
</tr>
<tr>
<td>TDS4</td>
<td>TESTOPT</td>
</tr>
<tr>
<td>TDS5</td>
<td></td>
</tr>
<tr>
<td>TDS6</td>
<td>PRODOPT</td>
</tr>
<tr>
<td>TDS7</td>
<td></td>
</tr>
</tbody>
</table>

The DOMPLEX option set name can be the same as the DBC group name, but using the same name might prevent a version 10.1 DBC subsystem from communicating with a version 6.x Data Collector. To determine whether to allow this communication during deployment, Review “Enabling communication between a DOM agent and an older product” on page 109.
d Generate and run the $U jobs for the RTE001 row.

5 On the Process Menu for Customizing Initial Runtime Instances (BMIP11R) panel, complete the following options under **Product Configuration**:

a Select **Customize product options** and complete the information.

 Note

 You must be on the LPAR where the DBC subsystem is running and the LGC agent must be active within that DBC subsystem. For information about the option set, see **Working with option sets on page 52**.

b Specify **Generate production configuration jobs for the initial runtime instance**, select the RTE001 row, and generate and run the $C jobs.

c *(MainView products only)* Select **Process values for MainView customization** and complete the information.

6 On the Process Menu for Customizing Initial Runtime Instances (BMIP11R) panel, select **Start DBC Product Agents** under **DBC agents** to view a list of jobs that will start agents in the DBC.

 Note

 This option might not be enabled, depending on the products that you are installing.

 For the System and SQL Performance products, the DOM$STRT job will start the DOM agent in the DBC subsystem, using the DOMPLEX option set name specified in the DOMPLEX= keyword parameter in this job.

 For BMC Workbench for DB2, the GUD$STRT job will start the GUD agents in the DBC subsystem, using the default GUDOPT option set. The specific option sets must exist in the LGC datastore before you run this job.

7 Verify that the product is working correctly:

 - Check the DBC log and DBCPRINT for messages to ensure that the product agents are running successfully.

 - Invoke the product CLIST (if applicable) or run a batch job to verify that the products are working correctly.

 Note

 For the System and SQL Performance products, if other DB2 subsystems were specified in the DOMPLEX option set, the Data Collector might begin successfully monitoring them. However, any Explain command might fail until the $C jobs have run for that DB2 subsystem.
Step 5. DB2 subsystem options

For RTE001 (and any TDS row that uses the same runtime data sets), if the installation needs to be replicated to additional DB2 subsystems, select **DB2 subsystem options** under **Additional customization options** on the Runtime Enablement (RTE) Process Menu.

For more information, see “Replicating the installation to other DB2 subsystems” on page 127.

Step 6. Transport runtime data sets

After the RTE001 runtime data sets are created and you have verified product installation, use the following procedure to transport the TDS instances.

1. On the Runtime Enablement (RTE) Process Menu, select **Transport runtime data sets** under **Target destination systems (TDS)**.

2. On the Generate TDS Transport JCL panel, select to generate transport JCL for all TDS instances.

 Depending on whether the TDS was defined to share DASD with the RTE instance, the transport might include a step to download the runtime data sets to the TDS. The HLQs that you specified for the TDS rows will be used when the TDS runtime data sets are created.

3. Before executing the $TRA0010 job, consider generating other jobs ($G, $U, and $C) for the TDS environment first.

 Some BMC products (such as those that use the global infrastructure components) allow customization of the TDS rows defined in the non-shared DASD to be specified from the RTE LPAR.

 Doing so is especially important when DASD is not shared between the RTE and TDS installations; after the $TRA0010 job runs, the JCL for the TDS will exist on another LPAR; and any further customization and generation of jobs will need to be done on each TDS. To generate the rest of the jobs needed for the TDS installation, use the **Specify product customization information** option under **Target destinations systems (TDS)** from the Runtime Enablement (RTE) Process Menu.

 Note

 If you have already run $TRA0010 and DASD is not shared between the RTE and TDS environment, you will need to invoke the TDSINSTL CLIST (instead of the BMCINSTL CLIST) on that TDS. On the main menu, select **Product Customization** and then select **Specify product customization information for the TDS instances**.
4. When going through the installation panels for the TDS instances, consider changing the following items to values that are specific to this LPAR/DB2 subsystem:

- For System and SQL Performance products, VSAM data sets from which to migrate the DOMPLEX configuration
- DB2 libraries
- APF data set name, if used
- DB2 subsystem and data sharing members

5. Review the comments in the $TRA0010 job before running it.
 If the FTP step was included, edit the job and specify logon information. If data sets were transported to an LPAR that did not share DASD with the original installation, you will need to run the RECEIVE job.

6. Run the $TRA0010 job on the subsystem of origin where the RTE was configured.

7. If $TRA0010 transported data sets to another system, run the RECEIVE job for the TDS.

 Note
 Locate the comment in the $TRA0010 job.

   ```
   /*------------------------------------------------------------------------
   /* WHEN THE JOB IS COMPLETE, SUBMIT THE JCL FOUND IN
   /* BMCPERF.S233.RJCL
   /* ON THE TARGET DESTINATION SYSTEM TO COMPLETE THE PROCESS OF
   /* CREATING A COPY OF THE INITIAL SET OF RUNTIME LIBRARIES.
   /*------------------------------------------------------------------------
   
   This job indicates the name of the RECEIVE job that will be created on the TDS LPAR.
   
```

8. On each TDS, execute the jobs on the appropriate LPAR, in the following order:

- $G
- $U
- $C
- `prd$STRT`, where `prd` is the three-character product code. (This job is not applicable to all products.)

 Read the comments in the DOC members and in each job; for some jobs, started tasks and agents must be active before you run the job.
Manually replicating your runtime data sets

BMC recommends using the TDS method provided in the Installation System to define, transport, and replicate runtime data sets because that method includes specifying values for other LPARs in the customization steps. However, if you choose to transport or replicate the runtime data sets yourself, use the following procedure to edit the jobs manually.

In this procedure, you will use your own transportation method to:

- Copy the JCL data set and the runtime data sets from the original installation to the new sysplex
- Manually edit the JCL for each subsystem

Note
You do not need to run any of the $B jobs because these jobs created your SMP/E zones and target data sets.
You do not need to run the $R jobs if you are manually transporting the runtime data sets. The original installation uses the $R job only to copy members from the target data sets to the runtime data sets. To copy maintenance to another system, you will need to use your own method.
For BMC products that use LGC option sets, the option sets must exist in the LGC datastore before you run the product.

You will need to edit all jobs to use the correct high-level qualifier (HLQ) for this environment. Some jobs mentioned in the following steps might not have been generated, depending on the selections that you made in the Installation System.

To manually replicate data sets

1. Update and execute the $G05ALOC job.
 If you chose an option in the installation that concatenated user libraries ahead of runtime data sets, edit this job to change the HLQs (if necessary) before executing the job.

2. Update and execute the $G10VSAM job:
 a. Change the data set name in the ALOCLGC step, if necessary.
 This step allocates the LGC registry.

 Note
 Because this data set can be shared across LPARs, you might not need to run this step on every LPAR, depending on your configuration.
b For the DBC and NGL on each LPAR, change the ALOCNGL step to have the correct name for the DBC subsystem.
This step allocates the NGL registry.
For example, you might want to use the NGL PIID, LPAR name, or DBC ID in the node of the data set name to identify the NGL for this environment. If your site, by default, uses the SHAREOPTIONS based on data set names or SMS classes, ensure that the option is set to SHAREOPTIONS(1,3). The name of the NGL registry data set must match the data set that is specified in the REGISTRY DD in the DBC$STC PROC for the DBC subsystem on this LPAR.

c Change the data set name in the ALOCRTCS step, if necessary.
This step allocates the RTCS system registry.

Note
Because this data set can be shared across LPARs, you might not need to run this step on every LPAR, depending on your configuration.
If RTCS is already running on this LPAR, skip this step and the RTCS instructions in $G24ESEC and $G30UPRM.

3 Review the $G45COPY job and make changes, if needed.
This job copies members from the JCL data set to the runtime data sets. Either edit this job to reference the correct data sets, or manually copy the members.
The DBC will use the following members on this LPAR:

- $DBCssid, where ssid represents the DBC subsystem ID
 Rename the member to specify the DBC SSID for this LPAR. Edit this member to change the DBC repository name that will be allocated by the DBC at startup for this LPAR. This member name should be referenced on the DBCPARMS DD in the DBC$STC PROC.

- $SECssid, where ssid represents the DBC subsystem ID
 Because this member typically does not contain any LPAR-specific information, it can have it can have a generic name if you want to share it across all DBC subsystems. This member name should be referenced in the DBCSECUR DD statement in the DBC$STC PROC.

4 Review the comments in the $G50STRT job for starting tasks, and ensure that the DBC$STC started task is running before running the rest of the jobs.
For more information about the DBC started task, see “Modifying the DBC started task” on page 109.

5 Review the $G63LGCD job and make changes to the following values, if needed:

- defaultdbc=
 This value contains the default DBC group name.
■ **dbcgroup=**
 This value contains the DBC group name and should match the `<GROUP>` element.

■ **rtcsreg xcfgroup=**
 This value indicates the XCF group that the LGC agent will use. See “Checking your cross-system coupling facility (XCF) groups names” on page 107.

■ **regdsn =**
 This value indicates the LGC registry data set that the LGC agent will use on this LPAR. The value should match the LGC registry created in the $G10VSAM job.
 To determine whether other DBC groups will share this registry, see the figures in “Overview of deployment” on page 99 and “Replicating runtime data sets by using the Target Destination System (TDS) installation” on page 130.

6 Review the $G65INIT job and make changes to the following values, if needed:

■ **DBCGROUP=**
 This value contains the DBC group name.

■ **<PIID>**
 This element contains the NGL ID for the NGL agent on this LPAR. This element might appear more than once. The NGL PIID is also specified in the NGLID= keyword parameter.

 WARNING
 Do not change the PIID for the NGR agent. The NGR agent must use NREG.

7 Review the $G70LGCR job and change the name of the XML data sets in the `<dsn>` elements, if needed.

8 Run the $G jobs.
 Read the comments in the $G00DOC member and in each job; for some jobs, the started task must be running before you run the job.

9 Review the $U20INIT job and make changes to the following values, if needed.
 For more information about the $U20INIT job, see “Working with agents” on page 112.

■ **DBCGROUP=**
 This element contains the DBC group name.
<LOADLIB>
Review all LOADLIBs referenced in this job.

10 Review the $U30RGIM job and make the following changes, if needed:

- <dsn>
This element indicates the product XML data sets (also referenced in the IODFILTI step if you are installing APPTUNE).

- file id="load"
If installing APPTUNE, this value is the load library for the performance products.

11 If applicable, create an option set as instructed in “Working with option sets” on page 52.

12 Run $U jobs.

13 Update the $C jobs:

 Note
For the $C05ALOC job, if you chose an option in the installation that concatenated user libraries ahead of runtime data sets, edit this job to change the HLQ (if necessary) and run the job.

 a For each subsystem, edit all $C jobs to have the correct DB2 subsystem and DB2 libraries.

 b *(SQL and System Performance products)* For each DOMPLEX or DBC group, edit the $C10VSAM job and change the names of the VSAM data sets in the DOM* steps (if necessary) to create new VSAM data sets for this environment.

If you are migrating from a previous release, the $C68DOM job can then migrate the data to these new data sets.

 c *(SQL and System Performance products and CATALOG MANAGER)* For each subsystem, before running the $C45CNTL job, create the correct PSS2ssid members in your JCL data set (where ssid is the DB2 subsystem ID).

Ensure that you use the correct subsystem and DB2 libraries. For example, you would use PSS2DB2A for DB2 subsystem DB2A. You should have a PSS2ssid member for each DB2 subsystem or member of a data sharing group, and a member for the group attach name.
d (SQL and System Performance products) For each DOMPLEX or DBC group, edit the $C68DOM job to reference the older release data sets that are pertinent to this environment.

Doing so ensures that you are migrating the data for this environment and converting it to 10.1 data.

e After you finish updating the $C jobs, run the jobs.

14 If applicable for your products, run the prd$STRT jobs (where prd is the three-character product code for your product).

You might need to edit the DBCGROUP= value for the DBC group name, depending on your naming conventions.

15 To replicate the installation to additional DB2 subsystems, see “Replicating the installation to other DB2 subsystems” on page 127.

Replicating DBCs on shared DASD in the same sysplex

The procedures in this section offer two methods for replicating the DBC in a shared-DASD environment in the same sysplex as the original installation. You can replicate the DBC in the same DBC group as the original installation, or in a different DBC group.

Replicating the DBC (using the same DBC group and option sets)

Use this procedure if you have one DBC installed and running, and you want to deploy the installation to another DBC that will join the same DBC group and use the same option sets.

Note

Ensure that all jobs run on the correct LPAR.

1 Run the ALOCNGL step of $G10VSAM on each LPAR.

Because the resulting NGL registry is used by each DBC started task on each LPAR, the registry name needs to be unique. For example, you can use the LPAR name or DBC ID in the data set name to identify the data set to this LPAR.
You do not need to run the ALOCLGC step in $G10VSAM because the LGC from the first LPAR will be shared. Similarly, you do not need to run the ALOCRTCS step because the RTCS system registry from the first installation will be shared.

2 To determine what SSID you will use, review “Migrating to the DBC from a version 6.x Data Collector” on page 122.

3 Start the DBC$STC started task on this LPAR.

 For information about the started task, see “Modifying the DBC started task” on page 109.

4 If your RTCS system registry is not shared with the original LPAR, run the $G63LGCR job.

5 Run all of the steps in the $G65INIT job, except the REGLGC step.

 Note
 Skip running the $G70LGCR job.

6 Review the $U20INIT job.

 (System and SQL Performance products) In the DOMSTRT step, edit the <PARMS> value to ensure that:
 - The NID is the same NGLID as used in $G65INIT for this LPAR
 - The DOMPLEX name is the option set name that the original installation used

7 Run the $U20INIT job.

 Note
 Skip running the $U30RGIM job.

8 *(System and SQL Performance products)* Ensure that you have the second DBC subsystem defined to the DOMPLEX option set:

 a Invoke the DOMCLIST or SPDLIST (or hyperlink from MainView) and select Administration => DOMPLEX Option sets.

 b Select the option set that the first DBC subsystem is using.

 c Expand the Data Collector List section and ensure that the DBC ID for this LPAR is defined as a Data Collector.
d (Pool Advisor only) Expand the section for the DBC ID for this LPAR, and confirm that the following fields reference data sets:

- Data Collectors advisor variable repository
- Pool Advisor history repository

Note
Ensure that these data sets exist before continuing. Use sample members PMDHIST and PMDJINST in the SAMP data set (BBSAMP or BMCSAMP) to create the data sets, if needed.

e Expand the DB2 Monitor List section and ensure that your DB2 subsystems for this LPAR are defined.

You might also want to expand the related sections on the panel and review their settings.

f Expand the Output Group section and ensure that you have output groups defined and LOGSET definitions for this DBC ID.

9 Replicate the installation to other DB2 subsystems.

See “Replicating the installation to other DB2 subsystems” on page 127.

10 If any ppm$STRT jobs were generated, run them to start agents in the DBC.

For the System and SQL Performance products, the DOM$STRT job will start the DOM agent in the DBC subsystem, using the DOMPLEX option set name specified in the DOMPLEX= keyword parameter in this job.

For BMC Workbench for DB2, the GUD$STRT job will start the GUD agents in the DBC subsystem, using the default GUDOPT option set. The specific option sets must exist in the LGC datastore before you run this job.

11 Verify that the product is working correctly:

- Check the DBC log and DBCPRINT for messages to ensure that the product agents are running successfully.

- Invoke the product CLIST (if applicable) or run a batch job to verify that the products are working correctly.
Replicating the DBC (using a different DBC group)

Use this procedure if you need to change the setup of the DBC to accommodate more than one DBC group in the same sysplex or on the same LPAR.

Using this procedure is recommended in the following situations:

- Multiple DBC subsystems are running on the same LPAR but are in different DBC groups, as shown in Figure 27 on page 147.

 Figure 27: Different DBC groups on one LPAR

- Multiple DBC subsystems are running in the same sysplex, they are in different DBC groups, and the RTCS system registry is shared, as shown in Figure 28 on page 147.

 Figure 28: Multiple DBC groups sharing one RTCS system registry

For example, assume that you have DB2 subsystems that represent the test and production environments on the same LPAR (or in the same sysplex where the RTCS
system registry is shared). You should separate the DBC subsystems that are monitoring those DB2 subsystems so that you can roll maintenance into production in a controlled manner. The test and production DBC subsystems will use separate runtime data sets, option sets, and LGC private registry datastore. Because the installation is set up to use the RTCS system registry to find the LGC private registry datastore, you need to use special DD statements in the installation jobs to direct TEST or PROD to its own datastore.

Overview of using ZDBCssid to designate non-default DBC groups

By default, when the LGC agent receives requests to retrieve option sets, it will query the RTCS system registry to find the name of the DBC groups that was registered as the default group. Each individual RTCS system registry can have only one DBC group that is registered as the default. In the situation described in Figure 28 on page 147, you can keep the TEST option sets separate from the PROD option sets by specifying the ZDBCssid designation on TEST to override the registered default DBC group of PRODPLEX. Use the ZDBCssid designation only when you must override the default DBC group.

For DBC groups that are not registered as the default group, you will need to use the special ZDBCssid designation in:

- The DBC$STC started task procedure
- The product CLISTs (DOMCLIST, SPDCLIST, DOMC, or LGCISPF)

You can designate only one DBC group with the **defaultdbc** element per RTCS system registry. In other words, each RTCS system registry can have only one default DBC group designated (meaning a one-to-one correlation). All other DBC groups need to use the ZDBCssid designation.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiple DBC subsystems on the same LPAR</td>
<td>If the DBC subsystems are in different DBC groups, one group must be registered with the defaultdbc value. Others must use the ZDBCssid designation.</td>
</tr>
<tr>
<td>multiple DBC subsystems in the same sysplex</td>
<td>If the DBC subsystems are in different DBC groups and your RTCS registry is shared across the LPAR, one group must be registered with the defaultdbc value. Others must use the ZDBCssid designation.</td>
</tr>
</tbody>
</table>

Replicating the DBC (for a different DBC group) by using a ZDBCssid designation

This procedure can help you determine when to assign a ZDBCssid designation for the non-default DBC group. For example, you could have your test environment use the ZDBCssid designation and your production environment registered as the
defaultdbc. You must allocate ZDBCssid when invoking the product CLIST (DOMCLIST, SPDCLIST, DOMC, or LGCISPF) in order to access the correct LGC private registry datastore for any non-default DBC subsystem.

1. Review “Replicating runtime data sets for different environments” on page 129 and follow the instructions for the method that you select.

Whether you used TDS processing or a manual process for a subsequent LPAR, review the steps in this section to see if any changes need to be made to the jobs before you run them.

Note

This section documents exceptions to the normal process. To set up the ZDBCssid designations, follow your normal method for replicating the runtime data sets, but observe the exceptions noted in this procedure when running the jobs.

2. Review “Controlling sharing of the RTCS system registry” on page 105 and “Determining the default DBC group” on page 111.

Assume that you have the following environment, and that you want to set up TEST to specify ZDBCssid and let PROD use the default DBC group:

<table>
<thead>
<tr>
<th>Environment</th>
<th>DBC SSID</th>
<th>DBC GROUP</th>
<th>defaultdbc</th>
<th>XCF Group</th>
<th>REGDSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
<td>TST1</td>
<td>TESTPLEX</td>
<td>No</td>
<td>TSTPLEX1</td>
<td>BMCPERF.TEST.LGCRGRY</td>
</tr>
<tr>
<td>PROD</td>
<td>PRD1</td>
<td>PRODPLEX</td>
<td>Yes</td>
<td>PRDPLEX1</td>
<td>BMCPERF.PROD.LGCRGRY</td>
</tr>
</tbody>
</table>

- For PROD, the LGCDFLT step from $G63LGCR should be run first.

```xml
<register>
  <defaultdbc>PRODPLEX</defaultdbc>
</register>
```

If a default DBC has already been registered, an error message will notify you. To replace the existing defaultdbc value with a new one, add the replace attribute to the XML:

```xml
<register replace="yes">
  <defaultdbc>PRODPLEX</defaultdbc>
</register>
```

For PROD, the LGCRGRP step from $G63LGCR will appear as shown in the following example:

```xml
<register>
  <dbc dbcgroup="PRODPLEX">
    <rtcsreg xcfgroup="PRDPLEX1">
      <regdsn>BMCPERF.PROD.LGCRGRY</regdsn>
    </rtcsreg>
  </dbc>
</register>
```
For TEST, the LGCDFLT step from $G63LGCR will appear as follows:

```
<register>
<defaultdbc>TESTPLEX</defaultdbc>
</register>
```

You are not required to run this step, because PROD will be registered as the default DBC. Running this step will have no effect if a defaultdbc value already exists. The value will not be replaced unless the replace="yes" attribute is in the XML.

For TEST, the LGCRGRP step from $G63LGCR will appear as shown in the following example:

```
<register>
<dbc dbcgroup="TESTPLEX">
<rtcsreg xcfgroup="TSTPLEX1">
<regdsn>BMCPFRT.TEST.LGCGRY</regdsn>
</rtcsreg>
</dbc>
</register>
```

3 For TEST, edit DBC$STC (the customized DBC started task in your JCL data set) to add the following DD statement to the PROC, where ssid is your DBC subsystem ID:

```
//ZDBC ssid DD DUMMY
```

For example, in the TST1 installation on TEST, you would use ZDBCTST1, where TST1 is the DBC SSID. On other LPARS in this group, specify their DBC ID for ssid.

Note

This step is required for any DBC group that is not registered as the default DBC.

4 Determine which method you prefer for editing the option set (as explained in “Working with option sets” on page 52), and use that method to edit the option set, as follows:

If you prefer to use the Installation System, complete the following steps:

1 Run BMCINSTL or TDSINSTL.

2 Select Product Customization, and then select whichever option you performed for the runtime data sets.

3 Select Specify product customization values under the Initial runtime instances or Target destination systems (TDS) section.

4 (required for any DBC group that was not registered as the default DBC) Type the following command (where ssid is your DBC subsystem ID) on the COMMAND line in the installation dialog:

```
TSO ALLOC FI(ZDBC ssid) DUMMY REU
```
5 Select **Customize product options** under **Product Configuration**, and then select the appropriate TDS row to update your option set, using the correct LGC private registry for your installation.

■ *(System and SQL Performance products)* If you prefer to use the DOMCLIST or SPDCLIST job in the installation JCL or CLIB data set, complete these steps:

1 Edit the DOMCLIST or SPDCLIST to change the top of the PROC statement to automatically connect to your DBC subsystem.

Having separate CLISTs for the test and production environments forces TEST to connect with TEST and PROD to connect with PROD. Use the following statement, where *domplex* is your DOMPLEX option set name:

```sql
PROC O P('PRD=,DP='domplex') SSID()
```

For example, you could use the following statement for TEST:

```sql
PROC O P('PRD=,DP=TESTOPT') SSID().
```

Note
The DOMPLEX name should match the DOMPLEX = keyword value in the DOM$STRT started task for TEST.

2 *(required for any DBC group that was not registered as the default DBC)*

Add the following allocation to your product CLISTs (DOMCLIST, SPDCLIST, or DOMC) to connect to your LGC component:

```sql
ALLOC F(ZDBCssid) DUMMY REUSE
```

Also, add a FREE statement, where *ssid* is your DBC SSID:

```sql
FREE F(ZDBCssid)
```

For example, TEST would use the following statements:

```sql
ALLOC DD(ZDBCTST1) DUMMY REUSE
FREE F(ZDBCTST1)
```

3 If you want to use the same CLIST for multiple LPARS, add code similar to the following example, and then use similar IF statements at the end of the CLIST to free the allocation:

```sql
IF &SYSNAME=DAT THEN +
  DO
    ALLOC F(ZBCLGA2)DUMMY REUSE
  END
IF &SYSNAME=DAT THEN +
  DO
    ALLOC F(ZBCLGA3)DUMMY REUSE
  END
```

4 Execute the DOMCLIST or SPDCLIST (or hyperlink from MainView).

5 Navigate to **Administration** and then **DOMPLEX Option Sets** to edit and customize your DOMPLEX option set.
If you prefer to use the LGCCISPF CLIST in the installation JCL or product CLIB data set, specify the DBC ssid to use, as shown in the following example:

```
EX 'BMC.BMCCLIB(LGCISPF)' 'DBC(ssid)'  
```

where ssid is the DBC subsystem identifier. The DBC that you specify must be active in the LPAR.

Avoiding ZDBCssid

If necessary, you could avoid needing the ZDBCssid designation by using a different configuration. Sample scenarios are as follows:

- **Multiple DBC subsystems are running on the same LPAR but are in different DBC groups.**

 To avoid use of ZDBCssid in this situation, use either of the following options:

 — Require the DBC subsystem registered as **defaultdbc** to start first.

 — Set up a dedicated DBC group to be registered with the **defaultdbc** parameter, include only the LGC agent in it, and require it to start before the DBC subsystems.

- **Multiple DBC subsystems are running in the same sysplex, they are in different DBC groups, and the RTCS system registry is shared.**

 To avoid use of ZDBCssid in this situation, you could set up the RTCS system registry to be shared per DBC group. For more information, see “Controlling sharing of the RTCS system registry” on page 105.

If you need help with a specific situation or you need more information, contact BMC Customer Support.

Replicating the installation to another sysplex on non-shared DASD

Use this procedure to replicate the installation to another sysplex on non-shared DASD.

1. Determine which method you prefer for transporting the runtime data sets to the non-shared DASD LPAR (as explained in “Replicating runtime data sets for different environments” on page 129), and use that method to run the necessary jobs.

2. Replicate the installation to other DB2 subsystems that you want to monitor by using this DBC.
For more information, see “Replicating the installation to other DB2 subsystems” on page 127.

3 Replicate this DBC subsystem to other LPARs in the same group.

For more information, see “Replicating the DBC (using the same DBC group and option sets)” on page 144.
Replicating the installation to another sysplex on non-shared DASD
Index

#SSIDMIG job 123
$G05ALOC job 140
$G10VSAM job 106, 110, 140, 144
$G24ESEC job 141
$G30UPRM job 141
$G45COPY job 141
$G50STRT job 124, 141
$G63LGCD job 112, 141
$G63LGCR job 145, 149
$G65INIT job 94, 112, 113, 116, 142, 145
$G70LGCR job 142, 145
$S00JCL 128
$TRA0010 job 138
$U20INIT job 112, 113, 116, 145
$U30RGIM job 143, 145

A

ABOUT command 61
AF_UNIX 21
agents
 deploying maintenance 112, 116
 DOM 109, 115, 117
 GUD 115, 117
 LGC 115, 117
 NGL 115, 117
ALLOW_SAF_RC4 element 35, 43
ALOCLGC step 140, 145
ALOCNGL step 110, 141, 144
ALOCRRTCS step 106, 141, 145
ALTGROUP command 37
ALTUSER command 37
APPOFF command 127
APPON command 126
APPTUNE (for DB2) 14, 143
authoring DBC DB2 command services 45
authorizing DBC started task 36
AUTO element 44

B

BMC Workbench (for DB2) 14, 101
BMCINSTL 53, 138, 150
BPXPRMxx 21

C

CANCEL command 61
COMMAND command 62
COMMAND element 43
Command line commands in LGC 61
commands
 DBC 33
 DIAG 33
 DISPAGENTS 33
 NGL commands 95
 RESETPRINT 33
 RESETTRACE 33
 STOP 33
 TRACEFLUSH 33
 TRACEOFF 33
 TRACEON 33
COMPONENT element 42
config element 75
configuration of products 47
CONTEXT element 41
CONTEXTS element 41
conventions, documentation 41
create element 67
creating option sets 54
cross-system coupling facility (XCF) groups 107

D

Data Collector
replacing 123
switching on specific system 124
enabling communication 109
migrating 122
DATA CLAS element 31
DB2 command services 45
DB2 Component Services (DBC)
deployment 99
replicating 147
started task 100, 108, 109
default DBC group 111
default group name 141
description 14
global infrastructure 13
group names 142, 147
products supported 13
replicating subsystems 144
reusing 121
started task 100, 108, 109
user ID 18
DB2 objects 128
DB2 Product Configuration (LGC)
deployment 99
interface 53
option sets 140
agent 142
Command line commands 61
description 15
drop-down menus 48, 51
global infrastructure 13
interview overview 48
menu bar 51
online Help 51
Product Option Sets panel 48
products supported 13
reusing 122
sections 48
DB2 Production Configuration (LGC)
option sets 47
overview 47
DB2AUTH element 44, 45
DBC. See DB2 Component Services (DBC)
DBC commands

DIAG 33
START 119
DISPAGENT 33
DISPDSNS 33
RESETPRINT 33
RESETRACE 33
STOP 33, 119
TRACEFLUSH 33
TRACEOFF 33
TRACEON 33

DBC control point resource profile 38
DBC default group 111
dbc element 75
DBC group names 142, 147
DBC security 34
DBC security parameters 39
DBC started task
DOMPARMS 23, 110
DOMTMPLT 23, 110
REGISTRY 23, 110
authorizing 36
DBCPARMS 23
DBCPRINT 23
DBCSECUR 23
DOMPARMS 23, 110
DOMTMPLT 23, 110
JCL 22
REGISTRY 23, 110
starting 22
STEPLIB 23
SYSPRINT 23
user ID 18

DBC subsystem
replicating 144
starting 22
stopping 21, 32
working with 21
DBC$STC started task 100, 108, 109, 145, 150
DBCDSNS job 116
DBCPARMS DD statement 23, 35, 141
DBCPARMS parameters 21, 23
DBCPARMS DD statement 23
DBCSECUR DD statement 23, 35, 39, 141
DBCSECUR element 40
DCC$VARS data set 101
ddname element 76
default DBC group 111
default DBC group name 141, 148
defaultdbc element 76
deleting option sets 59
<table>
<thead>
<tr>
<th>Deployment Environments</th>
<th>FMID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deregister Element</td>
<td>ZDBCxxx 14</td>
</tr>
<tr>
<td>Description Element</td>
<td>ZLGCxxx 15</td>
</tr>
<tr>
<td>DIAG Command</td>
<td>ZNGLxxx 16</td>
</tr>
<tr>
<td>DISPAGENTS Command</td>
<td>FMID Element 32</td>
</tr>
<tr>
<td>DISPDNS Command</td>
<td></td>
</tr>
</tbody>
</table>

G
- **GENHELP Command** 62
- **GROUP Element** 27
- **GUD Agents**
 - Refreshing 115
 - Starting 118
 - Stopping 117
- **GUD Commands**
 - STARTALL 116, 119
 - STOPALL 116, 117
- **GUDINIT Step** 114

H
- **Help**
 - Online 9
- **HELP Command** 62
- **help Element** 79
- **HLQ Element** 40

I
- **ICHERCDE Macro** 37
- **ICHRFRTB Macro** 38
- **IGNORE Element** 31
- **import Element** 69
- **Installation User ID** 17
- **instance Element** 80

L
- **LGC. See DB2 Product Configuration**
- **LGC Agents**
 - Refreshing 115
 - Starting 118
 - Stopping 117
 - XCF Group 142
- **LGC Commands**

E
- **Editing Option Sets** 55, 56
- **Electronic Documentation** 9
- **Export Element** 68

F
- **File Element** 78
- **Files Element** 79
- **FILTDEF Command** 61
- **FILTER Option Sets** 100
- **Filtering Option Sets** 60
- **FILTINV Command** 61
- **FILTMOD Command** 61, 62
- **FILTOFF Command** 61, 62
- **FILTREQ Command** 61, 62
COMMAND 62
REFRESH 62, 115
REGSTAT 62
RELQUES 62
START 118
STATUS 63
STOP 63, 118
interface 61
STORAGE 63, 64
TRACE 63
LGC registry data set 142
LGCSLIST 112
LGCDFLT step 112, 149
LGCINIT step 115
LGCSIPF 53, 148
LGCRGRP step 112, 149
lgcutil element 67
LGCUTIL step 111
list element 70
load libraries
 removing references 116
 changing references 113
LOADLIB element 112, 113
LOGFILES 100
LOGSETS 100
LPAR requirements 100

M
maintenance 112, 116
MainView (for DB2) 14
MainView Transaction Analyzer 14
MAXSOCKETS 21
member element 80
menu bar in LGC 48, 51
merged libraries 113
MGMTCLAS element 31
migrate element 71
MODE element 28

N
name element 81
NAME element 29
newdescription element 81
newname element 82
Next Generation Logger (NGL) reusing 121
started task 19, 93
commands 95
deployment 99
description 16
global infrastructure 13
NGLARCH started task 100
products supported 13
started task 19, 93
user ID 19
NGL. See Next Generation Logger (NGL)
NGL agents
 starting 118
 stopping 117
 refreshing 115
NGL commands
 DUMP 95
 REFRESH 95, 116
 START 95, 118
 STOP 95, 118
NGLARCH started task 19, 93, 100
NGLINIT step 94, 115
non-merged libraries 113

O
OMVS initialization 22
OMVS segment 37
online Help 9
online Help in LGC 51
online user ID 19
option sets
 interface 53
 LGC 47, 140
 name guidelines 52
 creating 54, 143
 creating section defaults 57
 default values 56
 deleting 59
 editing 55, 56
 filtering 60
 LGC 47, 140
 renaming 59
terminology 100
OPTIONS element 26
optionset element 82
optionsets element 84
OSZ0240I message 107
P

PACLOG (for DB2) 14
PIID element 32
PMD$HIST data set 101
Pool Advisor (for DB2) 14
prodcode element 84
PRODHELP command 62
product configuration 47
product element 85
PRODUCT element 32
Product Option Sets panel in LGC 48
products element 87
prodvrsn element 88
publications, related 9

R

RACF FACILITY 37
RACF resource class 37
RDEFINE FACILITY commands 38
Recovery Management (for DB2) 14
RECOVERY MANAGER (for DB2) 14
REFRESH command 62, 95
regdsn element 88
register element 72
REGISTRY DD statement 23, 110
REGLGC step 145
REGSTAT command 62
related publications 9
RELQUES command 62
rename element 72
renaming option sets 59
RESETPRINT command 33
RESETTRACE command 33
RESOURCE_CLASS element 42
RESOURCE_NAME element 40
REXX Exec 95
RTCS. See Runtime Component System (RTCS)
RTCS system registry 105, 111, 141, 145, 147
rtcsreg element 88
Runtime Component System (RTCS) deployment 99
description 16
global infrastructure 13
level required 105
products supported 13
reusing 120
system registry 105
runtime data sets
manually replicating 140
replicating 129
TDS installation 130

S

SAVE command 62
SAVEAS command 62
sections in LGC 48
security 34
SETROPTS command 38
SHAREOPTIONS 141
SMFID element 41
SMS-managed data sets 131
solution element 89
solutions element 90
SPDCLIST 53, 126, 148
SQL Performance (for DB2) 14
SSID element 26
START command 95, 118
started task
NGL 93
NGLARCH 100
DBC 100, 109
STATUS command 63, 97
STEPLIB DD statement 23
STOP command 33, 63, 95, 117
stopping DBC subsystem 32
STORAGE command 63, 64
STORCLAS element 30
SUBSYS element 43
SUBSYSTYPE element 29
syntax statement conventions 10
SYSPRINT DD statement 23
System Authorization Facility (SAF) interface 34
System Performance (for DB2) 14

T

TDS installation 130
TDSINSTL 138, 150
technology components
 DB2 Component Services 14
 DB2 Product Configuration 15
 Next Generation Logger (NGL) 16
 Runtime Component System (RTCS) 16
template element 91
templates element 92
TO_VALUE element 41
TRACE command 63
TRACEFLUSH command 34
TRACEOFF command 34
TRACEON command 34

U
update element 73
user IDs
 installation 17
 authorization 17
 authorizing 37
USERID element 44

V
VOLUMES element 30

W
WLM element 28
WTOUPPERCASE element 29

X
XCF groups 107
XCGROUP element 28, 108

Z
ZDBcssid 148, 152
ZLGCxxx 15