High-speed Apply Engine Reference Manual

Supporting

Version 10.1 of High-speed Apply Engine
Version 10.1 of Log Master for DB2®
Version 10.1 of LOADPLUS for DB2
Version 10.1 of Recovery Management for DB2
Version 10.1 of Database Administration for DB2

April 2011
Contacting BMC Software

You can access the BMC Software website at http://www.bmc.com. From this website, you can obtain information about the company, its products, corporate offices, special events, and career opportunities.

United States and Canada

Address
BMC SOFTWARE INC
2101 CITYWEST BLVD
HOUSTON TX 77042-2827
USA

Telephone
713 918 8800 or
800 841 2031

Fax
713 918 8000

Outside United States and Canada

Telephone
(01) 713 918 8800

Fax
(01) 713 918 8000
Customer support

You can obtain technical support by using the BMC Software Customer Support website or by contacting Customer Support by telephone or e-mail. To expedite your inquiry, see “Before contacting BMC.”

Support website

You can obtain technical support from BMC 24 hours a day, 7 days a week at http://www.bmc.com/support. From this website, you can

- read overviews about support services and programs that BMC offers
- find the most current information about BMC products
- search a database for issues similar to yours and possible solutions
- order or download product documentation
- download products and maintenance
- report an issue or ask a question
- subscribe to receive proactive e-mail alerts when new product notices are released
- find worldwide BMC support center locations and contact information, including e-mail addresses, fax numbers, and telephone numbers

Support by telephone or e-mail

In the United States and Canada, if you need technical support and do not have access to the web, call 800 537 1813 or send an e-mail message to customer_support@bmc.com. (In the subject line, enter SupID:<yourSupportContractID>, such as SupID:12345). Outside the United States and Canada, contact your local support center for assistance.

Before contacting BMC

Have the following information available so that Customer Support can begin working on your issue immediately:

- product information
 - product name
 - product version (release number)
 - license number and password (trial or permanent)
- operating system and environment information
 - machine type
 - operating system type, version, and service pack or other maintenance level such as PUT or PTF
 - system hardware configuration
 - serial numbers
 - related software (database, application, and communication) including type, version, and service pack or maintenance level
- sequence of events leading to the issue
- commands and options that you used
- messages received (and the time and date that you received them)
 - product error messages
 - messages from the operating system, such as file system full
 - messages from related software
License key and password information

If you have questions about your license key or password, use one of the following methods to get assistance:

- Send an e-mail message to customer_support@bmc.com.
Contents

About this book
- Related publications ... 18
- Conventions .. 19
 - Platform or DBMS information ... 19
 - General conventions ... 19
 - Syntax statements .. 20

Chapter 1 Introducing High-speed Apply Engine .. 23
- Overview .. 24
- How High-speed Apply Engine works .. 26
- Input sources for apply requests .. 27
 - SQL statements ... 28
 - Logical log .. 28
- When to use High-speed Apply Engine .. 29
 - Transaction recovery .. 29
 - Data migration ... 29
 - SQL processing .. 30
- How to use High-speed Apply Engine .. 30
- Solution integration .. 30
- Considerations for DB2 on mainframe targets 31
 - Operational considerations .. 31
 - Static SQL processing ... 32
 - Database access .. 33
 - DB2 authorizations ... 33
 - DB2 data type support .. 34
 - DBCS support ... 34
 - Sort work data sets .. 34
- Considerations for DB2 UDB targets .. 34
 - Operational considerations .. 35
 - Database access .. 35
 - DB2 UDB authorizations ... 35
 - DB2 UDB data type support .. 36
 - Template file ... 36
- Considerations for Oracle targets ... 36
 - Operational considerations .. 37
 - Database access .. 37
 - Oracle authorizations .. 38
 - Oracle data type support .. 38
 - Distribution of work .. 38
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2</td>
<td>Defining configurations</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Multiple configuration files for DB2 on mainframe targets</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Creating and managing configuration files</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Configuration file management</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Creating or editing a configuration file</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Configurations for specific tasks</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Mapping source object names to target objects</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Creating logical partitions for target tables</td>
<td>55</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Running High-speed Apply Engine</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Overriding parameters in an apply request</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>UNIX and Windows command line</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Mainframe batch job</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Creating and running apply requests</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Creating and running an apply request for DB2 on mainframe targets</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Creating and running an apply request for DB2 UDB</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Creating and running an apply request for Oracle</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Where to go from here</td>
<td>70</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Restart and recovery</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Restart processing</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Creating a restart table</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Specifying restart parameters</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Restarting an apply request</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Summary of restart parameter usage</td>
<td>83</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Conflict resolution</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Conflict resolution rules</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Format of conflict resolution rules</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Codes for conflict resolution (SQL codes)</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Actions for conflict resolution</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Creating conflict resolution rules</td>
<td>93</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Configuration file format</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>File format</td>
<td>99</td>
</tr>
</tbody>
</table>
Chapter 7 Configuration parameters 109

Overview . 112
Quick reference by name . 113
Quick reference by section . 117
Agent parameters . 121
 InitialAgents . 122
 MaxAgents . 124
 MaxPrepares . 125
AnyConflict parameters . 127
 Action . 128
 Code . 129
Bind parameters . 129
 AuthID . 130
 BindAction . 131
 BindOwner . 133
 CollectionID . 134
 DBPROTOCOL . 135
 DISP . 136
 FreeOption . 137
 Library . 138
 PackagePrefix . 139
 PlanName . 140
 PlanPrefix . 141
BindTuning parameters . 142
 Using [BindTuning] parameters for performance . 143
 MaxFailedBinds . 145
 MaxPackages . 146
 MaxRetries . 147
 PackageUsage . 148
 StatementCount . 149
 StatementUsage . 150
 Synchronous . 151
CommitTriggers parameters . 152
 CommitOnDemand . 153
 StatementCount . 154
 Time . 155
Configuration parameters . 156
 FileName (CFN). 157
Conflict parameters . 158
 DataType . 159
 RetryDelay . 160
 RetryFail . 161
 RetryLimit . 161
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RetryValue</td>
<td>163</td>
</tr>
<tr>
<td>ConflictFile parameters</td>
<td>164</td>
</tr>
<tr>
<td>DATACLAS</td>
<td>165</td>
</tr>
<tr>
<td>DISP</td>
<td>165</td>
</tr>
<tr>
<td>FileNameModel</td>
<td>166</td>
</tr>
<tr>
<td>LIKE</td>
<td>169</td>
</tr>
<tr>
<td>MediaType</td>
<td>169</td>
</tr>
<tr>
<td>MAXVOL</td>
<td>170</td>
</tr>
<tr>
<td>MGMTCLAS</td>
<td>171</td>
</tr>
<tr>
<td>RELEASE</td>
<td>171</td>
</tr>
<tr>
<td>SingleFile</td>
<td>172</td>
</tr>
<tr>
<td>SPACE</td>
<td>173</td>
</tr>
<tr>
<td>SpacePri</td>
<td>174</td>
</tr>
<tr>
<td>SpaceSec</td>
<td>174</td>
</tr>
<tr>
<td>STORCLAS</td>
<td>175</td>
</tr>
<tr>
<td>UNIT</td>
<td>176</td>
</tr>
<tr>
<td>VOLSER</td>
<td>176</td>
</tr>
<tr>
<td>DDLConflict parameters</td>
<td>177</td>
</tr>
<tr>
<td>DeleteConflict parameters</td>
<td>178</td>
</tr>
<tr>
<td>DiagnosticOutput parameter</td>
<td>178</td>
</tr>
<tr>
<td>FileName</td>
<td>179</td>
</tr>
<tr>
<td>DisplayOutput parameter</td>
<td>180</td>
</tr>
<tr>
<td>FileName (DFN)</td>
<td>180</td>
</tr>
<tr>
<td>DistributionTuning parameters</td>
<td>181</td>
</tr>
<tr>
<td>Default distribution of work</td>
<td>182</td>
</tr>
<tr>
<td>Precedence for distribution of work by object</td>
<td>182</td>
</tr>
<tr>
<td>MaxExecuteImmediateDML</td>
<td>183</td>
</tr>
<tr>
<td>PartitionClustering</td>
<td>184</td>
</tr>
<tr>
<td>RIClustering</td>
<td>186</td>
</tr>
<tr>
<td>RIRecursionLimit</td>
<td>187</td>
</tr>
<tr>
<td>SimpleTSClustering</td>
<td>188</td>
</tr>
<tr>
<td>URCheckRI</td>
<td>189</td>
</tr>
<tr>
<td>ErrorOutput parameter</td>
<td>191</td>
</tr>
<tr>
<td>FileName (EFN)</td>
<td>191</td>
</tr>
<tr>
<td>InsertConflict parameters</td>
<td>192</td>
</tr>
<tr>
<td>LogicalLog parameters</td>
<td>193</td>
</tr>
<tr>
<td>CCSIDCompatible</td>
<td>194</td>
</tr>
<tr>
<td>IncludeDDL</td>
<td>195</td>
</tr>
<tr>
<td>IncludeLOB</td>
<td>196</td>
</tr>
<tr>
<td>IncludeRI</td>
<td>197</td>
</tr>
<tr>
<td>IncludeTrigger</td>
<td>198</td>
</tr>
<tr>
<td>IncludeXML</td>
<td>199</td>
</tr>
<tr>
<td>IncludeHistory</td>
<td>200</td>
</tr>
<tr>
<td>Qualify</td>
<td>201</td>
</tr>
<tr>
<td>PartitionDistribution</td>
<td>202</td>
</tr>
<tr>
<td>Sort</td>
<td>203</td>
</tr>
<tr>
<td>SQLType</td>
<td>204</td>
</tr>
<tr>
<td>UpdateColumns</td>
<td>205</td>
</tr>
<tr>
<td>UseLLogSysStrings</td>
<td>205</td>
</tr>
</tbody>
</table>
WORKNUM ... 206
LogOutput parameters .. 207
 FileName (LFN) ... 208
 LogType .. 209
Overlap ... 210
Threshold ... 210
MonitorTuning parameters .. 211
 CommitTrigger ... 212
 CommitValue ... 213
 InputTrigger ... 214
 InputValue ... 215
 ScanInterval ... 216
MultiRowInsert parameters .. 217
 MaxConflicts ... 217
 MaxRows .. 218
 MultiRowInsert .. 219
ObjectCluster parameters ... 220
 Cluster .. 221
 Table ... 222
ObjectMap parameters .. 223
 Positional requirements for object mapping 224
 Using wildcards to map object names 224
 SourceColumn ... 226
 SourceTable ... 226
 TargetColumn ... 227
 TargetTable ... 228
ObjectPartition parameters ... 229
 Positional requirements for [ObjectPartition] parameters 230
 Partition key length ... 231
 Considerations for Oracle data types 231
 Column .. 232
 LimitKey .. 233
 Order ... 234
 Partition .. 235
 Table ... 235
 Value ... 236
Restart parameters ... 237
 CheckpointFrequency .. 238
 RestartID .. 240
 RestartType ... 241
 RetainTime ... 242
 Retry .. 243
 TableName .. 244
SQL parameters ... 246
 DecimalPoint ... 246
 Format ... 247
StartUp parameters ... 248
 BindQualifier ... 250
 ConnectionVersion .. 251
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installing High-speed Apply Engine</td>
<td>291</td>
</tr>
<tr>
<td>Additional procedures</td>
<td>297</td>
</tr>
<tr>
<td>Verifying High-speed Apply Engine installation</td>
<td>298</td>
</tr>
<tr>
<td>Dropping an existing restart table</td>
<td>298</td>
</tr>
<tr>
<td>Creating a default restart table after installation</td>
<td>299</td>
</tr>
<tr>
<td>Uninstalling High-speed Apply Engine</td>
<td>302</td>
</tr>
<tr>
<td>Appendix D Installing High-speed Apply Engine on Windows</td>
<td>303</td>
</tr>
<tr>
<td>Overview and prerequisites</td>
<td>303</td>
</tr>
<tr>
<td>Installation considerations</td>
<td>304</td>
</tr>
<tr>
<td>Controlling access</td>
<td>305</td>
</tr>
<tr>
<td>Installing High-speed Apply Engine</td>
<td>306</td>
</tr>
<tr>
<td>Additional procedures</td>
<td>309</td>
</tr>
<tr>
<td>Verifying High-speed Apply Engine installation</td>
<td>309</td>
</tr>
<tr>
<td>Viewing logs</td>
<td>311</td>
</tr>
<tr>
<td>Verifying server status and response time (Health Check)</td>
<td>313</td>
</tr>
<tr>
<td>Dropping an existing restart table</td>
<td>314</td>
</tr>
<tr>
<td>Creating a default restart table after installation</td>
<td>314</td>
</tr>
<tr>
<td>Uninstalling High-speed Apply Engine</td>
<td>316</td>
</tr>
<tr>
<td>Appendix E LOADPLUS and High-speed Apply Engine</td>
<td>317</td>
</tr>
<tr>
<td>How LOADPLUS uses High-speed Apply Engine</td>
<td>317</td>
</tr>
<tr>
<td>Requirements for using High-speed Apply Engine with LOADPLUS</td>
<td>318</td>
</tr>
<tr>
<td>LOADPLUS options and High-speed Apply Engine parameters</td>
<td>318</td>
</tr>
<tr>
<td>Glossary</td>
<td>319</td>
</tr>
<tr>
<td>Index</td>
<td>323</td>
</tr>
</tbody>
</table>
Figures

High-speed Apply Engine data flow .. 26
JCL for running FTP in batch mode 44
FTP session ... 45
Mapping source object names to target objects 53
Creating logical partitions for target tables 55
Sample apply request for UNIX and Windows 60
Sample apply request for mainframe targets (JCL) 61
Sample maintenance job for mainframe targets (JCL) 66
Sample maintenance output for mainframe targets 66
Sample DDL to create a restart table: DB2 74
Sample DDL to create a restart table: DB2 UDB 76
Sample DDL to create a restart table: Oracle 78
Format of a conflict resolution rule 87
Creating conflict resolution rules .. 93
Sample configuration file for a DB2 mainframe target 100
Sample configuration file for DB2 UDB 102
Sample configuration file for Oracle 102
[Configuration] section format ... 103
Section name delimiters ... 103
Sample comments in a configuration file 105
Example of [Agent] parameter values 121
Example of [AnyConflict] parameter values 127
Example of [Bind] parameter values 130
Example of [BindTuning] parameter values 142
Example of [CommitTriggers] parameter values 152
Example of [Configuration] parameters for mainframe targets 156
Example of [Configuration] parameters for UNIX 157
Example of [Configuration] parameters for Windows 157
Example of [Conflict] parameter values 159
Example of [Conflictfile] parameter values 164
Example of [DDLConflict] parameter values 177
Example of [DeleteConflict] parameter values 178
Example of [DiagnosticOutput] parameter values 179
Example of [DisplayOutput] parameter values 180
Example of [DistributionTuning] parameter values 182
Example of [ErrorOutput] parameter values 191
Example of [InsertConflict] parameter values 192
Example of [LogicalLog] parameter values 193
Example of [LogOutput] parameter values 208
Example of production [MonitorTuning] parameters 212
Example of diagnostic [MonitorTuning] parameters 212
Example of [MultiRowInsert] parameter values 217
Example of [ObjectCluster] parameter values 221
Example of [ObjectMap] parameter values	223
Example of [ObjectMap] parameters (column only)	224
Example, [ObjectPartition] parameters for DB2 mainframe target	229
Example, [ObjectPartition] parameters for DB2 UDB target	230
Example, [ObjectPartition] parameters for Oracle target	230
Example of [Restart] parameter values	238
Example of [SQL] parameter values	246
Example of [StartUp] parameters for DB2 on mainframe targets	249
Example of [StartUp] parameters for DB2 UDB	249
Example of [StartUp] parameters for Oracle	249
Example of [TemporaryFiles] parameter values	268
Example of [UpdateConflict] parameter values	276
Initial installation menu for UNIX	293
Package selection screen for UNIX	294
Sample DDL to create default restart table on DB2 UDB	300
Sample DDL to create default restart table on Oracle	300
High-speed Apply Engine Installer Welcome window	307
Sample DDL to create default restart table on Oracle	314
Tables

High-speed Apply Engine tasks .. 30
Shared library environment variable values: DB2 UDB 67
Shared library environment variable values: Oracle 69
Specifying High-speed Apply Engine [Restart] parameters 83
Code parameter values ... 88
Action parameter values ... 91
Configuration sections with positional parameters 104
Table name formats .. 106
Delimited table names ... 107
Wildcard characters ... 108
Configuration parameters by name .. 113
Configuration parameters by section .. 117
Summary of [BindTuning] parameter usage 144
Symbolic variables for the FileNameModel parameter 167
Wildcard pattern for object-name mapping 225
Valid and invalid wildcard pattern matches 225
Restart table name formats .. 244
High-speed Apply Engine installation requirements for mainframe targets . 280
Variables used in DB2 authorization examples 281
Summary of DB2 authorization requirements for High-speed Apply Engine . 286
High-speed Apply Engine installation options for mainframe targets 287
High-speed Apply Engine installation requirements for UNIX 290
Installation directory contents .. 291
High-speed Apply Engine installation requirements for Windows 304
Installation directory contents .. 306
Log message types .. 312
LOADPLUS options and corresponding High-speed Apply Engine parameters . 318
About this book

This book contains detailed information about the High-speed Apply Engine that is distributed with several products from BMC Software, including the Log Master for DB2® product. The information in this book is intended for database administrators, system administrators, and application programmers who are responsible for transaction recovery, data migration, or high-volume SQL processing.

To use this book, you should be familiar with one or more of the following database management systems (DBMS):

- IBM® DB2 Universal Database for mainframe targets
- IBM DB2 Universal Database (UDB) for distributed systems
- Oracle® RDBMS

You should also have a working knowledge of one or more of the following systems:

- IBM operating systems for mainframe targets (such as z/OS® and its successors)
- job control language (JCL)
- IBM AIX® operating system
- Hewlett Packard HP-UX operating system
- Sun Solaris operating system
- UNIX scripts
- Microsoft Windows 2000 operating systems
- Microsoft Windows XP operating systems

For example, you should know how to edit JCL and submit batch jobs. You should also know how to issue a command from a UNIX command prompt.

You should also be familiar with one or both of the following types of input files for High-speed Apply Engine:

- Structured Query Language (SQL) statements
- Log Master for DB2 logical logs
Like most BMC documentation, this book is available in printed and online formats. To request printed books or to view online books and notices (such as release notes and technical bulletins), see the Customer Support website at http://www.bmc.com/support. Most product shipments also include the books on a documentation CD.

NOTE

Online books are formatted as PDF or HTML files. To view, print, or copy PDF books, use the free Adobe Reader from Adobe Systems. If your product installation does not install the reader, you can obtain the reader at http://www.adobe.com.

The software also offers online Help. To access Help, press F1 within any product or click the Help button in graphical user interfaces (GUIs).

Related publications

The following related publications supplement this book.

<table>
<thead>
<tr>
<th>Category</th>
<th>Document</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>installation documents</td>
<td>Backup and Recovery Products for DB2</td>
<td>tells you about using the BMC Installation System to install and customize your installation of High-speed Apply Engine and other BMC Software backup and recovery products for DB2</td>
</tr>
<tr>
<td>installation documents</td>
<td>Installation Guide</td>
<td></td>
</tr>
<tr>
<td>core documents</td>
<td>Log Master for DB2 User Guide</td>
<td>contains operating procedures for the Log Master for DB2 online interface</td>
</tr>
<tr>
<td>core documents</td>
<td>Log Master for DB2 Reference Manual</td>
<td>contains syntax information and other reference material for Log Master for DB2</td>
</tr>
<tr>
<td>core documents</td>
<td>Backup and Recovery Products for DB2</td>
<td>provides messages (with explanations and user responses) for the BMC Software backup and recovery products for DB2</td>
</tr>
<tr>
<td>core documents</td>
<td>Messages Manual</td>
<td></td>
</tr>
<tr>
<td>supplemental documents</td>
<td>release notes, flashes, technical bulletins</td>
<td>contains information about the latest updates to the High-speed Apply Engine</td>
</tr>
<tr>
<td>supplemental documents</td>
<td>Recovery Management for DB2 User Guide</td>
<td>contains information about the components of the Recovery Management for DB2 solution, solution-only features, and using the solution components together</td>
</tr>
</tbody>
</table>

18 High-speed Apply Engine Reference Manual
Conventions

This section provides examples of the conventions that are used in this book and explains how to read syntax statements and diagrams.

Platform or DBMS information

If information is specific to a DBMS or platform, this book uses the following symbols:

- **DB2**: The information applies only to DB2 for mainframe targets.
- **DB2 UDB**: The information applies only to DB2 Universal Database targets on UNIX or Windows.
- **Oracle**: The information applies only to Oracle targets on UNIX or Windows.
- **z/OS**: The information applies only to mainframe operating systems.
- **UNIX**: The information applies only to UNIX platforms.
- **Windows**: The information applies only to Windows platforms.

General conventions

This document uses the following general conventions to note specific types of material.

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>information that you are instructed to type</td>
<td>Type <code>search db</code> in the designated field.</td>
</tr>
<tr>
<td>specific (standard) keyboard key names</td>
<td>Press <code>Enter</code>.</td>
</tr>
<tr>
<td>field names, text on a panel</td>
<td>Type the appropriate entry in the <code>Command</code> field.</td>
</tr>
<tr>
<td>directories, file names, web addresses</td>
<td>The BMC Software home page is at www.bmc.com.</td>
</tr>
<tr>
<td>nonspecific key names, option names</td>
<td>Use the HELP function key.</td>
</tr>
<tr>
<td>MVS or DB2 calls, commands, control statements,</td>
<td>Use the SEARCH command to find a particular object.</td>
</tr>
<tr>
<td>keywords, parameters, reserved words</td>
<td>High-speed Apply Engine generates the SQL TABLE statement next.</td>
</tr>
<tr>
<td>UNIX commands, command options, database names</td>
<td>Use the sbacktrack program to create a backup script.</td>
</tr>
</tbody>
</table>
Syntax statements

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>code examples, syntax statements, system messages, screen text</td>
<td>//STEPLIB DD</td>
</tr>
<tr>
<td></td>
<td>The table tableName is not available.</td>
</tr>
<tr>
<td>emphasized words, new terms, variables</td>
<td>The instructions that you give to the software are called commands.</td>
</tr>
<tr>
<td></td>
<td>In this message, the variable fileName represents the file that caused the error.</td>
</tr>
<tr>
<td>single-step procedures</td>
<td>» To enable incremental backups, type y and press Enter at the next prompt.</td>
</tr>
<tr>
<td>GUI menu sequence</td>
<td>Choose File => Open.</td>
</tr>
</tbody>
</table>

This book uses the following types of special text:

NOTE

Notes contain important information that you should consider.

WARNING

Warnings alert you to situations that could cause problems, such as loss of data, if you do not follow instructions carefully.

TIP

Tips contain useful information that might improve product performance or that might make procedures easier to follow.

Syntax statements

The following example shows a sample syntax statement:

```
COMMAND KEYWORD1 [KEYWORD2|KEYWORD3] KEYWORD4={YES|NO}
  fileName...
```
This document uses the following conventions for syntax statements:

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items in italic type represent variables that you must replace with</td>
<td>dtsbackup controlDirectory</td>
</tr>
<tr>
<td>a name or value. Use an underscore for variables with more than one</td>
<td></td>
</tr>
<tr>
<td>word.</td>
<td></td>
</tr>
<tr>
<td>Brackets indicate a group of options. You can choose at least one of</td>
<td>[tableName, columnName, fieldName]</td>
</tr>
<tr>
<td>the items in the group, but none of them is required. Do not type</td>
<td>[-full, -incremental, -level] (UNIX)</td>
</tr>
<tr>
<td>the brackets when you enter the option. A comma means that you can</td>
<td></td>
</tr>
<tr>
<td>choose one or more of the listed options. You must use a comma to</td>
<td></td>
</tr>
<tr>
<td>separate the options if you choose more than one option. UNIX</td>
<td></td>
</tr>
<tr>
<td>options are indicated with a hyphen.</td>
<td></td>
</tr>
<tr>
<td>Braces enclose a list of required items. You must enter at least one</td>
<td>[DBDName</td>
</tr>
<tr>
<td>of the items. Do not type the braces when you enter the item.</td>
<td>{-a</td>
</tr>
<tr>
<td>A vertical bar means that you can choose only one of the listed</td>
<td>{commit</td>
</tr>
<tr>
<td>items. In the example, you would choose either commit or cancel.</td>
<td>{-commit</td>
</tr>
<tr>
<td>An ellipsis indicates that you can repeat the previous item or items</td>
<td>columnName. . .</td>
</tr>
<tr>
<td>as many times as necessary.</td>
<td></td>
</tr>
</tbody>
</table>
Introducing High-speed Apply Engine

This chapter contains the following topics:

- Overview ... 24
- How High-speed Apply Engine works 26
- Input sources for apply requests 27
 - SQL statements .. 28
 - Logical log ... 28
- When to use High-speed Apply Engine 29
 - Transaction recovery 29
 - Data migration .. 29
 - SQL processing .. 30
- How to use High-speed Apply Engine 30
- Solution integration 30
- Considerations for DB2 on mainframe targets 31
 - Operational considerations 31
 - Static SQL processing 32
 - Database access 33
 - DB2 authorizations 33
 - DB2 data type support 34
 - DBCS support .. 34
 - Sort work data sets 34
- Considerations for DB2 UDB targets 34
 - Operational considerations 35
 - Database access 35
 - DB2 UDB authorizations 35
 - DB2 UDB data type support 36
 - Template file .. 36
- Considerations for Oracle targets 36
 - Operational considerations 37
 - Database access 37
 - Oracle authorizations 38
 - Oracle data type support 38
- Distribution of work 38
The High-speed Apply Engine is a component that is distributed with several solutions and products from BMC Software, including Log Master for DB2. High-speed Apply Engine enables you to rapidly update a DB2, DB2 UDB, or Oracle database and to control apply processing with flexible configuration options.

High-speed Apply Engine runs on the following database management systems (DBMSs) and operating system platforms:

- IBM DB2 Universal Database on mainframe operating systems (such as z/OS)
- IBM DB2 Universal Database (UDB) on UNIX
- IBM DB2 Universal Database (UDB) on Windows
- Oracle on UNIX
- Oracle on Windows

As a component, High-speed Apply Engine provides the following functionality to BMC products:

- The execution of generated SQL statements for Log Master for DB2.
- The LOAD RESUME YES SHRLEVEL CHANGE SQLAPPLY load action (referred to as an SQLAPPLY load action) for LOADPLUS for DB2.

The High-speed Apply Engine provides many features in addition to those used by these products. To use any of these additional features, run High-speed Apply Engine independently of the accompanying product. When High-speed Apply Engine is distributed with BMC Software products, installation of the products includes installation of High-speed Apply Engine.

The High-speed Apply Engine accepts the following sources as input for an apply request:

- SQL statements (including SQL generated by Log Master for DB2 or any standard SQL processor)
- logical log files created by Log Master for DB2
High-speed Apply Engine provides the following advanced features to improve the performance of your apply request:

- multi-threaded execution: Use multiple agents to increase parallelism and improve performance.

- restart processing: If an apply request fails, continue processing from the point of failure. Avoid repeating transactions that have already been processed.

- conflict resolution rules: Use flexible parameters to define precise responses to SQL codes or database messages during execution. Customize the apply request to match your data with a variety of responses, including the ability to write a statement or unit of recovery to a separate file for subsequent examination or execution.

Using SQL or logical log input, you can use High-speed Apply Engine for the following tasks:

- apply changes to a database as part of an apply request
- migrate data between databases
- include an apply request as part of a transaction recovery process for a DB2 database

The apply request runs as a batch job on the operating system. This implementation allows you to schedule requests as part of your normal recovery process. During the recovery process, you can use SQL to reverse (undo) the effects of incorrect transactions, or to re-apply (redo) correct transactions after performing a DB2 recovery.

When conflicts occur during the recovery process, you can use conflict resolution rules to specify a different resolution for each type of conflict that might occur.
How High-speed Apply Engine works

The High-speed Apply Engine runs as a command from a UNIX or Windows command line, or as a program step in a mainframe batch job. Figure 1 shows an overview of the High-speed Apply Engine data flow. The numbered steps for the data flow are described on page 27.

Figure 1 High-speed Apply Engine data flow
When you submit an apply request, High-speed Apply Engine processes it as follows:

1. The request processor manages the apply request.

2. The request processor also obtains configuration information for the apply request and determines the processing requirements from that information. You can specify configuration information in the apply request or in a separate configuration file.

3. The input processor begins processing the input source that is specified in the configuration information.

4. If the apply request specifies restart processing, the input processor uses information in the restart table and the configuration file to determine the location of the first record to be processed in the input source.

5. The input processor passes SQL statements to an apply agent. Each agent processes the statements for an object, set of objects (tables or partitions), or a unit of recovery (UR). You specify the maximum number of agents in the configuration information.

6. The apply agents execute the SQL statements against the target tables.

7. The apply agents keep track of the changes that have been applied, display statistics about the request, and update the restart table.

8. If conflicts occur during apply processing, the apply agent coordinates conflict resolution with the conflict manager. The conflict manager uses the conflict resolution rules in the configuration to determine the appropriate action.

9. If you configure the apply request to include defer actions and a conflict file, the conflict manager writes the deferred conflicts to the conflict file.

Input sources for apply requests

This section describes the SQL and logical log input sources that High-speed Apply Engine uses. For more information about specifying the input sources in a configuration or an apply request, see Chapter 2, “Defining configurations” or Chapter 3, “Running High-speed Apply Engine.”
SQL statements

You can specify an input file that contains SQL statements. The SQL can be generated by the following sources:

- Log Master for DB2
- other standard SQL generators

SQL input can include data manipulation language (DML) or data definition language (DDL) statements. High-speed Apply Engine can process any DML or DDL statements that are accepted by the target DBMS. To provide restart capability, High-speed Apply Engine requires that SQL input does not contain more than one SQL statement on the same line.

The Log Master for DB2 product generates a separate template file that High-speed Apply Engine can use to efficiently process SQL input as static SQL against DB2 for mainframe targets or DB2 UDB targets. The template file contains one entry for each distinct statement type in the SQL input. If an apply request includes a template file, High-speed Apply Engine processes the template file before it begins processing SQL input.

Logical log

The High-speed Apply Engine running on mainframe operating systems accepts logical logs as an input source. Log Master for DB2 produces logical logs that let you specify the types of operations that you need to perform. The logical log files provide information that High-speed Apply Engine can use to update the target tables.

Logical log input consists of the following files:

- The logical log control file contains information about the format and content of the logical log. Specify the control file as the input for High-speed Apply Engine.

- The logical log data file contains actual change information (updates, deletes, inserts, or DDL objects) in logical log format.

- *(optional)* The large volume VSAM files contain data from DB2 columns that hold large volumes of data (such as XML columns or LOB columns). To apply changes to large volume columns, the appropriate VSAM files must be available to High-speed Apply Engine along with the control file and the data file.
When to use High-speed Apply Engine

The logical log XMLSTRING control file contains the string IDs and string data that DB2 uses to encode the data in XML columns. If the logical log includes XML data and the target DB2 subsystem is different than the subsystem where the logical log was generated, High-speed Apply Engine needs the string IDs and data to serialize your XML data correctly.

High-speed Apply Engine can often process a logical log file faster than an SQL file that contains the same database changes. This improvement occurs because logical log input is already in host variable format. High-speed Apply Engine can also avoid parsing SQL syntax.

You can create logical logs to perform data migration, UNDO SQL functions, or REDO SQL functions. For more information on the logical log records that High-speed Apply Engine uses, see Appendix A, “Logical log input.” For more information about logical logs, see the chapter about logical log files in the Log Master for DB2 Reference Manual.

When to use High-speed Apply Engine

The High-speed Apply Engine can improve the performance of operations that require large numbers of updates to your DB2, DB2 UDB, or Oracle databases, including transaction recovery, data migration, and SQL processing.

Transaction recovery

You can use High-speed Apply Engine as part of your recovery strategy for DB2, DB2 UDB, and Oracle databases. You can create an input file for High-speed Apply Engine to use to perform undo and redo processing against the target tables. For DB2, you can include High-speed Apply Engine as part of the recovery tasks that you develop with the Recovery Management for DB2 solution from BMC Software.

Data migration

When you create the target tables for data migration, you can use High-speed Apply Engine to perform the row updates required to move the data to the target tables. Because you can process the updates to the target table without stopping the database, you can migrate data without waiting for a recovery window. You can translate table and column names as you run the apply request, but you cannot transform the content of a column from one data type to another.
SQL processing

If you have routine operations that require you to process large numbers of SQL statements, you can use High-speed Apply Engine to speed the process. Consider High-speed Apply Engine for operations that you perform by using your native database SQL processors (for example, SPUFI, DSNTEP2, DB2CLP, DB2SQL89, DB2BATCH, or SQL*Plus).

How to use High-speed Apply Engine

To apply updates to a target database, the High-speed Apply Engine requires

- an input source that contains the updates
- configuration information that describes how the updates should be processed

To use High-speed Apply Engine, you perform the tasks listed in Table 1.

Table 1 High-speed Apply Engine tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Create an input file for the apply request.</td>
<td>“Input sources for apply requests” on page 27</td>
</tr>
<tr>
<td>2. Define one or more configuration files.</td>
<td>Chapter 2, “Defining configurations”</td>
</tr>
<tr>
<td></td>
<td>Chapter 7, “Configuration parameters”</td>
</tr>
<tr>
<td>3. Create and run the apply request.</td>
<td>Chapter 3, “Running High-speed Apply Engine”</td>
</tr>
<tr>
<td>4. You can also include configuration information in the apply request, overriding the settings in the configuration files.</td>
<td></td>
</tr>
<tr>
<td>5. (optional) Enable restart processing.</td>
<td>Chapter 4, “Restart and recovery”</td>
</tr>
</tbody>
</table>

Solution integration

The High-speed Apply Engine is a component of Log Master for DB2. In turn, Log Master for DB2 (including High-speed Apply Engine) is a component of the Recovery Management for DB2 solution.
The Recovery Management for DB2 solution integrates the features of:

- RECOVERY MANAGER for DB2
- RECOVER PLUS for DB2
- COPY PLUS for DB2
- Log Master for DB2
- SNAPSHOT UPGRADE FEATURE

When you acquire this solution, you benefit from all features of these individual products and from more features that are available when one Recovery Management component can rely on the presence of all others. For more information, see the Recovery Management for DB2 User Guide.

Considerations for DB2 on mainframe targets

This section describes requirements and considerations for using the High-speed Apply Engine against DB2 on mainframe operating systems. For more information about installing High-speed Apply Engine, see Appendix B, “Installing High-speed Apply Engine on mainframe targets.”

Operational considerations

When you use High-speed Apply Engine, consider these constraints and recommendations:

- Authorization requirements
 - The following libraries must be APF authorized:
 - High-speed Apply load libraries
 - any libraries that you reference in the apply request (in the STEPLIB DD statements)
 - The user ID that submits the apply request must have the appropriate authorizations to run the request. For more information, see “DB2 authorizations” on page 33.
Operating system requirements

— If the input source for the apply request is a data set, the data set must be present in the ICF catalog of the operating system.

— High-speed Apply Engine must be installed on the same operating system logical partition (LPAR) as the target DB2 subsystem.

DB2 thread requirements

The target DB2 subsystem must have enough threads available to process the apply request. Ensure that at least two threads are available, or as many threads as the initial number of agents that High-speed Apply Engine specifies. For more information about setting the initial number of agents, see “InitialAgents” on page 122. For more information about the maximum number of agents, see “MaxAgents” on page 124.

Restart table considerations

A new installation of High-speed Apply creates a new restart table. High-speed Apply does not migrate restart tables from previous versions. If you have an earlier version of High-speed Apply Engine installed, any restarts must be completed on the original version before switching to a new version.

The restart table for an apply request must reside on the same DB2 subsystem as the target tables.

LOADPLUS requirements

If High-speed Apply Engine is called by the LOADPLUS for DB2 product, then High-speed Apply Engine must be installed on the same DB2 subsystem as LOADPLUS, and must be available through the STEPLIB, JOBLIB, or LINKLIST when LOADPLUS is executed.

Static SQL processing

To maximize performance, the High-speed Apply Engine processes SQL statements statically as much as possible, within limits set by your configuration parameters. As it processes apply requests, High-speed Apply Engine takes the following actions:

- generates plans or packages dynamically
- issues DB2 BIND commands to bind the plans or packages
- executes the statements as static SQL using the bound plans or packages

(For DB2 UDB targets on UNIX or Windows, High-speed Apply Engine binds only packages.)
If it cannot process an SQL statement statically, High-speed Apply Engine processes it with dynamic SQL or by using EXECUTE IMMEDIATE. You can configure an apply request to dynamically allocate DB2 plans or packages by specifying parameters in the [Bind] section of the configuration file.

Depending on limits that are set by the parameters in the [BindTuning] section, High-speed Apply Engine prepares and executes SQL statements dynamically as it builds database request modules (DBRMs). High-speed Apply Engine switches to static execution after the bind action occurs.

Database access

To run an apply request, the High-speed Apply Engine updates the target tables through DB2. The database can continue to run while High-speed Apply Engine performs its updates, so you can update the target tables while they are online. The access method for DB2 is the Call Attach Facility (CAF). Because High-speed Apply Engine uses multiple connections to the database, the target DB2 subsystem must have enough threads available for the apply request (for more information, see “Operational considerations” on page 31).

DB2 authorizations

To execute SQL or logical log input, the user ID that runs the High-speed Apply Engine must have the following DB2 authorizations:

- EXECUTE privilege for the plan that High-speed Apply Engine uses to access its own restart tables and the catalog (see “PublicPlan” on page 263).
- EXECUTE privilege for the restart package.
- appropriate table privileges such as INSERT, UPDATE, or DELETE for the target tables (the specific privileges depend on the actions that the apply request performs)
- appropriate privileges to bind or administer plans, packages, and collections

High-speed Apply Engine provides several methods to grant these privileges. Some techniques avoid granting bind privileges to the user ID that runs High-speed Apply Engine. For more information, see “DB2 authorizations for plans, packages, and collections” on page 280.
DB2 data type support

The High-speed Apply Engine supports the same SQL data types and data type conversions as DB2. For more information about compatible data types, consult the appropriate DB2 documentation.

DBCS support

The High-speed Apply Engine supports double-byte characters in logical log input and SQL input. High-speed Apply Engine can read logical log files that are created by Log Master for DB2, or an application program that conforms to the published format. For more information about the logical log format, see the section about logical logs in the Log Master for DB2 technical documentation.

Sort work data sets

The High-speed Apply Engine sorts logical log input (subject to your control). For more information, see “Sort” on page 203. Under normal circumstances, you do not have to specify any sort parameters or sort work data sets. If you want to specify sort work data sets for performance reasons or because of procedures in your environment, the DD names of sort work data sets must adhere to the following convention:

SW01WKyy

The variable yy represents the sequence number of a sort work data set. It ranges from one up to the maximum number of sort work data sets that High-speed Apply Engine requires. You can specify an exact number of data sets by using the WORKNUM parameter. For more information, see “WORKNUM” on page 206.

Considerations for DB2 UDB targets

This section describes requirements and considerations for using the High-speed Apply Engine for DB2 UDB on the UNIX and Windows platforms. For more information about installing High-speed Apply Engine, see

- Appendix C, “Installing High-speed Apply Engine on UNIX”
- Appendix D, “Installing High-speed Apply Engine on Windows”
Operational considerations

When you use High-speed Apply Engine, consider these constraints and recommendations:

- For optimal performance, High-speed Apply Engine should be installed on the DB2 UDB server that contains the target tables.

- File names that use mixed case or lowercase are processed exactly as they appear. If your system is case sensitive, specify the file names in the appropriate case. For more information, see “Data set and file names” on page 105.

- Table names that use mixed case or lowercase must be delimited by quotation marks. For more information, see “Object names” on page 106.

- Unless the target DB2 UDB database allows automated login, you must provide a user ID and password as part of the configuration. For more information about specifying these values, see “Password” on page 261 and “UserID” on page 267.

- The user ID that submits the apply request must have appropriate privileges on target tables. For more information, see “DB2 UDB authorizations.”

Database access

Using information from the configuration files and the apply request, the High-speed Apply Engine updates the DB2 UDB target tables. The database can continue to run while High-speed Apply Engine performs its updates, so you can update the target tables while they are online.

DB2 UDB authorizations

You must have the following DB2 UDB authorizations to run the High-speed Apply Engine:

- On the target tables, bind privileges and table privileges (INSERT, UPDATE, and DELETE).

- On the restart table, bind privileges and table privileges (INSERT, UPDATE, DELETE, and SELECT).

These authorizations can be granted during installation or after, but you must have these authorizations before you can run High-speed Apply Engine. The privileges that High-speed Apply Engine requires depend on the transactions that the apply request performs on the target tables.
DB2 UDB data type support

The High-speed Apply Engine supports the same data types and data type conversions as DB2 UDB. For more information about compatible data types, consult the appropriate DB2 UDB documentation.

Template file

A template file is a separate file that is generated by Log Master for DB2 that the High-speed Apply Engine can use to efficiently process SQL input as static SQL against DB2 for mainframe targets or DB2 UDB targets. For DB2 UDB targets, perform the following steps to use the template file:

1. transfer (download) the SQL file and the corresponding template file to the target DB2 UDB server
2. edit the SQL file

The first statement in the SQL file is a comment that indicates the corresponding template file, as in the following example:

```
-- @@DSNTMPL mainframeFileName
```

Replace the existing file name (the name that was used when the template file was first generated by Log Master for DB2) with the fully qualified path name of the template file on the target DB2 UDB server.

3. run an apply request that uses the SQL file as input

Considerations for Oracle targets

Oracle This section describes requirements and considerations for using the High-speed Apply Engine for Oracle on the UNIX and Windows platforms. For more information about installing High-speed Apply Engine, see Appendix C, “Installing High-speed Apply Engine on UNIX,” or Appendix D, “Installing High-speed Apply Engine on Windows.”
Operational considerations

When you use High-speed Apply Engine, consider these constraints and recommendations:

- For optimal performance, High-speed Apply Engine should be installed on the Oracle server that contains the target tables.

- File names that use mixed case or lowercase are processed exactly as they appear. If your system is case-sensitive, be sure to specify the file names in the appropriate case. For more information, see “Data set and file names” on page 105.

- Table names that use mixed case or lowercase must be delimited by quotation marks. For more information, see “Object names” on page 106.

- Unless the target Oracle database allows automated login, you must provide a user ID and password as part of the configuration. For more information about specifying these values, see “Login” on page 260.

- The user ID that submits the apply request must have appropriate privileges on the target tables. For more information, see “Oracle authorizations” on page 38.

- The value that you specify for the MaxPrepares parameter cannot exceed the value of the OPEN_CURSORS initialization parameter for your Oracle session. If you specify a value that is greater than OPEN_CURSORS, High-speed Apply Engine uses the OPEN_CURSORS value.

Database access

Using information from the configuration files and the apply request, the High-speed Apply Engine updates the Oracle target tables. The database can continue to run while High-speed Apply Engine performs its updates, so you can update the target tables while they are online.

High-speed Apply Engine uses the Oracle Call Interface (OCI) to access Oracle databases. For some operations (such as dynamically determining the version of the Oracle client), High-speed Apply Engine uses the SQL*Plus application. The directory that contains SQL*Plus must be included in the PATH for the system, so that High-speed Apply Engine can run the program.
Oracle authorizations

To run the High-speed Apply Engine you must have the following Oracle authorizations:

- table privileges (INSERT, UPDATE, or DELETE) on the target tables
- table privileges (INSERT, UPDATE, DELETE, and SELECT) on the restart table

These authorizations can be granted during installation or after, but you must have these authorizations before you can run High-speed Apply Engine. The privileges that High-speed Apply Engine requires depend on the transactions that the apply request performs on the target tables.

Oracle data type support

The High-speed Apply Engine supports the same SQL data types and data type conversions as Oracle. For more information about compatible data types, consult the appropriate Oracle documentation.

If you want to create logical partitions for your target tables, be aware of some restrictions on the data types and functions that can be used as partition keys. For more information, see “Considerations for Oracle data types” on page 231.

Distribution of work

The High-speed Apply Engine uses two basic techniques to balance the workload for an apply request between multiple agents: distribution by object (table or partition) and distribution by unit of recovery (UR). High-speed Apply Engine uses default values to choose between these techniques. To override the defaults and optimize distribution between agents for your environment, use configuration parameters. For more information about default values and which techniques take precedence over others, see “Distribution Tuning parameters” on page 181.

Distribution by object

The High-speed Apply Engine can distribute work between agents based on the tables or partitions that the SQL statements in the input file update. High-speed Apply Engine uses the same agent to process all SQL statements that affect the same table or partition, regardless of what units of recovery contain the statements (unless High-speed Apply Engine regroups tables because of RI relationships). High-speed
Apply Engine offers several options for this type of distribution (for more information, see “Options for Distribution by Object” on page 39). High-speed Apply Engine might also use the same agent for all tables in RI relationships (subject to parameters that you can adjust).

- **Advantages of distribution by object**: High-speed Apply Engine can increase parallelism and use multiple agents more efficiently. This type of distribution frequently provides faster performance.

- **Disadvantages of distribution by object**: High-speed Apply Engine provides data integrity for the overall apply request, but does not preserve transaction integrity during execution. With this technique, High-speed Apply Engine does not honor the original COMMIT or ROLLBACK statements (High-speed Apply Engine commits work based on other parameters that you can define). You can encounter more conflicts and you might need to define more conflict resolution rules.

Be aware of the following points regarding distribution by object:

- Use the [CommitTriggers] parameters to control when High-speed Apply Engine commits work. The values of these parameters greatly affect performance.

- To request that High-speed Apply Engine not honor database-defined RI relationships between tables or partitions, use the RIClustering parameter.

Options for Distribution by Object

High-speed Apply Engine provides the following options for distribution by object:

- **groups of tables**

 High-speed Apply Engine distributes work between agents based on groups of tables. You can define your own groups or use existing groups that are defined within DB2. High-speed Apply Engine uses the same agent to process all SQL statements that affect the tables in a group. High-speed Apply Engine supports the following techniques to define groups of tables:

 — **groups of tables that are defined by users**

 Use the [ObjectCluster] parameters to define your own groups of tables. This option provides the most flexibility; you can respond to changing data distribution by changing table groups for each run of an apply request.
Distribution by object

— groups of tables that are defined by RI relationships

By default, High-speed Apply Engine groups tables based on database-defined RI relationships (subject to parameters that you can adjust). For more information, see “RIRecursionLimit” on page 187. This type of distribution preserves RI for all updates that the apply request make. Use the RIClustering parameter to avoid this grouping. For more information, see “RIClustering” on page 186.

— groups of tables that are defined by simple table spaces

By default, High-speed Apply Engine includes all tables in a simple (nonsegmented) table space in the same group and uses the same agent to process all SQL statements for those tables. Use the SimpleTSClustering parameter to avoid this kind of table grouping. For more information, see “SimpleTSClustering” on page 188.

High-speed Apply Engine distributes work between agents based on table partitions. You can define your own partitions for a nonpartitioned table, tell High-speed Apply Engine to use partitions that are different than the existing partitions of a table, or use the existing partitions of a table. High-speed Apply Engine uses the same agent to process all SQL statements that affect a partition that you define or use.

High-speed Apply Engine supports the following techniques to define partitions:

— partitions that are defined by users

Use the [ObjectPartition] parameters (page 229) to define your own partitions for nonpartitioned or partitioned tables. (This process is sometimes referred to as logical partitioning). This option provides the most flexibility; you can respond to changing data distribution by changing your partitioning for each run of an apply request.

— partitions that are defined by partitioned table spaces

Use the PartitionClustering parameter (page 184) to direct High-speed Apply Engine to use the same agent to process all SQL statements that affect the same physical partition of a table.
Distribution by unit of recovery

The High-speed Apply Engine can distribute work between agents based on the units of recovery (transactions) contained in the input file. High-speed Apply Engine uses the same agent to process all SQL statements in an original transaction, regardless of what tables or partitions the statements update. (Two different transactions that update the same tables might not be processed by the same agent.) High-speed Apply Engine accommodates dependencies between transactions and preserves the order of the original transactions for restart purposes. For more information, see page 256 under “DistributionType.”

- **Advantages of distribution by unit of recovery (UR):** High-speed Apply Engine preserves the original transactions and honors the original COMMIT or ROLLBACK statements. This preserves transaction integrity during an apply request. High-speed Apply Engine performs faster when there are few dependencies between transactions (for example, when the transactions do not update the same tables).

- **Disadvantages of distribution by unit of recovery:** Performance can be slower when there are dependencies between transactions, because the different agents wait more frequently to accommodate the dependencies and preserve the original order of transactions.

Use this type of distribution when transaction integrity during the apply request is more important than speed. Be aware of the following points regarding distribution by UR:

- Under distribution by UR, configuration parameters that are related to distribution by object do not apply (such as [CommitTriggers], [ObjectPartition], and many [DistributionTuning] parameters, such as **PartitionClustering** and **RIClustering**).
Conflict resolution

Under distribution by UR, High-speed Apply Engine is more likely to use the maximum number of agents that are available (depending on the number of transactions in your input and the dependencies between them). Each agent requires a separate connection to the database (for DB2 on mainframe targets, a separate thread on the DB2 subsystem). Use the MaxAgents parameter to prevent High-speed Apply Engine from using more database connections, and by extension, more resources than your environment can tolerate. For more information, see “MaxAgents” on page 124.

You can control how High-speed Apply Engine processes referential integrity (RI) dependencies between transactions. When your input contains many RI dependencies, consider using the URCheckRI parameter (for more information, see “URCheckRI” on page 189). When the input contains fewer RI dependencies, consider using a conflict resolution rule with Code parameter value RIConflict and Action parameter value Retry.

Conflict resolution

A number of different conflicts can occur when you update the data in a table. The High-speed Apply Engine lets you specify how to handle the conflicts as they occur. Based on the type of conflict, you can choose to

- ignore the conflict
- defer resolution until the job is complete
- stop apply processing until the conflict is resolved
- retry an SQL statement that generates a time-related conflict (such as time out conditions or RI-related conflicts)

For more information about conflict resolution, see Chapter 5, “Conflict resolution.”

Restart processing

If the DBMS or operating system fails during apply processing, the High-speed Apply Engine maintains its position in the request that was running when the failure occurred. When you restart the request, High-speed Apply Engine uses information in the restart table to automatically resume processing. To enable restart processing, you must perform the following tasks:

- include the appropriate [Restart] parameters in the configuration for the apply request

For more information about these parameters, see “Summary of restart parameter usage” on page 83 and “Restart parameters” on page 237.
create one or more restart tables

By default, High-speed Apply Engine uses a single restart table for all apply requests. However, if you run many apply requests simultaneously on the same target database, you might experience resource contention for the single restart table.

If you experience contention, create a restart table for each user that runs apply requests simultaneously on the target database. This practice reduces the possibility of contention for the restart table. For more information about creating restart tables, see “Creating a restart table” on page 72.

rerun the apply request that was in-process at the point of failure by specifying the appropriate restart ID for the request

For more information, see “Restarting an apply request” on page 81.

To optimize restart processing, use configuration parameters to adjust the checkpoint frequency, the number of agents, or the COMMIT actions of an apply request.

File transfer guidelines

- **Oracle & DB2 UDB** Use the following guidelines when preparing and sending SQL files that Log Master for DB2 generates on the mainframe to a Windows or Unix platform for execution by High-speed Apply Engine.

 Define the SQL output data set as VB if the generated SQL statements cannot exceed 27 KB in length. For example:

  ```sql
  SQL MIGRATE
  DATASET MY.MIGRATE.SQL NEW CYLINDERS SPACE(50,20) UNIT(SYSDA) RELEASE RECFM VB
  ```

- **DB2 UDB** If minimizing the elapsed time for the file transmission is important, consider not generating and sending a template file. Using the template file increases the SQL file size by 25 percent or more, which affects transmission time and DASD space usage. If High-speed Apply Engine does not use a template file, some SQL will be executed in dynamic mode before binds occur that allow execution in static mode.

 If you are using File Transfer Protocol (FTP), include the following command to ensure that trailing blanks are removed:

  ```
  quote site trail
  ```
If you are using FTP to send the SQL file to a Windows server, include the following command to ensure that High-speed Apply Engine recognizes the end-of-line character:

quote site sbsendeol=lf

After sending the file, ensure that all characters were translated correctly from EBCDIC to ASCII. You might need to adjust the translate tables used in the data transfer.

If the SQL output was generated with RECFM set to FB (the default), include the SQL parameter Format with a value of Packed72 in the High-speed Apply Engine configuration file, as shown in the following example:

```sql
Format=Packed72
```

For more information about the Format parameter, see page 247.

Examples

Figure 2 shows sample JCL for running FTP in batch mode on the mainframe:

Figure 2 JCL for running FTP in batch mode

```jcl
//FTP EXEC PGM=FTP,REGION=0M
//OUTPUT DD SYSOUT=* 
//SYSPRINT DD SYSOUT=* 
//OUTPUT DD SYSOUT=* 
//INPUT DD *
yourServerName
yourLoginID
yourPassword
cd yourdirectory
quote site trail
quote site sbsendeol=lf
put 'your.mainframe.migr.sql.dataset' yourlocalfile.sql
quit
/*
```

1 Figure 3 on page 45 shows an example FTP session on a Windows or Unix platform. In the example, bold text indicates user entries.
If you understand the information in this chapter, you can go on to create configuration files and apply requests for High-speed Apply Engine. For more information about these tasks, see the following chapters:

<table>
<thead>
<tr>
<th>Task</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>instructions on defining and managing configuration files</td>
<td>Chapter 2, “Defining configurations”</td>
</tr>
<tr>
<td>instructions on creating and maintaining apply requests</td>
<td>Chapter 3, “Running High-speed Apply Engine”</td>
</tr>
<tr>
<td>instructions on configuring an apply request for restart and on restarting the request</td>
<td>Chapter 4, “Restart and recovery”</td>
</tr>
<tr>
<td>format of the configuration files</td>
<td>Chapter 6, “Configuration file format”</td>
</tr>
<tr>
<td>information about configuration parameters available for High-speed Apply Engine</td>
<td>Chapter 7, “Configuration parameters”</td>
</tr>
</tbody>
</table>
Defining configurations

This chapter contains the following topics:

Overview ... 47
Multiple configuration files for DB2 on mainframe targets...................... 48
Creating and managing configuration files ... 48
 Configuration file management ... 49
 Creating or editing a configuration file .. 49
Configurations for specific tasks ... 52
 Mapping source object names to target objects 52
 Creating logical partitions for target tables 55

Overview

This chapter provides instructions for working with configuration files. For more information on the format of the configuration file see, Chapter 6, “Configuration file format.” For more information on the configuration parameters, see Chapter 7, “Configuration parameters.”

The High-speed Apply Engine uses configuration parameters to determine the target database and tables, processing options, and conflict resolution rules for each apply request. You can set configuration parameters in the following ways:

- create and edit configuration files

 You can then specify one or more configuration files in the apply request.

- override the values specified in the configuration files by specifying different values in the apply request

 For more information about creating apply requests, see Chapter 3, “Running High-speed Apply Engine.”
Multiple configuration files for DB2 on mainframe targets

For DB2 on mainframe targets, a single apply request can refer to several configuration files. This feature gives you the flexibility to create High-speed Apply Engine configurations that meet the needs of your site. You might use multiple configuration files to:

- create a separate configuration file for conflict resolution rules
- specify a standard set of options (for example, temporary file storage options) that can be used by multiple apply requests
- store database-specific information in one configuration file, and specify different types of apply requests for that database in separate configuration files

To include multiple configuration files in an apply request, specify a data definition (DD) statement for the configuration FileName (CFN) parameter, and use the DD statement to include the files. For more information about specifying a DD statement as part of an apply request, see “Creating and running apply requests” on page 63.

Creating and managing configuration files

This section provides instructions for creating configuration files for target tables for DB2, DB2 UDB, and Oracle. They also provide instructions for certain configuration file management tasks, including:

- mapping source object names to target objects

 If the table or column names in the input file differ from those in the target database, you can configure the apply request to map the source object names to the target objects. For more information, see “Mapping source object names to target objects” on page 52.

- creating logical partitions for a target table

 You can create logical partitions for a target table to change the workload distribution for an apply request. For more information, see “Creating logical partitions for target tables” on page 55.

For more information about including configuration files in apply requests, see “Creating and running apply requests” on page 63.
Configuration file management

You can create as many configuration files as you need for the apply requests that you want to run. Use the following practices to manage configuration files:

- Create a separate library or directory for High-speed Apply Engine configuration files. If you decide to change the location of the configuration files, remember that you must update any apply requests with the new location. For Oracle and DB2 UDB targets, the configuration file must be in the current directory, or you must specify the full path name in the apply request.

- Use a naming convention for the files to help you identify them. For example, you might identify the files with the target database name, job or task type (migration, SQL processing, or recovery), or input type (SQL or logical log file).

- Organize configuration files in a meaningful way for your site. You might have several data sets or directories in the configuration library, depending on how many configuration files you create.

- Because you can use several configuration files for a single apply request, you should include comments in the configuration file that describe how you use it. For more information about entering comments in a configuration file, see “Comments” on page 104.

- For DB2 on mainframe targets, High-speed Apply Engine recognizes DD names and data set names for the configuration FileName (CFN) parameter. You can use a DD statement in an apply request to override configuration defaults. For more information see Chapter 3, “Running High-speed Apply Engine.”

Creating or editing a configuration file

The High-speed Apply Engine uses one or more configuration files to determine the parameter values for an apply request. Use this procedure to create or edit configuration files for your apply requests.
Creating or editing a configuration file

Before you begin

High-speed Apply Engine provides sample configuration files for you to copy and edit, as follows:

DB2 For a DB2 mainframe target, the \HLQ\DBSAMP library contains sample configuration files and apply requests. \HLQ\ represents a high-level qualifier that you specified when you installed High-speed Apply Engine.

DB2 UDB For a DB2 UDB target, the examples/db2udb subdirectory in the installation directory contains the sample files. The installation directory is the UNIX or Windows path that you specified for High-speed Apply Engine during installation.

Oracle For an Oracle target, the examples/oracle subdirectory in the installation directory contains the sample files. The installation directory is the UNIX or Windows path that you specified for High-speed Apply Engine during installation.

To help you determine which values to use for the parameters in this procedure, use the parameter descriptions in Chapter 7, “Configuration parameters.” Chapter 6, “Configuration file format” describes the format of the configuration file.

DB2 To create a configuration file for a DB2 mainframe target

1 Create a configuration file with your desired configuration parameters.

 One method of doing this is to use a sample configuration file located in the \HLQ\DBSAMP library as a template. If you use one of these files as a template, copy the file, renaming it according to your site requirements. Edit the file with any standard editor.

2 Edit the configuration parameters as required:

 A You must include the [Startup] section with the **SSID** parameter.

 This step completes the minimum configuration. If you do not need to specify any other parameters, you can skip to step 3 on page 51.

 B *(optional)* If your input source is a logical log control file, you must include the [Logical Log] section and the **SQLType** parameter.

 C *(optional)* If you include the [ObjectMap] section, you must specify at least one **SourceTable** parameter and one **TargetTable** parameter.

 D *(optional)* If you include the [ObjectCluster] section, you must define at least one cluster.
E (optional) If you include the [ObjectPartition] section, you must define at least one partition.

F (optional) Specify other parameters as appropriate for the apply request.

Many of the configuration parameters have default values. Ensure that the defaults are acceptable for your environment and for the apply requests that will use the configuration file. For more information on each parameters default values, see Chapter 7, “Configuration parameters.”

__TIP__

Indent section names one or two spaces, so that you can easily insert comment characters. Indent parameters under their section headings for readability. If you include grouped parameters, such as those in the [ObjectMap] section, indent all of the parameters in a group to the same level.

3 Save the file.

Note the file name and location. You will need this information to specify the configuration file in an apply request.

To create a configuration file for Oracle or DB2 UDB target

1 Create a configuration file with the your desired configuration parameters.

One method of doing this is to use a sample file as a template. The sample files are located in the examples/oracle or examples/db2udb subdirectories of the installation directory. If you use one of these files as a template, copy the file, renaming it according to your site requirements. Edit the file with a standard editor.

2 Edit the configuration parameters as necessary:

A For Oracle, if you include the [Startup] section, you must include the Login parameter. If the target Oracle instance is configured for automated login, the [Startup] section is optional.

For DB2 UDB, you must include the [Startup] section. In the [Startup] section you must include the database name for the Database parameter, and specify DB2 for the DBMSType.

B (optional) If you include the [ObjectMap] section, you must specify at least one SourceTable parameter and one TargetTable parameter.

C (optional) If you include the [ObjectCluster] section, you must define at least one cluster.

D (optional) If you include the [ObjectPartition] section, you must define at least one partition.
Configurations for specific tasks

E (optional) Specify other parameters as appropriate for the apply request.

Many of the configuration parameters have default values. Ensure that the defaults are acceptable for your environment and for the apply requests that will use the configuration file. For more information about each parameter’s default values, see Chapter 7, “Configuration parameters.”

TIP

Indent section names one or two spaces, so that you can easily insert comment characters. Indent parameters under their section headings for readability. If you include grouped parameters, such as those in the [ObjectMap] section, indent all of the parameters in a group to the same level.

3 Save the file.

Note the file name and location. You will need this information to specify the configuration file in an apply request.

Where to go from here

You can specify this configuration file in one or more apply requests. For more information about creating apply requests, see Chapter 3, “Running High-speed Apply Engine.”

Configurations for specific tasks

This section provides instructions on how to define configurations for several specific uses of the High-speed Apply Engine.

Mapping source object names to target objects

If the table or column names in the input file differ from those in the target database, you can use this procedure to help you configure the apply request to map the source object names to the target objects. Figure 4 on page 53 shows the relationships described in this procedure.
Before you edit the configuration, you should determine which source and target object names will be mapped in the configuration. The target object names that you specify must exist when you run an apply request that requires them. For more information about the parameters in this procedure, see “ObjectMap parameters” on page 223.

NOTE

You can use wildcard patterns to specify groups of objects. For more information, see “Using wildcards to map object names” on page 224.

To map a source table to a target table

1. Create or edit a configuration file as described in “Creating or editing a configuration file” on page 49.

2. Add the [ObjectMap] section name to the configuration file.
3 Specify a **SourceTable** parameter in the [ObjectMap] section, as follows:

```
SourceTable=tableName
```

A source table name is a table name specified in the input file. This table can reside on a different DB2 subsystem, DB2 UDB database, or Oracle instance than the target table. High-speed Apply Engine does not validate the existence of the source table. The name must conform to the conventions that are described in “Object names” on page 106.

4 Specify a **TargetTable** parameter, as follows:

```
TargetTable=tableName
```

The target table name you specify must be the target for the changes that would otherwise be applied to the source table that you specified in step 3. The target table must reside on the same subsystem or server as High-speed Apply Engine. The name must conform to the conventions that are described in “Object names” on page 106.

5 If the column names differ between the source and target table, specify a **SourceColumn** and **TargetColumn** parameter for each column that needs to be mapped. (If the columns are the same for both tables, you can proceed to step 6.)

```
SourceColumn=source01
TargetColumn=target01
SourceColumn=source02
TargetColumn=target02
```

The column name parameters must follow the corresponding **TargetTable** parameter. Each **SourceColumn** parameter must be followed by a **TargetColumn** parameter. The target column names must exist when you run the apply request.

6 Repeat steps 3 through 5 until you have mapped all object names that are required for the apply request.

7 Save the configuration file.

When you run an apply request that refers to the configuration file, High-speed Apply Engine maps the object names in the input file according to the parameters in the [ObjectMap] section.
If a problem occurs

If you receive error messages about the object names specified in the [ObjectMap] section, check the configuration file for the following common problems:

- Verify that the [ObjectMap] parameters are in the correct order.
- Verify that the target objects that are specified by the **TargetTable** and **TargetColumn** parameters exist in the DB2 subsystem, DB2 UDB database, or Oracle instance where you ran the apply request.

Creating logical partitions for target tables

Use this procedure to create logical partitions for a target table to change the workload distribution for an apply request.

Figure 5 Creating logical partitions for target tables

Before you begin

To define logical partitions, you must know the column name and value that represent the upper limit of each partition. For a DB2 mainframe target, you can also use a limit key value to define the partition.

The order of the parameters in the [ObjectPartition] section is significant. The steps in this procedure describe the required order. For more information, see “Positional requirements for [ObjectPartition] parameters” on page 230.
If you create logical partitions for a table that is physically partitioned, High-speed Apply Engine ignores the physical partitions and uses the logical partitions for workload distribution.

High-speed Apply Engine can create partition keys from the columns and values that you specify within the partition definition. The partition key length has the following limitations:

- **Oracle**
 For Oracle and DB2 UDB targets, the partition key is truncated after 256 bytes. Specify unique key values within the first 256 bytes of the partition definition.

- **DB2 UDB**
 For DB2 mainframe targets, the partition key is truncated after 255 bytes. Specify unique key values within the first 255 bytes of the partition definition.

To define logical partitions for apply processing

1. Create or edit a configuration file as described in “Creating or editing a configuration file” on page 49.

2. Add the [ObjectPartition] section name to the configuration file.

3. Specify the table that you want to partition by using the `TableName` parameter.
 The table that you specify must exist on the target DB2 subsystem, DB2 UDB database, or Oracle instance.

4. Specify a `Column` parameter for a column to be used in the partition definition.

5. **DB2**
 (optional) Specify an `Order` parameter for the column, if necessary.

 This parameter is optional. You can specify either ascending (ASC) or descending (DESC) order for the corresponding column. The `Order` parameter must immediately follow its associated `Column` parameter.

 If you do not include an `Order` parameter for a column, the default sort order is ascending.

6. Repeat step 4 and step 5 for each column that you want to use in the partition definition.
7 Define the upper limits for a partition as follows:

A Specify a Partition parameter.

The Partition parameter indicates the start of a partition definition. You must specify this parameter at least one time in the [ObjectPartition] section, but you do not need to specify a value for it. If you do specify a value, it appears in the informational messages for the apply request.

B Specify the upper limit for the partition with a Value parameter (or with a LimitKey parameter) for each of the Column parameters you defined in step 4 on page 56.

- The Value parameter represents the upper limit of the partition for the associated column. You must specify the Value parameters in the same order as the Column parameters. If the order is incorrect, High-speed Apply Engine cannot process the apply request.

- DB2 If your target is a DB2 table on a mainframe and you have one or more limit-key values that represent a partition point, you can specify the LimitKey parameter as the upper limit of the partition. The LimitKey parameter and the Value parameter are mutually exclusive. For more information, see “LimitKey” on page 233.

- Repeat this step to create additional partitions for the table you specified in step 3 on page 56. The values for the partition definitions must be defined in ascending order. The values for each succeeding partition must be greater than the values of the previous partition.

8 Repeat this procedure for each target table that you want to process with logical partitions.

If a problem occurs

If you receive error messages about the object names specified in the [ObjectPartition] section, check the configuration file for the following common problems:

- Verify that the [ObjectPartition] parameters are in the correct order.
- Verify that the column names and values for the partition definitions are valid values, and that the partition definitions appear in ascending order in the configuration.
Creating logical partitions for target tables
Chapter 3 Running High-speed Apply Engine

This chapter contains the following topics:

Overview .. 59
 Overriding parameters in an apply request 59
 UNIX and Windows command line 60
 Mainframe batch job 61
Creating and running apply requests 63
 Creating and running an apply request for DB2 on mainframe targets 64
 Creating and running an apply request for DB2 UDB 66
 Creating and running an apply request for Oracle 68
Where to go from here 70

Overview

An apply request contains the following items:

- command to run the High-speed Apply Engine
- any overrides to the parameters in the configuration file

The format for the request varies with the operating system platform. This section describes overall considerations and the format for each platform.

Overriding parameters in an apply request

You can enter any of the following parameters in an apply request to override the information in the request’s configuration file. Specify all other configuration information in the configuration file.
Use the appropriate format for your command override. For more information, see “Mainframe batch job” on page 61, or “UNIX and Windows command line.” The override parameters include:

- any of the following abbreviated FileName parameters:
 - CFN, [Configuration] section
 - DFN, [DisplayOutput] section
 - EFN, [ErrorOutput] section
 - LFN, [LogOutput] section
 - IFN, [Startup] section

- any of the following parameters in the [StartUp] section:
 - DefaultOpts, abbreviated as DOPT
 - FileName, abbreviated as IFN
 - InputType, abbreviated as IT
 - PlanName, abbreviated as PLAN
 - SSID
 - Login
 - ConnectionVersion
 - Database
 - UserID
 - Password

UNIX and Windows command line

An apply request for UNIX and Windows is a command entered at the command prompt. You can specify configuration overrides as parameters of the command, as shown in Figure 6. Separate multiple configuration overrides with commas. In the figure, path represents the path to the High-speed Apply Engine directory.

Figure 6 Sample apply request for UNIX and Windows

path:apebmain ifn=may_18_2008.sql cfn=apply_cfg.ora10.ini
Mainframe batch job

On mainframe operating systems, an apply request is a batch job that you submit for processing as you would submit any job. Figure 7 shows a sample apply request. You can view the results of the job in the same way that you view any batch job output. Note that:

- For more information about comments in your configuration, see page 104.
- The examples in this chapter are for reference only. When you create an apply request, you must include a valid job statement and any processing options that your site requires.

Figure 7 Sample apply request for mainframe targets (JCL)

```
//APTMAIN JOB STATEMENT
/*
//APPLYSQL EXEC PGM=APTBMAIN,PARM='SSID=DBAT,IT=SQL',
// REGION=0M
//STEPLIB DD DISP=SHR,DSN=product.libraries
// DD DISP=SHR,DSN=DB2.DSNEXIT
// DD DISP=SHR,DSN=DB2.DSBLOAD
//APTErr DD SYSOUT=* 
//APTLOG DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSDUMP DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//APTDUMP DD SYSOUT=*
//SYSOUT DD SYSOUT=*
/*
//SYSin DD DDNAME=APTCNFG
// DD DISP=SHR,DSN=BMCApT.CONFIG.FILES(CFGAGENT)
// DD DISP=SHR,DSN=BMCApT.CONFIG.FILES(CFGDISP)
// DD DISP=SHR,DSN=BMCApT.CONFIG.FILES(CFGLOG)
/*
//APTCNFG DD *
IFN=BMCApL.LOGMSTR.MIGRATE.SQL
/*
```

DD names and data set names

The High-speed Apply Engine recognizes both data definition (DD) names and data set names for configuration information. It uses the following criteria to determine whether a name is a DD name or a data set name:

- If the name is eight characters or fewer, High-speed Apply Engine treats it as a DD name. The DD name must refer to a DD statement in the same apply request. If the character string is not a valid DD name, High-speed Apply Engine treats it as a data set name.
Mainframe batch job

- If the name is longer than eight characters, High-speed Apply Engine treats it as a data set name. The names that you specify must comply with the name rules for data sets on the current operating system.

- Input files can be any data set supported by the operating system, including a partitioned data set (PDS) or generation data group (GDG) data sets.

Specifying DD statements on mainframe targets

On mainframe targets, High-speed Apply Engine uses certain data sets depending on the type of processing that you request. You must allocate some data sets by using a DD statement in the JCL, while High-speed Apply Engine allocates other data sets dynamically. The data sets that can be allocated are described in the following paragraphs.

- **SYSIN**: Defines the input data set that contains High-speed Apply Engine configuration parameters and their values. Specify this data set either as a DD statement in the JCL or as the value of the **FileName** parameter in the [Configuration] section (commonly abbreviated as CFN, see “FileName (CFN)” on page 157).

- **APTErr**: Defines the output data set where High-speed Apply Engine displays error messages that are generated during apply processing and additional information. Always specify this data set as a DD statement in the JCL.

- **APTPRINT**: Defines an output data set where High-speed Apply Engine displays all statistics and messages that are generated during apply processing. Always specify this data set as a DD statement in the JCL.

- **APTDUMP**: *(optional)* Defines the output data set that contains a SNAP dump that High-speed Apply Engine might generate in response to internal errors. BMC Software recommends that you include this optional data set in your JCL as a troubleshooting aid.

- **APTDIAG**: *(optional)* Defines the output data set where High-speed Apply Engine writes special diagnostic information used by BMC Software Customer Support in troubleshooting situations. High-speed Apply writes output to this file when the value of the **RestartType** parameter is other than None. Specify this data set either as a DD statement in the JCL or as the value of the **FileName** parameter in the [DiagnosticOutput] section, see “FileName” on page 179).

- **SYSOUT**: *(optional)* Defines the output data set that contains messages from the sort routine. Normally, you can specify this data set as SYSOUT=*.
Creating and running apply requests

- **SYSUDUMP**: *(optional)* Defines a data set used for system dumps produced when a system error occurs. BMC Software recommends that you include either SYSUDUMP or SYSMDUMP in your JCL as a troubleshooting aid.

- **SYSMDUMP**: *(optional)* Defines a data set used for system dumps produced when a system error occurs. Include either the SYSMDUMP data set or the SYSUDUMP data set in your JCL as a troubleshooting aid. For SYSMDUMP, the product produces a system dump that can be read by the IBM Interactive Problem Control System (IPCS) product. Specify the attributes of the SYSMDUMP data set as indicated in the appropriate JCL documentation.

- **SYSTEM**: *(optional)* Defines the output data set where High-speed Apply Engine writes messages and other error information when data sets that are defined by other required DD statements are not available.

Apply request management for DB2 for mainframe targets

You might create a large number of apply requests to perform a variety of tasks using the High-speed Apply Engine. Use the following practices to help you manage the apply requests:

- Create a separate library for the apply requests and organize them in a meaningful way for your site. You might have several members in the request library, depending on the number of apply requests that you create.

- Use a naming convention for the requests to help you identify them. For example, you might identify the files by target database, request type (migration, SQL processing, or recovery), or input type (SQL or logical log file).

- Include comments in the apply request that describe the tasks it performs. Ensure that the comments appear on a separate line from any configuration parameters.

Creating and running apply requests

The tasks for initiating an apply request vary with the target database type. Use the procedures in the following sections to

- help you write apply requests that fit your requirements
- manage the requests that you create
Creating and running an apply request for DB2 on mainframe targets

You create and save an apply request for DB2 in the same way that you write any batch job. You can use any editor to create and save an apply request. The job steps that you include in the apply request depend on the type of apply processing that you want to perform. Use the procedure in this section to create a basic apply request.

Before you begin

Before you can run an apply request, the target tables must exist if you are using [ObjectMap] parameters. The High-speed Apply Engine load libraries and any libraries referenced in the STEPLIB DD statements must be APF-authorized.

You should also become familiar with the HLQ.DBSAMP library. This library contains a sample configuration file and apply request. HLQ represents a high-level qualifier that you specified when you installed High-speed Apply Engine.

To create an apply request for DB2

1 Create a job that runs an apply request.

One method of doing this is to use a sample apply request job as a template. (A sample job is stored in the APTSAMP member in the HLQ.DBSAMP library). If you use this template, copy the file, renaming it according to your site requirements. Edit the file with any standard editor.

2 Edit the job statement to conform to your site requirements.

3 Verify that the EXEC statement invokes APTBMAIN.

4 Specify your configuration information. You can specify a single configuration file, multiple configuration files, or no configuration file.

A To specify a single configuration file, specify the name of your configuration file in the default DD statement SYSIN. For example:

```
//HSAESQL  EXEC  PGM=APTBMAIN,
//            PARM='SSID=DBAT',REGION=OM
//            .
//            .
//            */
//SYSIN    DD DISP=SHR,DSN=APT.CNFG.FILE(CONFIG)
```
To specify multiple configuration files, specify the names of your configuration files in the default DD statement SYSIN (For an example, see Figure 7 on page 61).

To specify no configuration file, enter None as the value of the FileName (CFN) parameter within the PARM parameter of EXEC statement in your JCL. For example:

```
//APPLYSQL EXEC PGM=APTBMAIN,
// PARM='SSID=DBAT,CFN=NONE',REGION=DM
```

5 Add any configuration overrides required for the request.

You can specify the overrides within the PARM parameter of the EXEC statement, or with a separate DD statement that includes configuration sections. For example:

```
//APPLYSQL EXEC PGM=APTBMAIN,
// PARM='SSID=DBAT,InputType=SQL,IFN=APT.INPUT.SQLFILE2'
```

6 Save the job if you want to reuse it in the future.

7 Run the job to start processing the apply request.

Verifying High-speed Apply Engine maintenance on mainframe targets

In some situations, you might need to verify maintenance that has been applied to the High-speed Apply Engine. If an apply request does not complete successfully, you might need to provide this information to BMC Software Customer Support. High-speed Apply Engine provides two ways of obtaining maintenance information.

- Run a normal apply request

 Examine the output of an apply request in your environment. Message BMCAPT0215 displays a list of the maintenance fixes that have been applied to High-speed Apply Engine and its components. This method requires a connection to DB2.

- Run a maintenance job

 Use the special EXEC statement parameter called MAINT. An apply request with this parameter prints information from the control sections (CSECT) that track maintenance applied to High-speed Apply Engine and its components. High-speed Apply Engine performs no other processing. You do not need a connection to DB2.
Creating and running an apply request for DB2 UDB

Figure 8 shows sample JCL that you can modify to run a maintenance job. Figure 9 shows the output information that you can use to verify maintenance.

Figure 8 Sample maintenance job for mainframe targets (JCL)

```plaintext
//APTMAIN JOB STATEMENT
//*
//APPLY EXEC PGM=APTBMAIN,REGION=0M,
// PARM='MAINT'
//STEPLIB DD DISP=SHR,DSN=product.libraries
//        DD DISP=SHR,DSN=DB2.DSNEXIT
//        DD DISP=SHR,DSN=DB2.DSNLOAD
//APTErr DD SYSOUT=* 
//APTPRINT DD SYSOUT=* 

//
```

Figure 9 Sample maintenance output for mainframe targets

BMCAPT0000I HIGH-SPEED APPLY ENGINE V09.01.00
Copyright (c) 1999-2008 BMC Software, Inc. as an unpublished license
BMCAPT0001I Date: Sat May 18, 2008
BMCAPT0215I MAINT: HIGH-SPEED APPLY ENGINE V09.01.00
BMCAPT0215I MAINT: NONE APPLIED
BMCAPT0215I MAINT: SOLUTION COMMON CODE V01.06.00
BMCAPT0215I MAINT: BPJ0193 BPJ0197 BPJ0215 BPJ0219 BPJ0221
BMCAPT0215I MAINT: BMCSORT ENGINE V02.03.01
BMCAPT0215I MAINT: BPJ0195 BPJ0198 BPJ0209

Creating and running an apply request for DB2 UDB

Because of the command-line interface, generating an apply request for a DB2 UDB target can be as simple as typing a command. Use the procedure in this section to simplify the apply request process.

Before you begin

Before you perform the tasks in this section, you should be familiar with the default path and configuration file for the High-speed Apply Engine in your environment. For more information, see “File names for UNIX and Windows” on page 105.

When you are configuring High-speed Apply Engine, be sure that the shared library environment variable is set to enable High-speed Apply Engine to run correctly. The name of the environment variable depends on your operating system, as shown in Table 2 on page 67. In this table, `installationDirectory` refers to the directory where High-speed Apply Engine was installed. The `platform` is the UNIX platform chosen during the installation (aix, sol). The `v.r.m` is the version, release, and maintenance level of High-speed Apply Engine.
You should also become familiar with the `examples/db2udb` subdirectory within the installation directory when you are configuring High-speed Apply Engine. The `examples/db2udb` subdirectory contains a sample apply request. The installation directory is the UNIX or Windows directory that you specified for High-speed Apply Engine during installation.

You can manually set these environment variables and run High-speed Apply Engine by invoking `apebmain` (for more information, see “To run an apply request for DB2 UDB” on page 68), or you can use the sample scripts in the installation root directory (`installationDirectory/HighSpeedApply/platform/v.r.m`).

NOTE
You must update the BMC Software registry before you can use the sample scripts in the installation root directory. For more information, see step To on page 295.

The sample scripts in the installation root directory are named `apeenv` and `HighSpeedApply`:

- The `apeenv` script originates from the profile and will set the environment variables required to run High-speed Apply Engine. You need to make specific reference to `apeenv` only once during your login session by typing `.apeenv` at the command prompt.

- You can use the `HighSpeedApply` script to run High-speed Apply Engine without having to set the path and shared library path. Using the `HighSpeedApply` script is the easiest way to run the component. It accepts the same parameters you specify to the High-speed Apply Engine executable command (`apebmain`), including the overrides to the parameters in the configuration file. BMC Software recommends that you move the `HighSpeedApply` script to one of the default directories in your path or your group’s path.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Environment variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris</td>
<td>LD_LIBRARY_PATH</td>
<td><code>installationDirectory/HighSpeedApply/platform/v.r.m/bin</code></td>
</tr>
<tr>
<td>AIX</td>
<td>LIBPATH</td>
<td><code>installationDirectory/HighSpeedApply/platform/v.r.m/bin</code></td>
</tr>
<tr>
<td>Windows</td>
<td>PATH</td>
<td><code>installationDirectory\High-speed Apply</code></td>
</tr>
</tbody>
</table>

Table 2
Shared library environment variable values: DB2 UDB
To run an apply request for DB2 UDB

1 At the command prompt type `apebmain`.

2 Verify the name and location of the configuration file for the apply request, as follows:
 - If the file uses the default path and file name, skip to step 4.
 - If the file does not use the default path and file name, go to step 3.
 - If you are not using a configuration file, enter `cfn=none` and skip to step 4.

(You do not need a configuration file if you want to accept all High-speed Apply Engine default values, or if you enter all nondefault values as overrides on the command line.)

3 Enter the name of the configuration file, using the FileName (CFN) parameter. For an example, see Figure 6 on page 60.

 If the configuration file is in the current directory, type the file name. Otherwise, you must type the complete path and file name for the configuration file.

4 Add any configuration overrides required for the request.

 You can include as many overrides as necessary to complete the apply request. Separate each section name and parameter with a single space.

5 Press Enter to start processing the apply request.

Creating and running an apply request for Oracle

Because of the command-line interface, generating an apply request for an Oracle target can be as simple as typing a command. Use the procedure in this section to simplify the apply request process.

Before you begin

Before you perform the tasks in this section, you should be familiar with the default path and configuration file for the High-speed Apply Engine for UNIX or for Windows. For more information, see “File names for UNIX and Windows” on page 105.
When you are configuring High-speed Apply Engine, be sure that the shared library environment variable is set to enable High-speed Apply Engine to run correctly. The name of the environment variable depends on your operating system, as shown in Table 3. In this table, installationDirectory refers to the directory where High-speed Apply Engine was installed. The platform is the UNIX platform chosen during the installation (aix, hp11, sol). The v.r.m is the version, release, and maintenance level of High-speed Apply Engine.

Table 3 Shared library environment variable values: Oracle

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Environment variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris</td>
<td>LD_LIBRARY_PATH</td>
<td>installationDirectory/HighSpeedApply/platform/v.r.m/bin</td>
</tr>
<tr>
<td>HP-UX 11</td>
<td>SHLIB_PATH</td>
<td>installationDirectory/HighSpeedApply/platform/v.r.m/bin</td>
</tr>
<tr>
<td>AIX</td>
<td>LIBPATH</td>
<td>installationDirectory/HighSpeedApply/platform/v.r.m/bin</td>
</tr>
<tr>
<td>Windows</td>
<td>PATH</td>
<td>installationDirectory/HighSpeedApply</td>
</tr>
</tbody>
</table>

You should also become familiar with the examples/oracle subdirectory in the installation directory when you are configuring High-speed Apply Engine. The examples/oracle subdirectory contains a sample apply request. The installation directory is the UNIX or Windows directory that you specified for High-speed Apply Engine during installation.

- **UNIX** You can manually set these environment variables and run High-speed Apply Engine by invoking apebmain (for more information, see “To run an Apply request for Oracle” on page 70), or you can use the sample scripts in the installation root directory (installationDirectory/HighSpeedApply/platform/v.r.m).

NOTE

You must update the BMC Software registry before you can use the sample scripts in the installation root directory. For more information, see step To on page 295.

The sample scripts in the installation root directory are named apeenv and HighSpeedApply:

- The apeenv script originates from the profile and sets the environment variables required to run High-speed Apply Engine. You need to make specific reference to apeenv only once during your login session by typing .apeenv at the command prompt.

- You can use the HighSpeedApply script to run High-speed Apply Engine without having to set the path and shared library path. Using the HighSpeedApply script is the easiest way to run High-speed Apply Engine. It accepts the same parameters you specify to the High-speed Apply Engine executable command (apebmain), including the overrides to the parameters in the configuration file. BMC Software recommends that you move the HighSpeedApply script to one of the default directories in your path or your group’s path.
To run an Apply request for Oracle

1. At the command prompt, type `apebmain`.

2. Verify the name and location of the configuration file, as follows:
 - If the file uses the default path and file name, skip to step 4.
 - If the file does not use the default path and file name, go to step 3.
 - If you are not using a configuration file, enter `cfn=none` and skip to step 4.

 (You do not need a configuration file if you accept all High-speed Apply Engine default values, or if you enter all nondefault values as overrides on the command line.)

3. Enter the name of the configuration file, using the `FileName` (CFN) parameter. (For an example, see Figure 6 on page 60.)

 If the configuration file is in the current directory, type the file name. Otherwise, you must type the complete path and file name for the configuration file. You can specify only one configuration file in an apply request for an Oracle target.

4. Add any configuration overrides required for the request.

 You can include as many overrides as necessary to complete the apply request. Separate each section name and parameter with a single space.

5. Press Enter to start processing the apply request.

Where to go from here

You have completed the basic tasks required to use the High-speed Apply Engine. Refer to the following chapters:

- Chapter 4, “Restart and recovery,” provides instructions for creating a restart table and specifying restart parameters for an apply request.

- Chapter 7, “Configuration parameters,” contains reference information about the configuration parameters available for High-speed Apply Engine.
Restart and recovery

This chapter contains the following topics:

Overview ... 71
Restart processing ... 72
 Creating a restart table ... 72
 Specifying restart parameters .. 79
 Restarting an apply request .. 81
Summary of restart parameter usage ... 83

Overview

If your operating environment or DBMS fails while the High-speed Apply Engine is running, you can use the information in a restart table to continue apply processing from the failure point. Restart processing prevents High-speed Apply Engine from repeating transactions that have already been processed.

The High-speed Apply Engine restart table resides in your target database. For DB2 on mainframe targets, it must reside on the target DB2 subsystem. If you enable restart processing, High-speed Apply Engine stores information in the restart table during each run of an apply request. The structure of the restart table is shown in Figure 10 on page 74, Figure 11 on page 76, or Figure 12 on page 78, depending on your target database environment. If you need more information about the content of the restart table, contact BMC Software Customer Support.

You must create a default restart table during installation. You can define additional (personal) restart tables as needed in your environment. The procedures in this chapter describe how to create restart tables, specify the appropriate configuration parameters, and restart an apply request. Table 4 on page 83 summarizes two different ways that you can define restart parameters in your environment.
Restart processing

This section describes the tasks that you must perform to enable restart processing for the High-speed Apply Engine:

- You must create one or more restart tables that High-speed Apply Engine can use to record information about the apply requests. Normally, a restart table is created during installation. You can use the instructions in “Creating a restart table” to create additional tables, if necessary.

- You must specify the appropriate restart parameters in the configuration information, as instructed in “Specifying restart parameters” on page 79.

- To restart an apply request, you must ensure that the configuration includes the appropriate restart ID and rerun the request, as described in “Restarting an apply request” on page 81.

Creating a restart table

The installation procedures for the High-speed Apply Engine create a restart table that is used if you do not include the TableName parameter in the [Restart] section of the configuration.

Use the procedures in this section to create additional restart tables that High-speed Apply Engine can use to track apply processing.

Before you begin

By default, High-speed Apply Engine uses a single restart table for all apply requests. (This table can be the restart table created during installation, or one that you designate.) In normal use, this practice works well. However, if you run a large number of apply requests simultaneously on the same target database, you might begin to experience resource contention for the single restart table.

WARNING

In general, do not modify the input file of an apply request between initial run and restart. Modify the configuration file only to the extent required to resolve error conditions. Ensure that changes to the configuration do not alter the distribution of work between agents. For example, do not change the values of configuration parameters such as MaxAgents, DistributionType, PartitionClustering, or RIClustering.
Creating a restart table

If you experience contention, create a restart table for each user that runs apply requests simultaneously on the target database. This practice eliminates contention for the restart table.

High-speed Apply Engine provides sample data definition language (DDL) files to help you create the restart table as follows:

DB2 For a DB2 mainframe target, the `HLQ.DBSAMP` library contains a member named APTREST. `HLQ` represents a high-level qualifier that you specified when you installed High-speed Apply Engine.

DB2 UDB For DB2 UDB targets, the `examples/db2udb` subdirectory in the installation directory contains a file named `CrtUDBRestartTbl.sql`. The installation directory is the UNIX or Windows path that you specified for High-speed Apply Engine during installation.

Oracle For Oracle targets, the `examples/oracle` subdirectory in the installation directory contains a file named `CrtOraRestartTbl.sql`. The installation directory is the UNIX or Windows path that you specified for High-speed Apply Engine during installation.

To create a personal restart table for DB2 on a mainframe target

1. Create a DDL file with the statements to create a restart table.

 One method of doing this is to use the sample DDL file located in a member named APTREST in `HLQ.DBSAMP` library. If you use this file as a template, copy the file, renaming it according to your site requirements. Edit the file with any standard editor.

 Regardless of how you create the file, the DDL statements should resemble those shown in Figure 10 on page 74 when you have finished.

2. Edit the DDL statements as follows:

 A. Change the database name and table space name to values that are appropriate for your site.

 The table space that you specify must be located in the same DB2 subsystem as the target tables for the apply request.

 B. Change the table name and index name so that they are unique.
Creating a restart table

C *(optional)* Define the alias (BMCAPI_APTRSCL) so that it uses the name of the personal restart table. If an earlier version of High-speed Apply Engine is already installed, you must drop and re-create the alias.

Do not redefine this alias unless you want *all* apply requests that do not specify the *TableName* parameter in the [Restart] section to use the personal restart table. The alias is the default value for this *TableName* parameter. If an apply request does not specify a restart table name, High-speed Apply Engine writes restart information to the table that the alias represents.

When you have finished editing your DDL file, the statements in it should resemble those in Figure 10. The *databaseName*, *tableSpaceName*, *owner*, *restartTableName*, and *indexName* variables represent unique values that are appropriate for your environment.

Figure 10 Sample DDL to create a restart table: DB2 (part 1 of 2)

```
//APRTEPOS JOB STATEMENT
//STEP01 EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DSN=SYS2.DB2V71M.DSNLOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=*  
//SYSPRINT DD SYSOUT=*  
//SYSTSN DD *  
DSN SYSTEM(DBAT) 
RUN PROGRAM(DSNTEP2) 
END
//SYSIN DD *
*--------------------------------------------------------------------
*- DEFINE RESTART DB,TABLESPACE,TABLE,INDEX AND SYNONYM
*--------------------------------------------------------------------
* DROP DATABASE databaseName ;
* COMMIT ;
CREATE DATABASE databaseName 
STOGROUP SYSDEFLT
CCSID EBCDIC;
COMMIT;
CREATE TABLESPACE tableSpaceName 
IN databaseName
USING STOGROUP SYSDEFLT 
PRIQTY 240
SECQTY 48
CLOSE NO
FREEPAGE 0
PCTFREE 0
SEGSIZE 4;
COMMIT;
CREATE TABLE owner.restartTableName 
( RESTART_ID CHAR(16) NOT NULL,
REQUEST_ID CHAR(4) NOT NULL,
RECORD_TYPE CHAR NOT NULL,
AGENT_ID SMALLINT NOT NULL,
RECORD_SEQUENCE SMALLINT NOT NULL,
REQUEST_TIMESTAMP TIMESTAMP NOT NULL,
RECORD_TIMESTAMP TIMESTAMP NOT NULL.
```
Save your DDL member, and execute it to create the restart table.

To create a personal restart table for DB2 UDB

Create a data definition language (DDL) file with the statements to create a restart table.

One method of doing this is to use the sample DDL file named CrtUDBRestartTbl.sql in the examples/db2udb subdirectory as a template. If you use this file as a template, copy the file, renaming it according to your site requirements. Edit the file with any standard editor.

Regardless of how you create the file, the DDL statements should resemble those shown in Figure 11 on page 76 when you have finished.

Edit the DDL statements as follows:

A Edit the table name to a value that is appropriate for your site.

The table name that you specify must be located in the same DB2 UDB database as the target tables for the apply request. Note this name so that you can specify it in the configuration for the apply request.

B Edit the index name so that it is unique.

C (optional) Define the alias (BMCAPE_APERSCL) so that it uses the name of the personal restart table. If an earlier version of High-speed Apply Engine is already installed, you must drop and re-create the alias.

Do not redefine this alias unless you want all apply requests that do not specify the TableName parameter in the [Restart] section to use the personal restart table. The alias is the default value for this TableName parameter. If an apply request does not specify a restart table name, High-speed Apply Engine writes restart information to the table that the alias represents.
Creating a restart table

D Edit the GRANT statement if necessary. For personal restart tables, you can restrict access if necessary.

E Add a CREATE TABLESPACE statement if this is the standard for your site.

When you have finished editing your DDL file, the statements in it should resemble those in Figure 11. The restartTableName, and indexName variables represent unique values appropriate for your environment.

Figure 11 Sample DDL to create a restart table: DB2 UDB

```
CREATE TABLE restartTableName
  (  RESTART_ID         CHAR(16)     NOT NULL,
    REQUEST_ID         CHAR(4)      NOT NULL,
    RECORD_TYPE        CHAR         NOT NULL,
    AGENT_ID           SMALLINT     NOT NULL,
    RECORD_SEQUENCE    SMALLINT     NOT NULL,
    REQUEST_TIMESTAMP  TIMESTAMP    NOT NULL,
    RECORD_TIMESTAMP   TIMESTAMP    NOT NULL,
    TOTAL_LENGTH       INTEGER      NOT NULL,
    DATA               LONG VARCHAR NOT NULL
  );

CREATE UNIQUE INDEX indexName ON restartTableName
  (  RESTART_ID,
    REQUEST_ID,
    RECORD_TYPE,
    AGENT_ID,
    RECORD_SEQUENCE
  );

GRANT ALL ON TABLE restartTableName TO PUBLIC;

CREATE ALIAS BMCAPE_APERSCL FOR restartTableName;

COMMIT;
```

3 Save the edited DDL file.

4 Run the DDL file to create the restart table.

- For Windows, type `db2cmd` from a command prompt to get to the DB2 command level prompt (CLP); then type the following commands:

 - `db2 connect to <database>`
 - `db2 -t -f CrtUDBRestartTbl`
 - `db2 disconnect`
For UNIX, type the following commands:

```sql
db2 connect to <database>
db2 -t -f CrtUDBRestartTbl
db2 disconnect
```

To create a personal restart table for Oracle

1. Create a data definition language (DDL) file with the statements to create a restart table.

One method of doing this is to use the sample DDL file named `CrtOraRestartTbl.sql` in the `examples/oracle` subdirectory as a template. If you use this file as a template, copy the file, renaming it according to your site requirements. Edit the file with any standard editor.

Regardless of how you create the file, the DDL statements should resemble those shown in Figure 12 on page 78 when you have finished.

2. Edit the DDL statements as follows:

 A. Edit the table name to a value that is appropriate for your site.

 The table name that you specify must be located in the same Oracle database as the target tables for the apply request. Note this name so that you can specify it in the configuration for the apply request.

 B. Edit the index name so that it is unique.

 C. (optional) Define the public synonym (BMCAPE_APERSCL) so that it uses the name of the personal restart table. If an earlier version of High-speed Apply Engine is already installed, you must drop and re-create the public synonym.

 Do not redefine this synonym unless you want all apply requests that do not specify the `TableName` parameter in the [Restart] section to use the personal restart table. The synonym is the default value for this `TableName` parameter. If an apply request does not specify a restart table name, High-speed Apply Engine writes restart information to the table that the public synonym represents.

 D. Edit the GRANT statement if necessary. For personal restart tables, you can restrict access if necessary.

When you have finished editing your DDL file, the statements in it should resemble those in Figure 12 on page 78. The `restartTableName`, and `indexName` variables represent unique values appropriate for your environment.
Creating a restart table

3 Save the edited DDL file.

4 Run the DLL file to create the restart table.

- From SQL*Plus, issue the following command:

 `@CrtOraRestartTbl`

- From a UNIX or Windows command prompt, issue the following command:

 `sqlplus userID/passWord @CrtOraRestartTbl`

 If you are not already running SQL*Plus, you must supply your user ID and password to start the utility.

Where to go from here

With the restart table in place, you can specify the restart parameters in the configuration for the apply request. For more information about the parameters, see “Specifying restart parameters” on page 79. For more information about restarting an apply request, see “Restarting an apply request” on page 81.
Specifying restart parameters

Use this procedure to specify the appropriate restart parameters for your apply request. For more information about the restart parameters, see “Restart parameters” on page 237.

Before you begin

The restart table that you specify in this procedure must exist when you run the apply request. Use the instructions in “Creating a restart table” on page 72 to create a restart table.

If you add the restart parameters to a configuration file, they will be used for all requests that refer to that configuration file. Ensure that the restart parameters which you specify are valid for all requests that use the configuration.

To add restart parameters to a configuration

1. Edit the configuration file or apply request, using one of the following methods:

 - Edit a configuration file or create a new one, as described in “Creating and managing configuration files” on page 48, and add the [Restart] section to the file.
 - Edit or create an apply request, as described in “Creating and running apply requests” on page 63:
 - For a Oracle or DB2 UDB target, add restart parameters to the command for the apply request.
 - For a DB2 mainframe target, add restart parameters to the EXEC statement by using the PARM parameter, or include them in a separate DD statement.

 If you include restart parameters in the apply request and the configuration file, High-speed Apply Engine uses the parameters that you specify in the apply request.

2. If you are creating a configuration file, enter the section heading ([Restart] or /Restart/).
3 Specify the name of the restart table with the **TableName** parameter, or accept the default value, as follows:

A Specify a unique table name in the format `owner.tableName`, where `owner` is the user ID of the restart-table owner, and `tableName` is the name of the restart table.

B If you do not include the TableName parameter, High-speed Apply Engine uses the default value, as follows:

- The default alias for the DB2 restart table is BMCAPT_APTRSCL.
- The default public synonym or alias for Oracle and DB2 UDB is BMCAPE_APERSCL.

4 Specify the **RestartType** and **RestartID** parameters as follows:

- To specify parameters before the initial run of the apply request, take one of the following actions:
 - Specify **RestartType** as New/Restart and specify a value for **RestartID** (High-speed Apply Engine uses your restart ID value for the apply request) For advantages and disadvantages of this technique, see step 2B on page 82.
 - Specify **RestartType** as New and do not specify a restart ID (High-speed Apply Engine generates a restart ID)
 - To avoid recording restart information for the apply request, specify **RestartType** as None.

NOTE

To maintain data integrity in case of a system failure, BMC Software recommends that you record restart information for your apply requests by specifying the restart type as New/Rer or New.

- To restart a previously interrupted apply request, perform the steps described in “Restarting an apply request” on page 81.

For more information about using restart parameters, see Table 4 on page 83, “RestartID” on page 240 or “RestartType” on page 241.

5 *(optional)* Specify a value for the **Retry** parameter. The Retry parameter determines the number of times that High-speed Apply Engine attempts to access the restart table. For more information, see “Retry” on page 243.

6 *(optional)* Specify a value for the **RetainTime** parameter. This parameter determines how long High-speed Apply Engine retains restart information for an apply request in the restart table. For more information, see “RetainTime” on page 242.
7 *(optional)* Specify a value for the **CheckpointFrequency** parameter. This parameter determines how often High-speed Apply Engine performs checkpoint processing to update the restart table with a statement ID that represents the progress of all agents through the input file. For more information, see “CheckpointFrequency” on page 238.

8 Save the configuration file or apply request.

9 Run the apply request to enable the restart parameters or to restart apply processing.

Restarting an apply request

If the operating environment or DBMS fails while the High-speed Apply Engine is running, you can use this procedure to restart the apply request from the point of failure.

Before you begin

To successfully restart an apply request, you must

- know the name or alias of the restart table that tracked the original request
- know the restart ID that you specified or that High-speed Apply Engine generated for the job
- specify the appropriate restart parameters in the configuration, as described in “Specifying restart parameters” on page 79

WARNING

High-speed Apply Engine bases its checkpoint and restart processing on the number and sequence of records in the input file. If you modify an input file between the initial run of an apply request and the subsequent restart and you change the number or sequence of records in the file, the results of the restarted run are unpredictable.

In general, do not modify the input file of an apply request between initial run and restart. Modify the configuration file *only* to the extent required to resolve error conditions. Ensure that changes to the configuration do not alter the distribution of work between agents. For example, do not change the values of configuration parameters such as **MaxAgents**, **DistributionType**, **PartitionClustering**, or **RIClustering**.
To restart an apply request

1. Review the display output file or your job output to determine whether there is a restart ID that you can use for the apply request. The restart ID is either specified in the configuration or generated by High-speed Apply Engine (in message BMCAAPT0097).

 NOTE
 The display output file is specified with the FileName (DFN) parameter in the [DisplayOutput] section.

 A. If you find a restart ID, skip to step 2.

 B. If no restart ID exists for the request, the job cannot be restarted from the point of failure.

 You must analyze the target tables to determine where apply processing ended. Contact BMC Software Customer Support to determine if you can use conflict parameters effectively to permit a restart of this apply request.

2. Edit the configuration for the apply request.

 A. If you directed High-speed Apply Engine to generate a restart ID (no value was specified for the RestartID parameter), set the RestartType parameter to Restart and the RestartID parameter to the generated restart ID. (Obtain the generated value from the display output file or from message BMCAAPT0097).

 B. If you specified a value for the RestartID parameter, verify that the RestartID parameter contains your specified value. Use one of the following techniques:

 - Verify that the RestartType parameter is New/Restart.

 The advantage of this technique is that you do not have to change your configuration when you restart the apply request. The disadvantage is that you can encounter negative consequences if you accidentally run an apply request in error. For example, if you attempt to apply a new input file but the previous run did not complete successfully, you can fail to apply part of the input file. If you attempt to restart the previous input file but the previous run did complete successfully, you can encounter -803 SQL codes, or corrupt the data in your database.

 - Set the RestartType parameter to Restart.

 The advantage of this technique is that you encounter fewer negative consequences when you run an apply request in error. The disadvantage is that you must change your configuration to restart an apply request.

3. Verify that the restart table is available for the apply request.
Submit the apply request to restart apply processing, as follows:

A For DB2 mainframe targets, use the procedure in “Creating and running an apply request for DB2 on mainframe targets” on page 64.

B For DB2 UDB targets, use the procedure in “Creating and running an apply request for DB2 UDB” on page 66.

C For Oracle targets, use the procedure in “Creating and running an apply request for Oracle” on page 68.

For more information about using restart parameters, see Table 4, “RestartID” on page 240, or “RestartType” on page 241.

Summary of restart parameter usage

Table 4 summarizes two approaches for specifying and using restart parameters. One approach allows the High-speed Apply Engine to generate the restart ID; the other approach uses a restart ID that you specify for each apply request (but not for each run). For more information about these parameters, see “RestartID” on page 240 or “RestartType” on page 241.

<table>
<thead>
<tr>
<th>Type of run / restart</th>
<th>Using generated RestartID</th>
<th>Using specified RestartID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Run</td>
<td>RestartType=New</td>
<td>RestartType=New/Restart</td>
</tr>
<tr>
<td></td>
<td>Do not specify RestartID</td>
<td>RestartID=yyyyyyyy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>where yyyy yyyy represents a unique restart ID that you specify</td>
</tr>
<tr>
<td>Subsequent Run</td>
<td>RestartType=New</td>
<td>RestartType=New/Restart</td>
</tr>
<tr>
<td>(Previous Run</td>
<td>Do not specify RestartID</td>
<td>RestartID=yyyyyyyy</td>
</tr>
<tr>
<td>Successful)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Restart</td>
<td>RestartType=New</td>
<td>RestartType=New/Restart</td>
</tr>
<tr>
<td></td>
<td>Do not specify RestartID</td>
<td>RestartID=yyyyyyyy</td>
</tr>
</tbody>
</table>
Summary of restart parameter usage

Table 4 Specifying High-speed Apply Engine [Restart] parameters (part 2 of 2)

<table>
<thead>
<tr>
<th>Type of run / restart</th>
<th>Using generated RestartID</th>
<th>Using specified RestartID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsequent Run (Previous Run</td>
<td>RestartType=Restart
RestartID=xxxxxx
where xxxxxx represents the restart ID</td>
<td>RestartType=New/Restart
RestartID=yyyyyy
for advantages and disadvantages of this technique, see step 2B on page 82</td>
</tr>
<tr>
<td>Unsuccessful)</td>
<td>generated during the previous unsuccessful run (provided by message BMCAPT0097)</td>
<td></td>
</tr>
<tr>
<td>Restart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsequent Run (Previous Run</td>
<td>RestartType=New
Do not specify RestartID</td>
<td>RestartType=New
RestartID=yyyyyy</td>
</tr>
<tr>
<td>Unsuccessful)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bypass Restart (Start at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beginning of file)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conflict resolution

This chapter contains the following topics:

Overview .. 85
Conflict resolution rules ... 86
 Format of conflict resolution rules 87
 Codes for conflict resolution (SQL codes) 87
 Actions for conflict resolution 91
Creating conflict resolution rules 93

Overview

This chapter describes the conflict resolution rules that you can define to respond to conflicts (SQL codes or message numbers) during apply processing. To create conflict resolution rules, you define sets of Code and Action parameters for each conflict that you want to respond to. This chapter contains information about the following topics:

- conflict resolution rules

 The material in “Conflict resolution rules” on page 86 describes the sections in a High-speed Apply Engine configuration file that are related to conflict resolution. It also describes the Code and Action parameters.

- creating conflict resolution rules

 The material in “Creating conflict resolution rules” on page 93 provides step by step procedures for how to add conflict resolution rules to your configuration file.
Conflict resolution rules

Conflict resolution rules determine how the High-speed Apply Engine responds when a conflict occurs during apply processing. The following configuration sections determine how High-speed Apply Engine handles conflicts:

- [AnyConflict] (page 127)
- [DeleteConflict] (page 178)
- [DDLConflict] (page 177)
- [InsertConflict] (page 192)
- [UpdateConflict] (page 275)
- [Conflict] (page 158)
- [ConflictFile] (page 164)

Consider these points regarding the configuration sections for conflict resolution:

- The rules in the [AnyConflict] section apply to all types of statements (INSERT, UPDATE, DELETE, or EXCHANGE statements, as well as data definition language (DDL) statements. A rule that is defined in one of the other conflict sections, such as the [InsertConflict] section, takes precedence over rules in the [AnyConflict] section.

- If a statement does not start with INSERT, UPDATE, or DELETE, High-speed Apply Engine will use [DDLConflict] rules if they are defined. High-speed Apply Engine uses [DDLConflict] rules to process EXCHANGE statements.

- The [Conflict] section describes general processing options for conflict management, particularly for retry processing.

- The [ConflictFile] section defines the conflict file or files where High-speed Apply Engine writes output when the Action parameter of a conflict resolution rule is DeferStatement or DeferUR.

- High-speed Apply Engine tracks the number of conflicts that trigger a conflict resolution rule during an apply request and displays the results in message BMCAPT0222.
Format of conflict resolution rules

A conflict resolution rule in any [xxxConflict] section consists of a Code parameter and one or more Action parameters, as shown in Figure 13.

Figure 13 Format of a conflict resolution rule

| Code=code |
| Action=action01 |
| Action=action02 |

The code value defines an Oracle message number, a DB2 SQL code, or a conflict type (for more information, see Table 5 on page 88). The action value defines the action that the High-speed Apply Engine takes when it encounters the conflict type that is defined by the code value (for more information, see Table 6 on page 91).

If you specify more than one action for a code, the actions must be valid in the specified sequence. For example, if action01 in Figure 13 was specified as Abort, then action02 could never be performed. The following sections describe the codes and actions that you can define for these parameters.

Several actions cause High-speed Apply Engine to perform a commit action or a rollback action. For more information, see “Actions for conflict resolution” on page 91. The value of the DistributionType parameter or the CommitOnDemand parameter can limit commit or rollback actions to the COMMIT or ROLLBACK statements in your input. High-speed Apply Engine might perform additional commit or rollback actions in response to certain Action parameters of a conflict resolution rule or to resource shortages.

Codes for conflict resolution (SQL codes)

The Code parameter identifies the SQL code, database message, or conflict type that the High-speed Apply Engine receives from the target database when a conflict occurs. You can specify a particular value only once in a configuration section. High-speed Apply Engine ignores any duplicate values.

Table 5 on page 88 describes the values that you can specify for the Code parameter. The default actions that are listed in this table show the action that High-speed Apply Engine takes when it encounters the conflict type, but you have not defined a conflict resolution rule for that conflict type.

For more information about the actions that you can specify for the code types, see “Actions for conflict resolution” on page 91.
<table>
<thead>
<tr>
<th>Value</th>
<th>DBMS</th>
<th>Description</th>
<th>Default action</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnnn</td>
<td>DB2, Oracle,</td>
<td>For DB2 and DB2 UDB, this value indicates an SQL code (SQLCODE) of the type nnnn. You can qualify this value with a plus (+) or minus (-) sign to limit the value to a positive or negative SQL code. If you do not specify positive or negative, High-speed Apply Engine assumes that nnnn is a positive value. For Oracle, negative SQL codes correspond to error codes listed in the Error Messages documentation. For example, code -942 would correspond to the 'ORA-00942: table or view does not exist' error condition.</td>
<td>+nnnn: Abort</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB</td>
<td></td>
<td>+nnnn: Warn</td>
</tr>
<tr>
<td>MultipleRows</td>
<td>DB2, Oracle,</td>
<td>This value indicates conflicts that might occur when multiple rows are changed by an UPDATE or DELETE statement in the target table. If you specify this code in the [InsertConflict] section, High-speed Apply Engine ignores it.</td>
<td>Warn</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MultiRowConflict</td>
<td>DB2</td>
<td>This value indicates any conflict that occurs as High-speed Apply Engine processes any insert within a multiple row insert action. For conflicts that occur during a multiple row insert, High-speed Apply Engine resets all code values other than 0 or -911 (TimeOut) to -254 and processes the conflict by using the rule that specifies this code value. Valid actions for this code value are Abort and Retry. If the action is Retry, High-speed Apply Engine retries the multiple row insert that encountered a conflict by performing single row insert actions for all rows.</td>
<td>Retry</td>
</tr>
<tr>
<td>Negative</td>
<td>DB2, Oracle,</td>
<td>This value indicates any negative SQL code except those that are subject to the following:
- RIConflict
- TimeOut
- individual -nnnn rule</td>
<td>Abort</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NoRows</td>
<td>DB2, Oracle,</td>
<td>This value indicates conflicts that might occur if no rows are changed by a statement in the apply request. Specifying NoRows is equivalent to specifying the specific SQL codes that result from no affected rows. For example:
- For DB2 and DB2 UDB, this value is equivalent to SQL code 100.
- For Oracle, this value is equivalent to SQL code ORA-00100</td>
<td>Warn</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>DB2, Oracle,</td>
<td>This value indicates any positive SQL code except those that are subject to a NoRows rule or an individual nnnn rule.</td>
<td>Warn</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5 Code parameter values (part 2 of 2)

<table>
<thead>
<tr>
<th>Value</th>
<th>DBMS</th>
<th>Description</th>
<th>Default action</th>
</tr>
</thead>
</table>
| RIConflict| DB2, Oracle, DB2 UDB | This value indicates conflicts that arise from database-defined referential integrity (RI) constraints. Specifying RIConflict is equivalent to specifying the specific SQL codes that result from RI constraints in the target database. For example:
- For DB2 and DB2 UDB, this value is equivalent to SQL codes -530, -531, and -532.
- For Oracle, this value is equivalent to ORA-02291 or ORA-02292. | None (High-speed Apply Engine takes action indicated by value of Negative code parameter) |
| SQLWarnx | DB2, DB2 UDB | This value indicates any of the SQL warnings returned to the SQL Communication Area (SQLCA). For DB2 and DB2 UDB, the value \(x \) can be from 0 to 9 or the letter A. You can specify this code one time for each value of \(x \). | Warn |
| TimeOut | DB2, Oracle, DB2 UDB | This value indicates conflicts that can occur when an attempt to update the target database times out. Specifying TimeOut is equivalent to specifying the specific SQL codes that result from a database’s failure to respond. For example:
- For DB2 and DB2 UDB, this value is equivalent to SQL codes -913, -911, and -904.
- For Oracle, this value is equivalent to ORA-00060 or ORA-00104. | Retry |

\(^a\) For more information, see “Interaction between conflict resolution rules” and “Processing order for conflict resolution rules” on page 90.

Interaction between conflict resolution rules

Typically, you enter more than one conflict resolution rule in your configuration file. You can specify more than one rule for a given SQL code. For example, you can create a specific rule for the SQL code 100 (Code=100), and a general rule that applies to operations which do not change rows in the target database (Code=NoRows).

NOTE

When you indicate specific codes, remember that some codes might be different, depending on whether the statement is being processed as dynamic or static SQL. You might want to include all applicable codes (for example, SQL codes -302 and -433 represent a column value that is too long for the specified column).
When an SQL code triggers more than one conflict resolution rule, the High-speed Apply Engine attempts to execute all actions that are specified in the applicable rules. The rules are processed in order (by their code types), as described in “Processing order for conflict resolution rules.”

High-speed Apply Engine does not execute all of the actions when any of the following conditions exist:

- If you specify a rule for a particular SQL code (Code=nnnn, Code=TimeOut, or Code=RIConflict) and a rule for a positive or negative code type (Code=Negative | Positive), High-speed Apply Engine executes the action of the particular SQL code rule and does not execute the action of the Code=Negative | Positive rule.

Consider the Negative and Positive code types as defaults that apply to all numeric SQL codes except those subject to Code=nnnn, Code=TimeOut, or Code=RIConflict rules. (Code=TimeOut and Code=RIConflict resolve to the SQL codes that represent specific conditions for the database. High-speed Apply Engine treats these rules like rules with particular SQL codes.)

- When the Action parameter of a conflict resolution rule is Abort or Terminate, High-speed Apply Engine does not execute actions that are specified for any rules which are processed after the Abort or Terminate action.

Processing order for conflict resolution rules

The order that rules appear in the configuration file is not significant. The High-speed Apply Engine processes the conflict resolution rules in the following order:

1. rules with nonzero numeric values for the Code parameter

 Depending on the rules that you specify, this category can be Code=Negative | Positive, Code=nnnn, Code=TimeOut, or Code=RIConflict (TimeOut includes positive or negative values). For more information about these rule types, see “Interaction between conflict resolution rules” on page 89.

2. Code=SQLWarnx (DB2 and DB2 UDB)

3. Code=NoRows | MultipleRows

4. Code=0

 Rules for SQL code 0 are processed last.
Actions for conflict resolution

The value of the **Action** parameter determines how the High-speed Apply Engine handles the conflict specified by the **Code** parameter. You can specify one or more actions for each code value. **Table 6** describes the values that you can specify for the **Action** parameter. For more information about the code types that you can specify, see "Codes for conflict resolution (SQL codes)" on page 87.

Table 6 Action parameter values (part 1 of 2)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| Abort | High-speed Apply Engine rolls back the current unit of recovery (transaction) and terminates the apply request. This value is the default action for Negative conflicts.
 - For distribution by object (see page 38), High-speed Apply Engine rolls back all statements processed since the previous commit action, including the statement that generated the conflict.
 - For distribution by UR (see page 38), High-speed Apply Engine rolls back the entire transaction. |
| Continue | High-speed Apply Engine continues processing when it encounters the specified conflict type. |
| DeferStatement | High-speed Apply Engine writes the SQL statement that generated the specified conflict type to the conflict file. Processing continues with the next unprocessed statement.
 (This action is not normally used with distribution by UR because, when you defer one statement in a transaction, and then continue processing other statements, you break the integrity of the transaction.) |
| DeferUR | High-speed Apply Engine writes the transaction that generated the specified conflict type to the conflict file. This value is valid only after a Rollback action.
 - For distribution by object, High-speed Apply Engine writes all statements processed since the previous commit action to the conflict file, including the statement that generated the conflict. High-speed Apply Engine continues processing with the next unprocessed statement.
 - For distribution by UR, High-speed Apply Engine writes the entire transaction to the conflict file, including any statements that have not been processed. High-speed Apply Engine continues processing with the next transaction. |
| Display | High-speed Apply Engine displays any information available from the DBMS regarding the error. |
| Retry | High-speed Apply Engine attempts to apply the statement that generated the conflict again. This value is the default action for TimeOut and MultiRowConflict code values. This action is only valid with the following Code parameters:
 - Timeout
 - MultiRowConflict
 - RIConflict
 - DB2 SQL codes -913, -911, -904, -530, -531, -532, and -254.
 - Oracle messages that reflect a timeout or RI conflict condition for the target tables
 You can specify the number of (or time for) retry attempts by using the Conflict parameters (page 158). To provide clear output messages when the High-speed Apply Engine retries a statement, add a Warn or Display action before the Retry action in your conflict resolution rules. |
Table 6 Action parameter values (part 2 of 2)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rollback</td>
<td>High-speed Apply Engine rolls back the current transaction when it encounters the specified conflict type.</td>
</tr>
<tr>
<td></td>
<td>■ For distribution by object, High-speed Apply Engine rolls back all statements since the previous commit action, including the statement that generated the conflict. High-speed Apply Engine continues processing with the next unprocessed statement.</td>
</tr>
<tr>
<td></td>
<td>■ For distribution by UR, High-speed Apply Engine rolls back the entire transaction. High-speed Apply Engine continues processing with the next transaction.</td>
</tr>
<tr>
<td>RollbackStatement</td>
<td>High-speed Apply Engine commits that part of the current transaction that has already been processed and then rolls back the statement that generated the specified conflict type. Processing continues with the next unprocessed statement.</td>
</tr>
<tr>
<td>Skip</td>
<td>High-speed Apply Engine skips the statement that generated the specified conflict type. Processing continues with the next unprocessed statement. Normally, the RollbackStatement action precedes the Skip action, so that the statement that caused the conflict is not applied to the target table.</td>
</tr>
<tr>
<td>SkipUR</td>
<td>High-speed Apply Engine skips the unit of recovery that generated the specified conflict type. This value is valid only after a Rollback action.</td>
</tr>
<tr>
<td></td>
<td>■ For distribution by object, High-speed Apply Engine skips all statements processed since the previous commit action, including the statement that generated the conflict. High-speed Apply Engine continues processing with the next unprocessed statement.</td>
</tr>
<tr>
<td></td>
<td>■ For distribution by UR, High-speed Apply Engine skips the entire transaction, including any statements that have not been processed. High-speed Apply Engine continues processing with the next transaction.</td>
</tr>
<tr>
<td>Terminate</td>
<td>High-speed Apply Engine commits the current transaction and terminates processing when it encounters the specified conflict type.</td>
</tr>
<tr>
<td></td>
<td>■ For distribution by object, High-speed Apply Engine commits the statements processed since the previous commit action, including the statement that generated the conflict.</td>
</tr>
<tr>
<td></td>
<td>■ For distribution by UR, High-speed Apply Engine commits the statements processed since the previous commit action, including the statement that generated the conflict, but not including any statements that have not been processed.</td>
</tr>
<tr>
<td>Warn</td>
<td>High-speed Apply Engine issues a warning message and continues processing when it encounters the specified conflict type. The apply request ends with a return code of 4.</td>
</tr>
<tr>
<td></td>
<td>This value is the default action for NoRows, Positive, SQLWARNx and MultipleRows conflicts.</td>
</tr>
</tbody>
</table>
The following actions cause High-speed Apply Engine to perform an implied commit action:

- DeferStatement
- DeferUR
- RollbackStatement
- Skip
- SkipUR
- Terminate

The following actions cause High-speed Apply Engine to perform an implied rollback action:

- Rollback
- Abort

Creating conflict resolution rules

You can add conflict resolution rules to the configuration to respond to SQL codes that occur during an apply request. Use the procedures in this section to help you define rules that are appropriate for your environment and your input data. Figure 14 shows the relationships described in this procedure.

Figure 14 Creating conflict resolution rules

Create or edit a configuration file.

Add Conflict parameters to the file.

Add ConflictFile parameters for deferred statements.

Save The configuration file.
Creating conflict resolution rules

Before you begin

For more information about the parameters mentioned in these procedures, see Chapter 7, “Configuration parameters.” For more information about the valid SQL code types and action types, see “Conflict resolution rules” on page 86.

This procedure contains the following basic activities:

- To define the actual conflict resolution rules, define sets of Code and Action parameters in the conflict sections. The following conflict sections are based on the type of SQL statement that generates a conflict:
 - [AnyConflict]
 - [InsertConflict]
 - [UpdateConflict]
 - [DeleteConflict]
 - [DDLConflict]

- (optional) You can define general processing options for all conflict resolutions rules in the [Conflict] section. (If you do not explicitly define the parameters in this section, High-speed Apply Engine uses default values.)

- (optional) If any of your conflict resolution rules specify an Action parameter with a value of DeferStatement or DeferUR, you can define parameters for the conflict file (or files) where High-speed Apply Engine writes the deferred output. (If you do not explicitly define the parameters in this section, High-speed Apply Engine uses default values.)

To define conflict resolution rules

1 To define conflict resolution rules, add your desired conflict section (or sections) to the configuration file:

- The [AnyConflict] section describes how High-speed Apply Engine handles conflicts for any SQL statement type in the apply request.

- The other conflict sections specify how High-speed Apply Engine handles conflicts for their respective statement types. The values you specify in these sections override the values in the [AnyConflict] section. The other conflict sections include
 - [InsertConflict]
 - [UpdateConflict]
 - [DeleteConflict]
 - [DDLConflict]
2 Specify a **Code** parameter to define a conflict type (for example, NoRows).

Code parameters define the conflict that High-speed Apply Engine responds to. The SQL code that you specify must be valid for the target database. For more information about the supported code values, see “Codes for conflict resolution (SQL codes)” on page 87.

3 Specify one or more Actions for the **Code** you specified in step 2.

Action parameters define the response of High-speed Apply Engine when an SQL statement encounters the SQL code or message number defined by a Code parameter. The actions that you specify must be valid in the order that they appear in the configuration file. Some **Code** values have default actions associated with them. For more information about the valid actions and the default actions for each code, see “Actions for conflict resolution” on page 91.

4 Repeat step 2 and step 3 to create as many conflict resolution rules as you need in a single conflict section.

5 Repeat step 2 and step 4 to create as many conflict sections as you need to process the apply request.

6 Save the configuration file.

To define the [Conflict] section

The [Conflict] section contains general processing options for conflict resolution. For more information, see “Conflict parameters” on page 158. This section is optional. If you do not include the [Conflict] section, the High-speed Apply Engine uses the default values for the parameters in the following steps:

1 Create or edit a configuration file as described in “Creating or editing a configuration file” on page 49.

2 Add the [Conflict] section to the configuration file.

3 Specify the **RetryLimit** parameter to indicate how High-speed Apply Engine keeps track of the retry attempts that are defined by the **RetryValue** parameter, as follows:

- **Time** indicates that High-speed Apply Engine retries the conflict resolution rules as many times as necessary until it reaches the number of seconds that is specified by the **RetryValue** parameter.

- **Count** indicates that High-speed Apply Engine retries the conflict resolution rules until it reaches the number of attempts that is specified by the **RetryValue** parameter. Count is the default value.
Creating conflict resolution rules

4 Specify the **RetryValue** parameter to define a number of seconds or a number of attempts for the apply request.

The default **RetryValue** is five. If you specify **RetryLimit** as Time, consider specifying a larger **RetryValue**.

5 Specify the **RetryFail** parameter to indicate the action that High-speed Apply Engine takes after all retry attempts do not resolve the conflict.

The valid values for **RetryFail** are as follows:

- Terminate commits the current unit of work before ending apply processing.
- Abort rolls back the current unit of work before ending apply processing. Abort is the default value.

6 Save the configuration file.

To define the [ConflictFile] section for output to file

If any of your conflict resolution rules specify an action of a DeferStatement or DeferUR, you can define parameters for the conflict file (or files) where the High-speed Apply Engine writes the deferred output. (This section is optional, High-speed Apply Engine uses default values if you do not explicitly define the parameters in this section.) To specify that deferred-conflict output be written to a file, proceed with the following steps:

1 Add the [ConflictFile] section name to the configuration file.

The [ConflictFile] section contains file name and allocation information for the deferred conflict files. For more information, see “ConflictFile parameters” on page 164.

2 Specify the **FileNameModel** parameter that High-speed Apply Engine uses to name the conflict files.

The **FileNameModel** parameter accepts variables and text constants that High-speed Apply Engine uses to dynamically create a name for one or more conflict files. The model that you specify must resolve to a unique name for each file that High-speed Apply Engine creates. For more information about this parameter, see “FileNameModel” on page 166.

3 Specify the **SingleFile** parameter to indicate whether High-speed Apply Engine creates one conflict file for an apply request or a conflict file for each active agent:

- Yes creates a single deferred-conflict file for the entire apply request.
- No creates a deferred-conflict file for each agent that processes the apply request.
Creating conflict resolution rules

For more information about the SingleFile parameter, see “SingleFile” on page 172.

4 **DB2** For DB2 mainframe targets, specify the **DISP** parameter to indicate the disposition for the conflict files, as follows:

- OLD indicates that the data set exists and that it is not a shared data set.
- SHR indicates that the data set exists and that it is a shared data set.
- NEW indicates that the data set is new. High-speed Apply Engine creates a new data set each time it processes the apply request. NEW is the default value.

5 **Oracle & DB2 UDB** For Oracle and DB2 UDB targets, skip to step 7; for DB2 mainframe targets, proceed to step 6.

6 **DB2** Specify the allocation parameters for conflict files for DB2 mainframe targets as follows:

- If you want to use DFSMS to manage your data sets, you can specify the **DATACLAS**, **STORCLAS**, or **MGMTCLAS** parameters to define the data set allocation requirements for the conflict files.
- If you have already created a conflict file, you can use the **LIKE** parameter to define the data set allocation for additional conflict files.
- Otherwise, you can specify the **UNIT** and **VOLSER** parameters to define the data set allocation requirements for the conflict files.

7 Save the configuration file.

If a problem occurs

If you receive error messages about the object names specified in any of the conflict resolution sections, check the configuration file for the following common problems:

- Verify that the [ConflictFile] parameters create appropriate file names, and that the files can be allocated as defined.
- Verify that the conflict resolution rules can be performed in the order that you specified them. For example, if an Abort action is specified before a DeferStatement action, the DeferStatement action will never be reached.
Configuration file format

This chapter contains the following topics:

File format .. 99
 Section names .. 103
 Parameter format .. 104
 Comments ... 104
 Data set and file names ... 105
 Object names ... 106

File format

This chapter describes the configuration file format. For more information about the configuration parameters, see Chapter 7, “Configuration parameters.”

A configuration file is a text file that contains processing options for one or more apply requests. The parameters in each configuration file are organized into sections. Figure 15 on page 100, Figure 16 on page 102, and Figure 17 on page 102 show examples of a configuration file. A configuration file contains the following elements:

- *Section names* indicate the configuration categories that are included in the file. The [Startup] section (page 248) is the only required configuration section. For more information about specifying section names, see “Section names” on page 103.

- *Parameters* specify processing options for the request. Each parameter must appear in the appropriate section of the configuration file. For more information about specifying parameters, see “Parameter format” on page 104.

- *Comments* can provide information about the configuration file and its uses. For more information about including comments in a configuration file, see “Comments” on page 104.
Conflict Resolution rules are special sets of configuration parameters that describe how to handle the conflict situations that can occur during apply processing. For more information about conflict resolution rules, see “Conflict resolution rules” on page 86.

Lines of input in the configuration file can be up to 1024 bytes long. BMC Software recommends that any parameters, section names, or conflict resolution rules should be complete on one line of the file.

If you need to “split” or “wrap” one logical line of configuration information onto multiple physical lines, use the plus sign (+) as the last character on a line and continue the configuration information in column 1 of the next line. High-speed Apply Engine appends any characters (including spaces) onto the end of the previous line. For example, when DB2 objects have long names the Log Master for DB2 product can generate High-speed Apply Engine object mapping rules on multiple lines by using the plus sign as the last character in column 72.

Figure 15 Sample configuration file for a DB2 mainframe target (part 1 of 3)

```plaintext
:High-speed Apply Sample Config File
/StartUp/
   FileName=USER14.MIGRATE.LLOG.CNTL
   InputType=LogicalLog
/LogicalLog/
   UpdateColumn=CHANGED
   Qualify=CHANGED
   SQLType=MIGRATE
/Bind/
   PackagePrefix=APTK
   PlanPrefix=APT
   BindOwner=DB2ADM1
   FreeOption=ALL
   Library=APTDBRM
   Disp=SHR
/ObjectMap/
   SourceTable=HR.PAYROLL
   TargetTable=ACC1Q.PAYROLL
   SourceColumn=NAME
   TargetColumn=SURNAME
   SourceColumn=HIREDAT
   TargetColumn=DATE
   SourceColumn=SALARY
   TargetColumn=RATE
/TemporaryFiles/
   STORCLAS=TEMP
/Agent/
   MaxAgents=30
/R Restart/
   RestartType=New
/AnyConflict/
   Code=NEGATIVE
```
Figure 15 Sample configuration file for a DB2 mainframe target (part 2 of 3)

```plaintext
Action=ABORT
Code=POSITIVE
Action=WARN
Code=MULTIPLEROWS
Action=WARN
Code=NOROWS
Action=WARN
Code=TIMEOUT
Action=RETRY
Code=SQLWARN0
Action=WARN
Code=SQLWARN1
Action=WARN
Code=SQLWARN2
Action=WARN
Code=SQLWARN3
Action=WARN
Code=SQLWARN4
Action=WARN
Code=SQLWARN5
Action=WARN
Code=SQLWARN6
Action=WARN
Code=SQLWARN7
Action=WARN
Code=SQLWARN8
Action=WARN
Code=SQLWARN9
Action=WARN
Code=SQLWARNA
Action=WARN
/Conflict/
  RetryLimit=COUNT
  RetryValue=2
/ConflictFile/
  SingleFile=NO
  SPACE=TRACK
  SpacePri=15
  SpaceSec=5
  DISP=NEW
/ObjectCluster/
  Cluster=HUMANRES
  Table=HR.*
  Cluster=ACC1Q
  Table=ACC.JAN
  Table=ACC.FEB
  Table=ACC.MAR
  Cluster=ACC2Q
  Table=ACC.APR
```
Figure 15 Sample configuration file for a DB2 mainframe target (part 3 of 3)

Table=ACC.MAY
Table=ACC.JUN

Figure 16 Sample configuration file for DB2 UDB

[StartUp]
 UserID=hstr
 Password=hstr
 Filename=test.sql
 Dbmstype=DB2
 Database=Webserver
[DisplayOutput]
 FileName=DB2UDBDisplay.txt
[ErrorOutput]
 FileName=DB2UDBError.txt
[Agent]
 MaxAgents=10
[Conflict]
 Code=Negative
 Action=abort
 Code=Positive
 Action=Warn
 Code=Multiplerows
 Action=Warn
 Code=Norows
 Action=Warn

Figure 17 Sample configuration file for Oracle

[StartUp]
 Login=user14/pwora@Ora10
 FileName=ora10_update.sql
[Agent]
 MaxAgents=8
[Conflict]
 RetryLimit=count
 RetryValue=2
 RetryFail=terminate
[ConflictFile]
 FileNameModel=BMCAPE.&REQUESTID..&DBSERVER..D&DATE..T&TIME.
 SingleFile=NO
[AnyConflict]
 Code=TIMEOUT
 Action=RETRY
[Restart]
 RestartType=New
[DisplayOutput]
 FileName=apedisplay.txt
[ErrorOutput]
 FileName=apeerror.txt
Section names

Each section in a configuration file contains a group of parameters that describe a particular type of information that High-speed Apply Engine uses for apply processing. Each parameter in the file must be specified in its designated section. Figure 18 shows the configuration section format.

NOTE
You can also include configuration information in an apply request by using overrides. For more information, see “Overriding parameters in an apply request” on page 59.

![Figure 18](image)

Figure 18 [Configuration] section format

```
[SectionName]
parameter01=value01
parameter02=value02
```

When you include a section name in the configuration file or apply request, you must use square brackets ([]) or slashes (/ /) as section-name delimiters. You can use only one type of delimiter within a configuration file. Figure 19 shows examples of both types of delimiter.

Figure 19 Section name delimiters

```
[Agent]
```

or
```
/Agent/
```

If you use a dedicated 3270 terminal to access DB2 on a mainframe target, you should use the slash character for section names. If you use a terminal emulator that supports square brackets, verify that all square brackets in a configuration file resolve to only one of the following hexadecimal code pairs:

- The [character resolves to 0xAD, and the] character resolves to 0xBD.
- The [character resolves to 0xBA, and the] character resolves to 0xBB.

NOTE
Be particularly cautious if you use cut and paste functions to copy information into a terminal emulator. The characters that you paste into the window might resolve differently than the characters that you type directly into the window. If you mix the different types of square brackets in the same configuration file, High-speed Apply Engine issues an error message for the configuration.

To verify that the brackets are the same throughout a file, display the hexadecimal values for the configuration file and examine the section names for discrepancies.
Parameter format

Configuration parameters specify processing options for an apply request. Parameter names and values are specified as follows:

\[ParameterName=value \]

The parameter name and value are separated by an equal sign (=). Do not put spaces around the equal sign. Parameter names are not case sensitive; you can use any combination of uppercase and lowercase letters.

Throughout this chapter, abbreviations for the parameters are shown in parentheses following the parameter name. The abbreviations are valid in a configuration file or in an apply request. In some cases, you can use the abbreviation to specify the parameter without its section name. For more information, see “Overriding parameters in an apply request” on page 59.

Some configuration sections require that you specify their parameters in a specific order. Table 7 shows the section names and provides a page reference for the positional requirements.

<table>
<thead>
<tr>
<th>Section</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnyConflict</td>
<td>page 127</td>
</tr>
<tr>
<td>DDLConflict</td>
<td>page 177</td>
</tr>
<tr>
<td>DeleteConflict</td>
<td>page 178</td>
</tr>
<tr>
<td>InsertConflict</td>
<td>page 192</td>
</tr>
<tr>
<td>ObjectCluster</td>
<td>page 220</td>
</tr>
<tr>
<td>ObjectMap</td>
<td>page 224</td>
</tr>
<tr>
<td>ObjectPartition</td>
<td>page 230</td>
</tr>
<tr>
<td>UpdateConflict</td>
<td>page 275</td>
</tr>
</tbody>
</table>

Comments

To enter comments in a configuration file, use a comment character and enter the comment text anywhere to the right of the comment character on the same line. Valid comment characters are a semicolon (;), a pound sign (#), or two hyphens (--) . You can start comments in any column of a separate line. Figure 20 on page 105 shows an example of comments in a configuration file.
Data set and file names

Several parameters require that you specify data set or data definition (DD) names, or UNIX or Windows file names. In general, these names must conform to the rules that apply to names on the operating system where the High-speed Apply Engine runs.

File names for UNIX and Windows

The file names that you specify in UNIX and Windows configurations must refer to files that can be accessed or created by the user ID that issues the apply request. If the file does not reside in the current directory, you must specify the complete path as part of the parameter value.

High-speed Apply Engine processes file names exactly as they are specified for UNIX and Windows configurations. If your operating system is case sensitive, you must specify file names with the appropriate case.

You can simplify High-speed Apply Engine operations by using the default configuration file name for your apply requests. The default configuration file name for UNIX and Windows is `apeconfig.ini` (lowercase characters).

High-speed Apply Engine uses these file names if no other configuration file is specified for the request. If the default configuration file contains all of the necessary configuration information, you can initiate apply processing by typing the appropriate command with no parameter qualifiers. For more information, see “Creating and running an apply request for Oracle” on page 68.
Data set names for mainframe targets

For mainframe targets, the High-speed Apply Engine processes file names exactly as they are specified. BMC Software recommends that you do not specify mixed case or lowercase data set names.

Some file-name parameters default to DD statements in the JCL if you do not specify a file name. The default for the configuration file is the SYSIN DD statement. The default for the Library parameter is the data set that the APTDBRM DD statement specifies. For more information, see “Creating and running an apply request for DB2 on mainframe targets” on page 64.

Object names

You can specify table and column names in several parameters within a High-speed Apply Engine configuration. This section describes the table-name format and wildcard usage for table and column names.

Table names

Several configuration parameters require you to specify table names. The tables that you specify must already exist. You can specify a table name in one of the formats shown in Table 8.

Table 8 Table name formats

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>owner.tableName</td>
<td>To fully qualify a table name, specify the owner and table name, as follows:</td>
</tr>
<tr>
<td></td>
<td>■ The owner is the user ID of the table owner.</td>
</tr>
<tr>
<td></td>
<td>■ The period is a required separator.</td>
</tr>
<tr>
<td></td>
<td>■ The tableName is the DB2, DB2 UDB or Oracle table name.</td>
</tr>
<tr>
<td>tableName</td>
<td>If you specify a table name without an owner, High-speed Apply Engine uses the user ID that runs the apply request as the owner of the table.</td>
</tr>
</tbody>
</table>
Delimited table names

The High-speed Apply Engine accepts ordinary or delimited table names. If you include special characters in your table names, or if you require lowercase or mixed-case alphabetic characters, you must use delimiters around the table name.

NOTE
The **TableName** parameter in the [Restart] section accepts a table name, a DB2 alias, a DB2 synonym or an Oracle public synonym. For more information, see “**TableName**” on page 244.

Table 9 shows some examples of delimited table names. The use of delimiters must conform to the following rules:

- High-speed Apply Engine supports single (’) or double (”) quotation marks as delimiters.
- The **owner** and **tableName** are distinct nodes, and they can be delimited separately. If the entire name is delimited, it will be qualified with the current user ID for the apply request.
- The first delimiter that is encountered will be recognized for the node, and it must be matched by the same delimiter.
- Wildcard characters must be outside of the delimiters to be recognized.

Table 9 Delimited table names

<table>
<thead>
<tr>
<th>Delimited name</th>
<th>Resolved name</th>
</tr>
</thead>
<tbody>
<tr>
<td>"XYZ’s”.“TableA”</td>
<td>XYZ’s.TableA</td>
</tr>
<tr>
<td>XYZ’s.TableA</td>
<td>XYZ’s:TABLEA</td>
</tr>
<tr>
<td>(not delimited)</td>
<td></td>
</tr>
<tr>
<td>"A DAY.MONTH”</td>
<td>owner.A DAY.MONTH</td>
</tr>
<tr>
<td>"A DAY”.??”NTH”</td>
<td>A DAY.MONTH</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>A DAY.NINTH</td>
</tr>
</tbody>
</table>
Wildcards in object names

Some parameters allow you to specify a set of database objects by using wildcard characters as part of a table or column name. The High-speed Apply Engine supports the wildcard characters shown in Table 10. For more information, see “Using wildcards to map object names” on page 224.

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The asterisk represents a string of zero or more contiguous characters.</td>
</tr>
<tr>
<td>%</td>
<td>The percent sign represents a string of zero or more contiguous characters.</td>
</tr>
<tr>
<td>?</td>
<td>The question mark represents a single character.</td>
</tr>
</tbody>
</table>

Long object names

In the 8.1 and later versions of DB2, the maximum lengths of DB2 object names are increased from previous versions. The High-speed Apply Engine supports the maximum currently usable name length for all DB2 objects.
Configuration parameters

This chapter contains the following topics:

Overview ... 112
Quick reference by name ... 113
Quick reference by section .. 117
Agent parameters ... 121
 InitialAgents ... 122
 MaxAgents ... 124
 MaxPrepares ... 125
AnyConflict parameters ... 127
 Action .. 128
 Code ... 129
Bind parameters ... 129
 AuthID .. 130
 BindAction ... 131
 BindOwner .. 133
 CollectionID ... 134
 DBPROTOCOL ... 135
 DISP ... 136
 FreeOption ... 137
 Library ... 138
 PackagePrefix .. 139
 PlanName .. 140
 PlanPrefix ... 141
BindTuning parameters ... 142
 Using [BindTuning] parameters for performance 143
 MaxFailedBinds .. 145
 MaxPackages .. 146
 MaxRetries ... 147
 PackageUsage ... 148
 StatementCount .. 149
 StatementUsage .. 150
 Synchronous .. 151
CommitTriggers parameters .. 152
 CommitOnDemand ... 153
 StatementCount .. 154
Conflict parameters ... 158
Configuration parameters ... 156
FileName (CFN) ... 157
Conflict parameters ... 158
DataType .. 159
RetryDelay .. 160
RetryFail ... 161
RetryLimit .. 161
RetryValue ... 163
ConflictFile parameters ... 164
DATACLAS ... 165
DISP ... 165
FileNameModel ... 166
LIKE ... 169
MediaType .. 169
MAXVOL ... 170
MMGMTCLAS ... 171
RELEASE ... 171
SingleFile ... 172
SPACE .. 173
SpacePri .. 174
SpaceSec .. 174
STORCLAS .. 175
UNIT .. 176
VOLSER ... 176
DDLConflict parameters ... 177
DeleteConflict parameters ... 178
DiagnosticOutput parameter ... 178
FileName .. 179
DisplayOutput parameter ... 180
FileName (DFN) ... 180
DistributionTuning parameters ... 181
Default distribution of work ... 182
Precedence for distribution of work by object 182
MaxExecuteImmediateDML .. 183
PartitionClustering .. 184
RIClustering .. 186
RIRecursionLimit .. 187
SimpleTSClustering .. 188
URCheckRI ... 189
ErrorOutput parameter ... 191
FileName (EFN) ... 191
InsertConflict parameters ... 192
LogicalLog parameters ... 193
CCSIDCompatible .. 194
IncludeDDL ... 195
IncludeLOB .. 196
IncludeRI .. 197
IncludeTrigger ... 198
<table>
<thead>
<tr>
<th>Configuration parameters</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IncludeXML</td>
<td>199</td>
</tr>
<tr>
<td>IncludeHistory</td>
<td>200</td>
</tr>
<tr>
<td>Qualify</td>
<td>201</td>
</tr>
<tr>
<td>PartitionDistribution</td>
<td>202</td>
</tr>
<tr>
<td>Sort</td>
<td>203</td>
</tr>
<tr>
<td>SQLType</td>
<td>204</td>
</tr>
<tr>
<td>UpdateColumns</td>
<td>205</td>
</tr>
<tr>
<td>UseLLLogSysStrings</td>
<td>205</td>
</tr>
<tr>
<td>WORKNUM</td>
<td>206</td>
</tr>
<tr>
<td>LogOutput parameters</td>
<td>207</td>
</tr>
<tr>
<td>FileName (LFN)</td>
<td>208</td>
</tr>
<tr>
<td>LogType</td>
<td>209</td>
</tr>
<tr>
<td>Overlap</td>
<td>210</td>
</tr>
<tr>
<td>Threshold</td>
<td>210</td>
</tr>
<tr>
<td>MonitorTuning parameters</td>
<td>211</td>
</tr>
<tr>
<td>CommitTrigger</td>
<td>212</td>
</tr>
<tr>
<td>CommitValue</td>
<td>213</td>
</tr>
<tr>
<td>InputTrigger</td>
<td>214</td>
</tr>
<tr>
<td>InputValue</td>
<td>215</td>
</tr>
<tr>
<td>ScanInterval</td>
<td>216</td>
</tr>
<tr>
<td>MultiRowInsert parameters</td>
<td>217</td>
</tr>
<tr>
<td>MaxConflicts</td>
<td>217</td>
</tr>
<tr>
<td>MaxRows</td>
<td>218</td>
</tr>
<tr>
<td>MultiRowInsert</td>
<td>219</td>
</tr>
<tr>
<td>ObjectCluster parameters</td>
<td>220</td>
</tr>
<tr>
<td>Cluster</td>
<td>221</td>
</tr>
<tr>
<td>Table</td>
<td>222</td>
</tr>
<tr>
<td>ObjectMap parameters</td>
<td>223</td>
</tr>
<tr>
<td>Positional requirements for object mapping</td>
<td>224</td>
</tr>
<tr>
<td>Using wildcards to map object names</td>
<td>224</td>
</tr>
<tr>
<td>SourceColumn</td>
<td>226</td>
</tr>
<tr>
<td>SourceTable</td>
<td>226</td>
</tr>
<tr>
<td>TargetColumn</td>
<td>227</td>
</tr>
<tr>
<td>TargetTable</td>
<td>228</td>
</tr>
<tr>
<td>ObjectPartition parameters</td>
<td>229</td>
</tr>
<tr>
<td>Positional requirements for [ObjectPartition] parameters</td>
<td>230</td>
</tr>
<tr>
<td>Partition key length</td>
<td>231</td>
</tr>
<tr>
<td>Considerations for Oracle data types</td>
<td>231</td>
</tr>
<tr>
<td>Column</td>
<td>232</td>
</tr>
<tr>
<td>LimitKey</td>
<td>233</td>
</tr>
<tr>
<td>Order</td>
<td>234</td>
</tr>
<tr>
<td>Partition</td>
<td>235</td>
</tr>
<tr>
<td>Table</td>
<td>235</td>
</tr>
<tr>
<td>Value</td>
<td>236</td>
</tr>
<tr>
<td>Restart parameters</td>
<td>237</td>
</tr>
<tr>
<td>CheckpointFrequency</td>
<td>238</td>
</tr>
<tr>
<td>RestartID</td>
<td>240</td>
</tr>
<tr>
<td>RestartType</td>
<td>241</td>
</tr>
<tr>
<td>RetainTime</td>
<td>242</td>
</tr>
</tbody>
</table>

Chapter 7 Configuration parameters 111
This chapter contains detailed descriptions of the configuration parameters available with the High-speed Apply Engine. Quick reference tables list the parameters in alphabetical order by name (Table 11 on page 113) or by section (Table 12 on page 117). The sections appear in alphabetical order, and the parameters appear alphabetically within each section.
This organization does not imply a similar order within a configuration file. Except as noted in this document, you can order the configuration file for your convenience, including only those sections that apply to your configuration requirements. For more information about the format of a configuration file, see Chapter 6, “Configuration file format.” For more information about creating and managing configuration files, see Chapter 2, “Defining configurations.”

Quick reference by name

Table 11 lists the configuration parameters of the High-speed Apply Engine by name, section, and platform, and gives a page reference for each parameter description.

Table 11 Configuration parameters by name (part 1 of 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Section</th>
<th>DBMS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>AnyConflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 128</td>
</tr>
<tr>
<td>Action</td>
<td>DDLConflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 128</td>
</tr>
<tr>
<td>Action</td>
<td>DeleteConflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 128</td>
</tr>
<tr>
<td>Action</td>
<td>InsertConflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 128</td>
</tr>
<tr>
<td>Action</td>
<td>UpdateConflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 128</td>
</tr>
<tr>
<td>AuthID</td>
<td>Bind</td>
<td>DB2</td>
<td>page 130</td>
</tr>
<tr>
<td>BindAction</td>
<td>Bind</td>
<td>DB2</td>
<td>page 131</td>
</tr>
<tr>
<td>BindOwner</td>
<td>Bind</td>
<td>DB2</td>
<td>page 133</td>
</tr>
<tr>
<td>BindQualifier</td>
<td>StartUp</td>
<td>DB2</td>
<td>page 250</td>
</tr>
<tr>
<td>CCSIDCompatible</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 194</td>
</tr>
<tr>
<td>CheckpointFrequency</td>
<td>Restart</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 238</td>
</tr>
<tr>
<td>Cluster</td>
<td>ObjectCluster</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 221</td>
</tr>
<tr>
<td>Code</td>
<td>AnyConflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 129</td>
</tr>
<tr>
<td>Code</td>
<td>DDLConflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 129</td>
</tr>
<tr>
<td>Code</td>
<td>DeleteConflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 129</td>
</tr>
<tr>
<td>Code</td>
<td>InsertConflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 129</td>
</tr>
<tr>
<td>Code</td>
<td>UpdateConflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 129</td>
</tr>
<tr>
<td>CollectionID</td>
<td>Bind</td>
<td>DB2</td>
<td>page 134</td>
</tr>
<tr>
<td>Column</td>
<td>ObjectPartition</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 232</td>
</tr>
<tr>
<td>CommitOnDemand</td>
<td>CommitTriggers</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 153</td>
</tr>
<tr>
<td>CommitTrigger</td>
<td>MonitorTuning</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 212</td>
</tr>
<tr>
<td>CommitValue</td>
<td>MonitorTuning</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 213</td>
</tr>
<tr>
<td>ConnectionVersion</td>
<td>StartUp</td>
<td>Oracle</td>
<td>page 251</td>
</tr>
<tr>
<td>Database</td>
<td>StartUp</td>
<td>DB2 UDB</td>
<td>page 252</td>
</tr>
<tr>
<td>DATAACLAS</td>
<td>ConflictFile</td>
<td>DB2</td>
<td>page 165</td>
</tr>
<tr>
<td>Parameter</td>
<td>Section</td>
<td>DBMS</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>DATAACLAS</td>
<td>TemporaryFiles</td>
<td>DB2</td>
<td>page 269</td>
</tr>
<tr>
<td>DataType</td>
<td>Conflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 159</td>
</tr>
<tr>
<td>Dateformat</td>
<td>StartUp</td>
<td>Oracle</td>
<td>page 252</td>
</tr>
<tr>
<td>DBMSType</td>
<td>StartUp</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 253</td>
</tr>
<tr>
<td>DBPROTOCOL</td>
<td>Bind</td>
<td>DB2</td>
<td>page 135</td>
</tr>
<tr>
<td>DecimalPoint</td>
<td>SQL</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 246</td>
</tr>
<tr>
<td>DefaultOpts (DOPT)</td>
<td>StartUp</td>
<td>DB2</td>
<td>page 254</td>
</tr>
<tr>
<td>Directory (DIR)</td>
<td>TemporaryFiles</td>
<td>DB2 UDB</td>
<td>page 270</td>
</tr>
<tr>
<td>DISP</td>
<td>Bind</td>
<td>DB2</td>
<td>page 136</td>
</tr>
<tr>
<td>DISP</td>
<td>ConflictFile</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 165</td>
</tr>
<tr>
<td>DistributionType</td>
<td>StartUp</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 255</td>
</tr>
<tr>
<td>FileName</td>
<td>DiagnosticOutput</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 179</td>
</tr>
<tr>
<td>FileName (CFN)</td>
<td>Configuration</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 157</td>
</tr>
<tr>
<td>FileName (DFN)</td>
<td>DisplayOutput</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 180</td>
</tr>
<tr>
<td>FileName (EFN)</td>
<td>ErrorOutput</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 191</td>
</tr>
<tr>
<td>FileName (IFN)</td>
<td>StartUp</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 256</td>
</tr>
<tr>
<td>FileName (LFN)</td>
<td>LogOutput</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 208</td>
</tr>
<tr>
<td>FileNameModel</td>
<td>ConflictFile</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 166</td>
</tr>
<tr>
<td>Format</td>
<td>SQL</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 247</td>
</tr>
<tr>
<td>FreeOption</td>
<td>Bind</td>
<td>DB2, DB2 UDB</td>
<td>page 137</td>
</tr>
<tr>
<td>IncludeDDL</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 195</td>
</tr>
<tr>
<td>IncludeLOB</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 196</td>
</tr>
<tr>
<td>IncludeRI</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 197</td>
</tr>
<tr>
<td>IncludeTrigger</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 198</td>
</tr>
<tr>
<td>IncludeXML</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 199</td>
</tr>
<tr>
<td>IncludeHistory</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 200</td>
</tr>
<tr>
<td>InitialAgents</td>
<td>Agent</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 122</td>
</tr>
<tr>
<td>InputMediaType</td>
<td>StartUp</td>
<td>DB2</td>
<td>page 258</td>
</tr>
<tr>
<td>InputTrigger</td>
<td>MonitorTuning</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 214</td>
</tr>
<tr>
<td>InputType (IT)</td>
<td>StartUp</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 258</td>
</tr>
<tr>
<td>InputValue</td>
<td>MonitorTuning</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 215</td>
</tr>
<tr>
<td>LargeStatementSupport</td>
<td>StartUp</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 259</td>
</tr>
<tr>
<td>Library</td>
<td>Bind</td>
<td>DB2</td>
<td>page 138</td>
</tr>
<tr>
<td>Like</td>
<td>ConflictFile</td>
<td>DB2</td>
<td>page 169</td>
</tr>
<tr>
<td>Like</td>
<td>TemporaryFiles</td>
<td>DB2</td>
<td>page 270</td>
</tr>
<tr>
<td>LimitKey</td>
<td>ObjectPartition</td>
<td>DB2</td>
<td>page 233</td>
</tr>
<tr>
<td>Login</td>
<td>StartUp</td>
<td>DB2 UDB, Oracle</td>
<td>page 260</td>
</tr>
<tr>
<td>LogType</td>
<td>LogOutput</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 209</td>
</tr>
</tbody>
</table>
Table 11 Configuration parameters by name (part 3 of 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Section</th>
<th>DBMS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxAgents</td>
<td>Agent</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 124</td>
</tr>
<tr>
<td>MaxConflicts</td>
<td>MultiRowInsert</td>
<td>DB2</td>
<td>page 217</td>
</tr>
<tr>
<td>MaxExecuteImmediateDML</td>
<td>DistributionTuning</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 187</td>
</tr>
<tr>
<td>MaxFailedBinds</td>
<td>BindTuning</td>
<td>DB2, DB2 UDB</td>
<td>page 145</td>
</tr>
<tr>
<td>MaxPackages</td>
<td>BindTuning</td>
<td>DB2, DB2 UDB</td>
<td>page 146</td>
</tr>
<tr>
<td>MaxPrepares</td>
<td>Agent</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 125</td>
</tr>
<tr>
<td>MaxRetries</td>
<td>BindTuning</td>
<td>DB2, DB2 UDB</td>
<td>page 147</td>
</tr>
<tr>
<td>MaxRows</td>
<td>MultiRowInsert</td>
<td>DB2</td>
<td>page 218</td>
</tr>
<tr>
<td>MaxVol</td>
<td>ConflictFile</td>
<td>DB2</td>
<td>page 170</td>
</tr>
<tr>
<td>MediaType</td>
<td>ConflictFile</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 169</td>
</tr>
<tr>
<td>MGMTCLAS</td>
<td>ConflictFile</td>
<td>DB2</td>
<td>page 171</td>
</tr>
<tr>
<td>MGMTCLAS</td>
<td>TemporaryFiles</td>
<td>DB2</td>
<td>page 271</td>
</tr>
<tr>
<td>MultiRowInsert</td>
<td>MultiRowInsert</td>
<td>DB2</td>
<td>page 219</td>
</tr>
<tr>
<td>Order</td>
<td>ObjectPartition</td>
<td>DB2</td>
<td>page 234</td>
</tr>
<tr>
<td>Overlap</td>
<td>LogOutput</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 210</td>
</tr>
<tr>
<td>PackagePrefix</td>
<td>Bind</td>
<td>DB2, DB2 UDB</td>
<td>page 139</td>
</tr>
<tr>
<td>PackageUsage</td>
<td>BindTuning</td>
<td>DB2, DB2 UDB</td>
<td>page 148</td>
</tr>
<tr>
<td>Partition</td>
<td>ObjectPartition</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 235</td>
</tr>
<tr>
<td>PartitionClustering</td>
<td>DistributionTuning</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 184</td>
</tr>
<tr>
<td>PartitionDistribution</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 202</td>
</tr>
<tr>
<td>Password</td>
<td>StartUp</td>
<td>DB2 UDB</td>
<td>page 261</td>
</tr>
<tr>
<td>PlanName</td>
<td>Bind</td>
<td>DB2</td>
<td>page 140</td>
</tr>
<tr>
<td>PlanName (PLAN)</td>
<td>StartUp</td>
<td>DB2</td>
<td>page 262</td>
</tr>
<tr>
<td>PlanPrefix</td>
<td>Bind</td>
<td>DB2</td>
<td>page 141</td>
</tr>
<tr>
<td>PublicPlan</td>
<td>StartUp</td>
<td>DB2</td>
<td>page 263</td>
</tr>
<tr>
<td>Qualify</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 201</td>
</tr>
<tr>
<td>Release</td>
<td>ConflictFile</td>
<td>DB2</td>
<td>page 171</td>
</tr>
<tr>
<td>RestartID</td>
<td>Restart</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 240</td>
</tr>
<tr>
<td>RestartType</td>
<td>Restart</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 241</td>
</tr>
<tr>
<td>RetainTime</td>
<td>Restart</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 242</td>
</tr>
<tr>
<td>Retry</td>
<td>Restart</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 243</td>
</tr>
<tr>
<td>RetryDelay</td>
<td>Conflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 160</td>
</tr>
<tr>
<td>RetryFail</td>
<td>Conflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 161</td>
</tr>
<tr>
<td>RetryLimit</td>
<td>Conflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 161</td>
</tr>
<tr>
<td>RetryValue</td>
<td>Conflict</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 161</td>
</tr>
<tr>
<td>RIClustering</td>
<td>DistributionTuning</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 186</td>
</tr>
<tr>
<td>RIRecursionLimit</td>
<td>DistributionTuning</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 187</td>
</tr>
<tr>
<td>ScanInterval</td>
<td>MonitorTuning</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 216</td>
</tr>
<tr>
<td>Parameter</td>
<td>Section</td>
<td>DBMS</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SimpleTSClustering</td>
<td>DistributionTuning</td>
<td>DB2</td>
<td>page 188</td>
</tr>
<tr>
<td>SingleFile</td>
<td>ConflictFile</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 172</td>
</tr>
<tr>
<td>Sort</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 203</td>
</tr>
<tr>
<td>SourceColumn (SC)</td>
<td>ObjectMap</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 226</td>
</tr>
<tr>
<td>SourceTable (ST)</td>
<td>ObjectMap</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 226</td>
</tr>
<tr>
<td>SPACE</td>
<td>ConflictFile</td>
<td>DB2</td>
<td>page 173</td>
</tr>
<tr>
<td>SPACE</td>
<td>TemporaryFiles</td>
<td>DB2</td>
<td>page 272</td>
</tr>
<tr>
<td>SpacePri</td>
<td>ConflictFile</td>
<td>DB2</td>
<td>page 174</td>
</tr>
<tr>
<td>SpacePri</td>
<td>TemporaryFiles</td>
<td>DB2</td>
<td>page 272</td>
</tr>
<tr>
<td>SpaceSec</td>
<td>ConflictFile</td>
<td>DB2</td>
<td>page 174</td>
</tr>
<tr>
<td>SpaceSec</td>
<td>TemporaryFiles</td>
<td>DB2</td>
<td>page 273</td>
</tr>
<tr>
<td>SQLTerminator</td>
<td>StartUp</td>
<td>DB2, Oracle</td>
<td>page 264</td>
</tr>
<tr>
<td>SQLType</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 204</td>
</tr>
<tr>
<td>SSID</td>
<td>StartUp</td>
<td>DB2</td>
<td>page 265</td>
</tr>
<tr>
<td>StatementCount</td>
<td>BindTuning</td>
<td>DB2, DB2 UDB</td>
<td>page 149</td>
</tr>
<tr>
<td>StatementCount</td>
<td>CommitTriggers</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 154</td>
</tr>
<tr>
<td>StatementUsage</td>
<td>BindTuning</td>
<td>DB2, DB2 UDB</td>
<td>page 150</td>
</tr>
<tr>
<td>STORCLAS</td>
<td>ConflictFile</td>
<td>DB2</td>
<td>page 175</td>
</tr>
<tr>
<td>STORCLAS</td>
<td>TemporaryFiles</td>
<td>DB2</td>
<td>page 273</td>
</tr>
<tr>
<td>Synchronous</td>
<td>BindTuning</td>
<td>DB2</td>
<td>page 151</td>
</tr>
<tr>
<td>Table</td>
<td>ObjectCluster</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 222</td>
</tr>
<tr>
<td>Table</td>
<td>ObjectPartition</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 235</td>
</tr>
<tr>
<td>TableName</td>
<td>Restart</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 244</td>
</tr>
<tr>
<td>TargetColumn (TC)</td>
<td>ObjectMap</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 227</td>
</tr>
<tr>
<td>TargetTable (TT)</td>
<td>ObjectMap</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 228</td>
</tr>
<tr>
<td>Threshold</td>
<td>LogOutput</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 210</td>
</tr>
<tr>
<td>Time</td>
<td>CommitTriggers</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 155</td>
</tr>
<tr>
<td>TimestampFormat</td>
<td>StartUp</td>
<td>Oracle</td>
<td>page 265</td>
</tr>
<tr>
<td>TimestampTzFormat</td>
<td>StartUp</td>
<td>Oracle</td>
<td>page 266</td>
</tr>
<tr>
<td>UNIT</td>
<td>ConflictFile</td>
<td>DB2</td>
<td>page 176</td>
</tr>
<tr>
<td>UNIT</td>
<td>TemporaryFiles</td>
<td>DB2</td>
<td>page 274</td>
</tr>
<tr>
<td>UpdateColumns</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 205</td>
</tr>
<tr>
<td>URCheckRI</td>
<td>DistributionTuning</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 189</td>
</tr>
<tr>
<td>UseLLLogSysStrings</td>
<td>LogicalLog</td>
<td>DB2</td>
<td>page 205</td>
</tr>
<tr>
<td>UserID</td>
<td>StartUp</td>
<td>DB2 UDB</td>
<td>page 267</td>
</tr>
<tr>
<td>Value</td>
<td>ObjectPartition</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 236</td>
</tr>
<tr>
<td>VOLSER</td>
<td>ConflictFile</td>
<td>DB2</td>
<td>page 176</td>
</tr>
</tbody>
</table>
Quick reference by section

Configuration files are organized into sections, as described in “File format” on page 99. Table 12 lists the parameters for each section and gives a page reference for each parameter description.

Table 12 Configuration parameters by section (part 1 of 5)

<table>
<thead>
<tr>
<th>Section</th>
<th>Parameter</th>
<th>DBMS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent Parameters</td>
<td>InitialAgents</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 122</td>
</tr>
<tr>
<td></td>
<td>MaxAgents</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 124</td>
</tr>
<tr>
<td></td>
<td>MaxPrepares</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 125</td>
</tr>
<tr>
<td>AnyConflict Parameters</td>
<td>Action</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 128</td>
</tr>
<tr>
<td></td>
<td>Code</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 129</td>
</tr>
<tr>
<td>Bind Parameters</td>
<td>AuthID</td>
<td>DB2</td>
<td>page 130</td>
</tr>
<tr>
<td></td>
<td>BindAction</td>
<td>DB2</td>
<td>page 131</td>
</tr>
<tr>
<td></td>
<td>BindOwner</td>
<td>DB2</td>
<td>page 133</td>
</tr>
<tr>
<td></td>
<td>CollectionID</td>
<td>DB2</td>
<td>page 134</td>
</tr>
<tr>
<td></td>
<td>DBPROTOCOL</td>
<td>DB2</td>
<td>page 135</td>
</tr>
<tr>
<td></td>
<td>DISP</td>
<td>DB2</td>
<td>page 136</td>
</tr>
<tr>
<td></td>
<td>FreeOption</td>
<td>DB2, DB2 UDB</td>
<td>page 137</td>
</tr>
<tr>
<td></td>
<td>Library</td>
<td>DB2</td>
<td>page 138</td>
</tr>
<tr>
<td></td>
<td>PackagePrefix</td>
<td>DB2, DB2 UDB</td>
<td>page 139</td>
</tr>
<tr>
<td></td>
<td>PlanName</td>
<td>DB2</td>
<td>page 140</td>
</tr>
<tr>
<td></td>
<td>PlanPrefix</td>
<td>DB2</td>
<td>page 141</td>
</tr>
<tr>
<td>BindTuning Parameters</td>
<td>MaxFailedBinds</td>
<td>DB2, DB2 UDB</td>
<td>page 145</td>
</tr>
<tr>
<td></td>
<td>MaxPackages</td>
<td>DB2, DB2 UDB</td>
<td>page 146</td>
</tr>
<tr>
<td></td>
<td>MaxRetries</td>
<td>DB2, DB2 UDB</td>
<td>page 147</td>
</tr>
<tr>
<td></td>
<td>PackageUsage</td>
<td>DB2, DB2 UDB</td>
<td>page 148</td>
</tr>
<tr>
<td></td>
<td>StatementCount</td>
<td>DB2, DB2 UDB</td>
<td>page 149</td>
</tr>
<tr>
<td></td>
<td>StatementUsage</td>
<td>DB2, DB2 UDB</td>
<td>page 150</td>
</tr>
<tr>
<td></td>
<td>Synchronous</td>
<td>DB2</td>
<td>page 151</td>
</tr>
</tbody>
</table>
Table 12 Configuration parameters by section (part 2 of 5)

<table>
<thead>
<tr>
<th>Section</th>
<th>Parameter</th>
<th>DBMS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommitTriggers Parameters</td>
<td>CommitOnDemand</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 153</td>
</tr>
<tr>
<td></td>
<td>StatementCount</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 154</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 155</td>
</tr>
<tr>
<td>Configuration Parameters</td>
<td>FileName (CFN)</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 157</td>
</tr>
<tr>
<td>Conflict Parameters</td>
<td>DataType</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 159</td>
</tr>
<tr>
<td></td>
<td>RetryDelay</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 160</td>
</tr>
<tr>
<td></td>
<td>RetryFail</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 161</td>
</tr>
<tr>
<td></td>
<td>RetryLimit</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 161</td>
</tr>
<tr>
<td></td>
<td>RetryValue</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 163</td>
</tr>
<tr>
<td>ConflictFile Parameters</td>
<td>DATACLAS</td>
<td>DB2</td>
<td>page 165</td>
</tr>
<tr>
<td></td>
<td>DISP</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 165</td>
</tr>
<tr>
<td></td>
<td>FileNameModel</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 166</td>
</tr>
<tr>
<td></td>
<td>Like</td>
<td>DB2</td>
<td>page 169</td>
</tr>
<tr>
<td></td>
<td>MaxVol</td>
<td>DB2</td>
<td>page 170</td>
</tr>
<tr>
<td></td>
<td>MediaType</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 169</td>
</tr>
<tr>
<td></td>
<td>MGMTCLAS</td>
<td>DB2</td>
<td>page 171</td>
</tr>
<tr>
<td></td>
<td>Release</td>
<td>DB2</td>
<td>page 171</td>
</tr>
<tr>
<td></td>
<td>SingleFile</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 172</td>
</tr>
<tr>
<td></td>
<td>SPACE</td>
<td>DB2</td>
<td>page 173</td>
</tr>
<tr>
<td></td>
<td>SpacePri</td>
<td>DB2</td>
<td>page 174</td>
</tr>
<tr>
<td></td>
<td>SpaceSec</td>
<td>DB2</td>
<td>page 174</td>
</tr>
<tr>
<td></td>
<td>STORCLAS</td>
<td>DB2</td>
<td>page 175</td>
</tr>
<tr>
<td></td>
<td>UNIT</td>
<td>DB2</td>
<td>page 176</td>
</tr>
<tr>
<td></td>
<td>VOLSER</td>
<td>DB2</td>
<td>page 176</td>
</tr>
<tr>
<td>DDLConflict Parameters</td>
<td>Action</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 128</td>
</tr>
<tr>
<td></td>
<td>Code</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 129</td>
</tr>
<tr>
<td>DeleteConflict Parameters</td>
<td>Action</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 128</td>
</tr>
<tr>
<td></td>
<td>Code</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 129</td>
</tr>
<tr>
<td>DiagnosticOutput Parameters</td>
<td>FileName</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 179</td>
</tr>
<tr>
<td>DisplayOutput Parameters</td>
<td>FileName (DFN)</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 180</td>
</tr>
<tr>
<td>DistributionTuning Parameters</td>
<td>MaxExecuteImmediateDML</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 183</td>
</tr>
<tr>
<td></td>
<td>PartitionClustering</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 184</td>
</tr>
<tr>
<td></td>
<td>RIClustering</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 186</td>
</tr>
<tr>
<td></td>
<td>RIRecursionLimit</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 187</td>
</tr>
<tr>
<td></td>
<td>SimpleTSCLustering</td>
<td>DB2</td>
<td>page 188</td>
</tr>
<tr>
<td></td>
<td>URCheckRI</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 189</td>
</tr>
<tr>
<td>Section</td>
<td>Parameter</td>
<td>DBMS</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>ErrorOutput Parameters</td>
<td>FileName (EFN)</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 191</td>
</tr>
<tr>
<td>InsertConflict Parameters</td>
<td>Action</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 128</td>
</tr>
<tr>
<td></td>
<td>Code</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 129</td>
</tr>
<tr>
<td>LogicalLog Parameters</td>
<td>CCSIDCompatible</td>
<td>DB2</td>
<td>page 194</td>
</tr>
<tr>
<td></td>
<td>IncludeDDL</td>
<td>DB2</td>
<td>page 195</td>
</tr>
<tr>
<td></td>
<td>IncludeLOB</td>
<td>DB2</td>
<td>page 196</td>
</tr>
<tr>
<td></td>
<td>IncludeRI</td>
<td>DB2</td>
<td>page 197</td>
</tr>
<tr>
<td></td>
<td>IncludeTrigger</td>
<td>DB2</td>
<td>page 198</td>
</tr>
<tr>
<td></td>
<td>IncludeXML</td>
<td>DB2</td>
<td>page 199</td>
</tr>
<tr>
<td></td>
<td>IncludeHistory</td>
<td>DB2</td>
<td>page 200</td>
</tr>
<tr>
<td></td>
<td>Qualify</td>
<td>DB2</td>
<td>page 201</td>
</tr>
<tr>
<td></td>
<td>PartitionDistribution</td>
<td>DB2</td>
<td>page 202</td>
</tr>
<tr>
<td></td>
<td>Sort</td>
<td>DB2</td>
<td>page 203</td>
</tr>
<tr>
<td></td>
<td>SQLType</td>
<td>DB2</td>
<td>page 204</td>
</tr>
<tr>
<td></td>
<td>UpdateColumns</td>
<td>DB2</td>
<td>page 205</td>
</tr>
<tr>
<td></td>
<td>UseLLLogSysStrings</td>
<td>DB2</td>
<td>page 205</td>
</tr>
<tr>
<td></td>
<td>WORKNUM</td>
<td>DB2</td>
<td>page 206</td>
</tr>
<tr>
<td>LogOutput Parameters</td>
<td>FileName (LFN)</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 208</td>
</tr>
<tr>
<td></td>
<td>LogType</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 209</td>
</tr>
<tr>
<td></td>
<td>Overlap</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 210</td>
</tr>
<tr>
<td></td>
<td>Threshold</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 210</td>
</tr>
<tr>
<td>MonitorTuning Parameters</td>
<td>CommitTrigger</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 212</td>
</tr>
<tr>
<td></td>
<td>CommitValue</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 213</td>
</tr>
<tr>
<td></td>
<td>InputTrigger</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 214</td>
</tr>
<tr>
<td></td>
<td>inputValue</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 215</td>
</tr>
<tr>
<td></td>
<td>ScanInterval</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 216</td>
</tr>
<tr>
<td>MultiRowInsert Parameters</td>
<td>MaxConflicts</td>
<td>DB2</td>
<td>page 217</td>
</tr>
<tr>
<td></td>
<td>MaxRows</td>
<td>DB2</td>
<td>page 218</td>
</tr>
<tr>
<td></td>
<td>MultiRowInsert</td>
<td>DB2</td>
<td>page 219</td>
</tr>
<tr>
<td>ObjectCluster Parameters</td>
<td>Cluster</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 221</td>
</tr>
<tr>
<td></td>
<td>Table</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 222</td>
</tr>
<tr>
<td>ObjectMap Parameters</td>
<td>SourceColumn (SC)</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 226</td>
</tr>
<tr>
<td></td>
<td>SourceTable (ST)</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 226</td>
</tr>
<tr>
<td></td>
<td>TargetColumn (TC)</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 227</td>
</tr>
<tr>
<td></td>
<td>TargetTable (TT)</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 228</td>
</tr>
<tr>
<td>Table 12</td>
<td>Configuration parameters by section (part 4 of 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Parameter</td>
<td>DBMS</td>
<td>Reference</td>
</tr>
<tr>
<td>Object Partition Parameters</td>
<td>Column</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 232</td>
</tr>
<tr>
<td></td>
<td>LimitKey</td>
<td>DB2</td>
<td>page 233</td>
</tr>
<tr>
<td></td>
<td>Order</td>
<td>DB2</td>
<td>page 234</td>
</tr>
<tr>
<td></td>
<td>Partition</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 235</td>
</tr>
<tr>
<td></td>
<td>Table</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 235</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 236</td>
</tr>
<tr>
<td>Restart Parameters</td>
<td>CheckpointFrequency</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 238</td>
</tr>
<tr>
<td></td>
<td>RestartID</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 240</td>
</tr>
<tr>
<td></td>
<td>RestartType</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 241</td>
</tr>
<tr>
<td></td>
<td>RetainTime</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 242</td>
</tr>
<tr>
<td></td>
<td>Retry</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 243</td>
</tr>
<tr>
<td></td>
<td>TableName</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 244</td>
</tr>
<tr>
<td>SQL Parameters</td>
<td>DecimalPoint</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 246</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 247</td>
</tr>
<tr>
<td>StartUp Parameters (SU)</td>
<td>BindQualifier</td>
<td>DB2</td>
<td>page 250</td>
</tr>
<tr>
<td></td>
<td>ConnectionVersion</td>
<td>Oracle</td>
<td>page 251</td>
</tr>
<tr>
<td></td>
<td>Database</td>
<td>DB2 UDB</td>
<td>page 252</td>
</tr>
<tr>
<td></td>
<td>Date Format</td>
<td>Oracle</td>
<td>page 252</td>
</tr>
<tr>
<td></td>
<td>DBMSType</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 253</td>
</tr>
<tr>
<td></td>
<td>DefaultOpts (DOPT)</td>
<td>DB2</td>
<td>page 254</td>
</tr>
<tr>
<td></td>
<td>DistributionType</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 255</td>
</tr>
<tr>
<td></td>
<td>FileName (IFN)</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 256</td>
</tr>
<tr>
<td></td>
<td>InputMediaType</td>
<td>DB2</td>
<td>page 258</td>
</tr>
<tr>
<td></td>
<td>InputType (IT)</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 258</td>
</tr>
<tr>
<td></td>
<td>LargeStatementSupport</td>
<td>DB2, DB2 UDB, Oracle</td>
<td>page 259</td>
</tr>
<tr>
<td></td>
<td>Login</td>
<td>DB2 UDB, Oracle</td>
<td>page 260</td>
</tr>
<tr>
<td></td>
<td>Password</td>
<td>DB2 UDB</td>
<td>page 261</td>
</tr>
<tr>
<td></td>
<td>PlanName (PLAN)</td>
<td>DB2</td>
<td>page 262</td>
</tr>
<tr>
<td></td>
<td>PublicPlan</td>
<td>DB2</td>
<td>page 263</td>
</tr>
<tr>
<td></td>
<td>SQL Terminator</td>
<td>DB2, Oracle</td>
<td>page 264</td>
</tr>
<tr>
<td></td>
<td>SSID</td>
<td>DB2</td>
<td>page 265</td>
</tr>
<tr>
<td></td>
<td>Timestamp Format</td>
<td>Oracle</td>
<td>page 265</td>
</tr>
<tr>
<td></td>
<td>Timestamp Tz Format</td>
<td>Oracle</td>
<td>page 266</td>
</tr>
<tr>
<td></td>
<td>UserID</td>
<td>DB2 UDB</td>
<td>page 267</td>
</tr>
</tbody>
</table>
Agent parameters

Table 12 Configuration parameters by section (part 5 of 5)

<table>
<thead>
<tr>
<th>Section</th>
<th>Parameter</th>
<th>DBMS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TemporaryFiles</td>
<td>DATACLAS</td>
<td>DB2</td>
<td>page 269</td>
</tr>
<tr>
<td>Parameters</td>
<td>Directory (DIR)</td>
<td>DB2 UDB</td>
<td>page 270</td>
</tr>
<tr>
<td></td>
<td>Like</td>
<td>DB2</td>
<td>page 270</td>
</tr>
<tr>
<td></td>
<td>MGMTCLAS</td>
<td>DB2</td>
<td>page 271</td>
</tr>
<tr>
<td></td>
<td>SPACE</td>
<td>DB2</td>
<td>page 272</td>
</tr>
<tr>
<td></td>
<td>SpacePri</td>
<td>DB2</td>
<td>page 272</td>
</tr>
<tr>
<td></td>
<td>SpaceSec</td>
<td>DB2</td>
<td>page 273</td>
</tr>
<tr>
<td></td>
<td>STORCLAS</td>
<td>DB2</td>
<td>page 273</td>
</tr>
<tr>
<td></td>
<td>UNIT</td>
<td>DB2</td>
<td>page 274</td>
</tr>
<tr>
<td></td>
<td>VOLSER</td>
<td>DB2</td>
<td>page 275</td>
</tr>
<tr>
<td>UpdateConflict</td>
<td>Action</td>
<td>DB2, DB2 UDB</td>
<td>page 128</td>
</tr>
<tr>
<td>Parameters</td>
<td>Code</td>
<td>DB2, DB2 UDB</td>
<td>page 129</td>
</tr>
</tbody>
</table>

[Agent] parameters influence whether and how the High-speed Apply Engine performs multi-threaded execution in your environment. By adjusting these parameters, you can influence how many agents High-speed Apply Engine uses to process your apply request. Figure 21 shows an example of the [Agent] parameters.

Figure 21 Example of [Agent] parameter values

```
[Agent]
InitialAgents=2
MaxAgents=10
MaxPrepares=50
```

High-speed Apply Engine provides multi-threaded execution to increase parallelism and improve the overall performance of an apply request. Using more agents can often improve performance, but several factors affect this general rule.
The distribution of work in your input greatly influences performance. Distribution can reduce or eliminate the advantages of multiple agents. For example, if ninety percent of your input affects one table and your configuration parameters require that the same agent process all updates to that table, additional agents provide little benefit.

High-speed Apply Engine uses only the number of agents that it needs to complete an apply request. You can specify a minimum and maximum number of agents, but the actual number that High-speed Apply Engine uses depends on the following criteria:

- type of processing that is required by the request
- number of unique objects that are affected by the request
- how the target objects are grouped (for example, by referential integrity or data sharing requirements)

Be aware of the following points regarding the [Agent] parameters:

- Each agent that High-speed Apply Engine uses requires a separate connection to the target database (for DB2 on mainframe targets, a separate thread on the DB2 subsystem). Consider how your [Agent] parameters match the number of connections available in your environment. In some environments, the number of connections is constrained by workload or policy.

- The AIX operating system limits the amount of shared memory segments that any one process can have. For DB2 UDB on AIX, you can have only up to 8 agents.

- Under distribution by UR, High-speed Apply Engine is more likely to use the maximum number of agents available (especially if your input contains a large number of transactions with many dependencies between them). Use the MaxAgents parameter to prevent High-speed Apply Engine from using more database connections than your environment can tolerate. (For more information, see page 124.)

InitialAgents

The **InitialAgents** parameter defines the number of agents that the High-speed Apply Engine must start at the beginning of an apply request. The number of agents that you specify depends on the resources which are available on the system where the target database resides.
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Agent]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer greater than or equal to 1 and less than or equal to the value of MaxAgents (see page 124)</td>
</tr>
<tr>
<td>Default value</td>
<td>depends on the value of MaxAgents</td>
</tr>
</tbody>
</table>

Usage

Specify a value representing a number of agents. Consider the following points regarding the **InitialAgents** parameter:

- Each started agent requires a connection to the target database.

- This parameter defines the minimum number of agents that High-speed Apply Engine requires to start processing. If sufficient connections are not available to start this number of agents, the apply request terminates.

- If you do not have information about the number of database connections available in your environment, BMC Software recommends consulting your database administration personnel before changing the default value of this parameter.

- By setting this parameter higher, you can reduce the small delay that occurs when High-speed Apply Engine starts additional agents during the apply request.

- If you set this parameter too high, you can
 - limit the flexibility of High-speed Apply Engine
 - use more database resources than you need
MaxAgents

The **MaxAgents** parameter defines the maximum number of agents that the High-speed Apply Engine can start for the apply request. The number of agents that you specify depends on the resources available on the system where the target database resides.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Agent]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>DB2, Oracle, DB2 UDB (except on AIX)</td>
</tr>
<tr>
<td></td>
<td>an integer greater than or equal to 1</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB on AIX</td>
</tr>
<tr>
<td></td>
<td>an integer from 1 to 8</td>
</tr>
<tr>
<td>Default value</td>
<td>DB2, Oracle, DB2 UDB (except on AIX)</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB on AIX</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Usage

Specify a value representing the maximum number of agents.

Consider the following points regarding the **MaxAgents** parameter:

- High-speed Apply Engine starts with the number of agents specified by the **InitialAgents** parameter, and then starts as many agents as it needs, up to the number specified by the **MaxAgents** parameter.

- Each started agent requires a connection to the target database. If there are not enough threads available to support the maximum number of agents, High-speed Apply Engine continues processing using the current number of agents, but it does not attempt to start up any more agents.

- The BMC Software product LOADPLUS for DB2 passes the value of the APMAXAGENTS option to High-speed Apply Engine as the **MaxAgents** parameter during an SQLAPPLY load action. For more information, see Appendix E, “LOADPLUS and High-speed Apply Engine.”
MaxPrepares

Use this parameter to prevent High-speed Apply Engine from using more database resources than you desire. For example, if your input comes from an ad hoc process, the amount can be greater than expected. Specify this parameter to ensure that High-speed Apply Engine does not use more database connections (and by extension, more resources) than your environment can tolerate.

Under distribution by UR, High-speed Apply Engine is more likely to use the maximum number of agents available (especially if your input contains a large number of transactions with many dependencies between them). Use this parameter to limit the database connections.

You can use this parameter to disable multi-threaded execution. If you specify MaxAgents as 1, High-speed Apply Engine does not use multiple agents. (You must specify MaxAgents as 1 if the value of the CommitOnDemand parameter is Yes.)

DB2 UDB There is a limitation with AIX on the amount of shared memory segments that any one process can have. For DB2 UDB on AIX, you can only have up to 8 agents.

MaxPrepares

The MaxPrepares parameter defines limits on dynamic SQL processing that the High-speed Apply Engine performs during the apply request. It defines the number of prepared statements that High-speed Apply Engine maintains in memory at the same time.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Agent]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
</tbody>
</table>
| Valid values | DB2 0 to 32767
 DB2 UDB 0 to 32767
 Oracle 1 to 32767, not to exceed the maximum number of open cursors allowed for the Oracle instance |
| Default value | 50 |
Usage

Specify a number that represents the maximum number of prepared statements for High-speed Apply Engine.

Consider the following points regarding the **MaxPrepares** parameter:

- Set this parameter to a lower value to
 - limit the amount of cached memory that High-speed Apply Engine uses for dynamic SQL processing
 - prevent High-speed Apply Engine from needlessly reusing the cached memory for dynamic SQL processing
 (For example, if your input does not have many repeated distinct statement types, there is no performance benefit to retaining prepared statements in memory.)
 - disable dynamic SQL with prepared statements
 (If you set this value to zero, High-speed Apply Engine will process all statements as EXECUTE IMMEDIATE until it binds static SQL.)

- Set this parameter to a higher value to
 - match the dynamic SQL processing of High-speed Apply Engine to the number of distinct statement types in your input
 - improve dynamic SQL processing during the time before it binds static SQL
 - **DB2**

DB2 UDB DB2 buffer pool limitations might force prepared statements to be discarded regardless of the value that you specify for **MaxPrepares**. When it discards prepared statements because of buffer pool limitations, High-speed Apply Engine re-prepares the statement.

High-speed Apply Engine uses the value of the **MaxPrepares** parameter to create a database request module (DBRM) or bind file that contains PREPARE/EXECUTE pairs for unique SQL statements in the apply request. If you specify zero, High-speed Apply Engine executes each statement with EXECUTE IMMEDIATE until the statement is bound in a static SQL package (if **MaxPackages** is greater than 0). For more information, see “MaxPackages” on page 146.
Oracle For Oracle targets, the value of MaxPrepares represents the number of cursors that High-speed Apply Engine opens for each agent. High-speed Apply Engine uses the open cursors to create statement handles for unique SQL statements in the apply request. The value that you specify must be between one and the number of open cursors allowed for your Oracle session. The number of open cursors is determined by the OPEN_CURSORS initialization parameter specified for the Oracle session.

If you specify a value for MaxPrepares that is greater than the value of OPEN_CURSORS, High-speed Apply Engine uses the value of OPEN_CURSORS for MaxPrepares. For more information about the OPEN_CURSORS parameter, consult the Oracle server documentation.

AnyConflict parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>page 128</td>
</tr>
<tr>
<td>Code</td>
<td>page 129</td>
</tr>
</tbody>
</table>

The [AnyConflict] parameters describe how the High-speed Apply Engine handles any conflicts that the apply request generates. You can specify as many codes and actions as required for the types of conflicts that might occur. Figure 22 shows an example of the [AnyConflict] parameters.

Figure 22 Example of [AnyConflict] parameter values

```
[AnyConflict]
  Code=TimeOut
  Action=Retry
```

Your configuration file can contain any of the following sections to define different types of conflict resolution rules:

- [AnyConflict]
- [DeleteConflict]
- [DDLConflict]
- [InsertConflict]
- [UpdateConflict]
Be aware of the following points regarding the conflict sections:

- Use the same parameters (*Action*, *Code*) in all of these conflict sections.

- *The parameters in the conflict resolution rules sections are positional.* You must specify a *Code* parameter, and then one or more *Action* parameters. You can specify as many Code/Action groups as necessary for the apply request.

- You can override the values that you specify in the [AnyConflict] section by specifying values for the other conflict rules sections.

Action

The *Action* parameter indicates the action to take for the *Code* parameter that precedes it. Specify one or more actions for each code. For more information, see “Actions for conflict resolution” on page 91. This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[AnyConflict]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>any of the values described in “Actions for conflict resolution” on page 91</td>
</tr>
<tr>
<td>Default value</td>
<td>defaults depend on the corresponding Code parameter, for more information see “Codes for conflict resolution (SQL codes)” on page 87</td>
</tr>
</tbody>
</table>
Code

The **Code** parameter indicates the SQL code or code type that the conflict generates when you run the apply request. One or more **Action** parameters must immediately follow the **Code** parameter, or the High-speed Apply Engine ignores the code that you specify. For more information, see “Codes for conflict resolution (SQL codes)” on page 87. This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[AnyConflict] (or any [xxxConflict] section)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>any of the values described in “Codes for conflict resolution (SQL codes)” on page 87</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Bind parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuthID</td>
<td>page 130</td>
</tr>
<tr>
<td>BindAction</td>
<td>page 131</td>
</tr>
<tr>
<td>BindOwner</td>
<td>page 133</td>
</tr>
<tr>
<td>CollectionID</td>
<td>page 134</td>
</tr>
<tr>
<td>DBPROTOCOL</td>
<td>page 135</td>
</tr>
<tr>
<td>DISP</td>
<td>page 136</td>
</tr>
<tr>
<td>FreeOption</td>
<td>page 137</td>
</tr>
<tr>
<td>Library</td>
<td>page 138</td>
</tr>
<tr>
<td>PackagePrefix</td>
<td>page 139</td>
</tr>
<tr>
<td>PlanName</td>
<td>page 140</td>
</tr>
<tr>
<td>PlanPrefix</td>
<td>page 141</td>
</tr>
</tbody>
</table>

The [Bind] parameters control the BIND commands that High-speed Apply Engine uses to bind plans and packages on the target DB2 subsystem. These parameters are affected by your environment’s DB2 authorizations. Coordinate your settings for these parameters with the personnel responsible for maintaining DB2 authorizations in your environment. Figure 23 on page 130 shows an example of the [Bind] parameters.
The following sections describe the parameters that you can specify in the [Bind] section.

AuthID

The **AuthID** parameter specifies an authorization ID that the High-speed Apply Engine uses to bind static SQL for a target DB2 database. The specified authorization ID (possibly a secondary authorization ID) must have the appropriate privileges described in the following paragraphs.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Bind]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>valid authorization ID with appropriate bind privileges 1-8 characters long</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

Use this parameter to specify a different user ID (or secondary authorization ID) that High-speed Apply Engine uses to bind plans and packages. High-speed Apply Engine runs under this authority *only* for bind-related activities; for all other processing High-speed Apply Engine runs under the authority of the user ID that runs High-speed Apply Engine.

This parameter is part of one method of granting authorizations and privileges related to plans, packages, and collections. For more information on this and other methods, see “DB2 authorizations for plans, packages, and collections” on page 280.
Specify an authorization ID that has either SYSADM authority or SYSCTRL authority. Be aware of the following points regarding the **AuthID** parameter:

- Specify either a primary or secondary authorization ID. Ensure that you specify a valid TSO logon ID, not a group ID. If this parameter is not a valid TSO logon ID, security software can issue warning messages or prevent required processing.

- If you specify this parameter, High-speed Apply Engine does not perform any other processing (such as dynamic SQL) at the same time as it binds static SQL. High-speed Apply Engine overrides the value of the **Synchronous** parameter if necessary, issues message BMC0198, and ensures that no other processing occurs during bind actions.

- Use this parameter to avoid granting privileges over plans, packages, and collections to the user ID that runs High-speed Apply Engine. With this method, you can restrict the privileges to bind plans, bind packages, or update collections to a single or limited number of authorization IDs (possibly secondary authorization IDs).

BindAction

The **BindAction** parameter determines the value of the ACTION parameter that the High-speed Apply Engine uses in the DB2 command BIND PLAN. High-speed Apply Engine issues the BIND command to bind plans and packages for a target DB2 database. During restart processing High-speed Apply Engine uses a value of Replace for **BindAction** regardless of the value specified in your configuration.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>[Bind]</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Replace, Add, or Use</td>
</tr>
<tr>
<td>Default value</td>
<td>Replace</td>
</tr>
</tbody>
</table>
Usage

Specify one of the following values:

- If you specify Replace, High-speed Apply Engine sets the value of the ACTION parameter to REPLACE. (The new plan *replaces* any existing plan with the same plan name. If no plan with the same name currently exists in the DB2 catalog, the bind action creates a new plan and corresponding entries in the DB2 catalog.)

- If you specify Add, High-speed Apply Engine sets the value of the ACTION parameter to ADD. (The new plan *does not replace* an existing plan with the same plan name. If a plan with the same name exists, the bind action terminates with an error message. If no plan with the same name currently exists, the bind action creates a new plan.)

- If you specify Use, High-speed Apply Engine avoids binding a plan and uses the existing plan specified by the `PlanName` parameter to bind only the packages required for the apply request. To use this value, the configuration must meet the following requirements:

 — you must specify a value for the `CollectionID` parameter (see “CollectionID” on page 134)

 — you should specify a value for the `BindOwner` parameter (see “BindOwner” on page 133)

 — you must specify a value for the `PlanName` parameter (see “PlanName” on page 140)

 — the plan specified by the `PlanName` parameter must have been previously bound using special bind options by a user ID with sufficient DB2 authorizations

To bind a plan for use with this value, use a DB2 BIND command similar to the following:

```
BIND PLAN(planName) -
  OWNER(planOwner) -
  KEEP_DYNAMIC(YES) -
  PKLIST(BMCAPT.APTREB2, collectionID.*) -
  RELEASE(COMMIT) -
  ACTION(REPLACE) RETAIN -
  ISOLATION(CS) -
  VALIDATE(RUN)
```
This example uses the following variables:

— planName is the name that will be specified in the PlanName parameter (for more information, see “PlanName” on page 140)
— planOwner is the authorization ID that will be specified in the BindOwner parameter
— collectionID is the identifier that will be specified in the CollectionID parameter

When you specify a value of Use for BindAction, High-speed Apply Engine retains the plan after use, regardless of the value of the FreeOption parameter (for more information, see “FreeOption” on page 137).

BindOwner

The BindOwner parameter determines the value of the OWNER parameter that the High-speed Apply Engine uses in the DB2 command BIND PLAN. High-speed Apply Engine issues the BIND command to bind plans and packages for a target DB2 database. The authorization ID that you specify as the value of this parameter must have appropriate privileges to bind plans, bind packages, and administer collections.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Bind]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
</tbody>
</table>
| Valid values | valid authorization ID with appropriate bind privileges
 - DB2 Version 7
 - 1-8 characters long
 - DB2 Version 8 or later
 - 1-128 characters long |
| Default value | none |
CollectionID

Usage

Use this parameter to specify a different user ID (or secondary authorization ID) that High-speed Apply Engine uses to bind plans and packages. By using this parameter, you can avoid granting bind privileges to the user ID that runs High-speed Apply Engine.

When the value of the **BindAction** parameter is **Use**, **BindOwner** must be the authorization ID that was used to generate a pre-bound plan that High-speed Apply Engine uses (for more information, see page 132). The **BindOwner** parameter is part of one method of granting authorizations and privileges for plans, packages, and collections. For more information about this and other methods, see “DB2 authorizations for plans, packages, and collections” on page 280.

The BMC Software product LOADPLUS for DB2 passes the value of the APOWNER option to High-speed Apply Engine as the **BindOwner** parameter during an SQLAPPLY load action. For more information, see Appendix E, “LOADPLUS and High-speed Apply Engine.”

CollectionID

The **CollectionID** parameter specifies a collection name that the High-speed Apply Engine uses in any BIND PACKAGE or FREE PACKAGE commands that it issues.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Bind]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>any valid DB2 collection name</td>
</tr>
<tr>
<td>Default value</td>
<td>value of the PlanName parameter in the [Bind] section (page 140)</td>
</tr>
</tbody>
</table>

Usage

Use this parameter to limit the scope of the authority that you must grant to either

- the user ID that runs High-speed Apply Engine
- a different user ID (possibly a secondary authorization ID) that the High-speed Apply Engine uses to administer collections.
How you use this parameter depends on how you grant DB2 authority for High-speed Apply Engine to administer collections. For more information, see “DB2 authorizations for plans, packages, and collections” on page 280.

The BMC Software product LOADPLUS for DB2 passes the value of the APCOLLECTION option to High-speed Apply Engine as the CollectionID parameter during an SQLAPPLY load action. For more information, see Appendix E, “LOADPLUS and High-speed Apply Engine.”

High-speed Apply Engine generates collection names as follows:

- If you specify a value for this parameter, High-speed Apply Engine creates only the collection name you enter. You can grant either user ID listed in the preceding paragraphs authority over only the specific collection name you enter.

- If you do not specify a value, High-speed Apply Engine uses the current plan name as a collection ID. If you specify the PlanName parameter (page 140), you can grant either user ID authority over only the collection with the same name as the plan name.

- If you do not specify either the CollectionID or PlanName parameters, High-speed Apply Engine dynamically generates a plan name and uses that plan name as a collection name. Because you cannot predict the generated plan name, you might need to grant either user ID authority over all collections. Many DB2 security environments do not permit this type of operation.

DBPROTOCOL

The DBPROTOCOL parameter enables the High-speed Apply Engine to override a subsystem default setting for the protocol used to update target tables at a remote location by using three-part names.

High-speed Apply is not designed for remote system updating, but can accomplish it with the PRIVATE protocol.

BMC Software might remove support for this parameter and the PRIVATE protocol when High-speed Apply supports only versions of DB2 that no longer allow for this method.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Bind]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>PRIVATE</td>
</tr>
<tr>
<td>Default value</td>
<td>High-speed Apply does not specify a default value but uses the DB2 subsystem’s ZPARM setting.</td>
</tr>
</tbody>
</table>

Usage

High-speed Apply Engine accepts a value of PRIVATE for this parameter to use DB2 PRIVATE protocol to process remote updates that contain three-part names.

NOTE

High-speed Apply does not accept a value of DRDA for Distributed Relational Database Architecture for this parameter. Specifying DRDA results in an error. Three-part-name updates will fail with DRDA.

The only support that High-speed Apply provides with DBPROTOCOL DRDA is if the input only updates the local system.

DISP

The **DISP** parameter specifies the disposition of the data set that you define with the **Library** parameter.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Bind]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>NEW, OLD, or SHR</td>
</tr>
<tr>
<td>Default value</td>
<td>SHR, if you specify a value for the Library parameter</td>
</tr>
</tbody>
</table>
Usage

The **DISP** parameter represents the JCL DISP parameter that is used for data set allocation. If you do not specify a value for the **Library** parameter, the High-speed Apply Engine ignores the value of the **DISP** parameter. You can specify one of the following values for the **DISP** parameter:

- **NEW** indicates that the library data set is new. High-speed Apply Engine creates a new data set each time it processes the apply request.
- **OLD** indicates that the library data set exists, and that it is not a shared data set.
- **SHR** indicates that the library data set exists, and that it is a shared data set. This value is the default if you specify a value for the **Library** parameter.

FreeOption

- **DB2**
- **DB2 UDB**

The **FreeOption** parameter specifies whether to free the DB2 or DB2 UDB plan or packages after the apply request has been completed.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Bind]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>DB2</td>
</tr>
<tr>
<td></td>
<td>Plan, Packages, None, or All</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB</td>
</tr>
<tr>
<td></td>
<td>Packages, None, or All</td>
</tr>
<tr>
<td>Default value</td>
<td>All</td>
</tr>
</tbody>
</table>

Usage

- **DB2**

Set the **FreeOption** parameter as follows:

- Specify Plan to free the plan.
- Specify Packages to free the packages.
- Specify None to retain the plan and packages.
- Specify All to free both the plan and the packages. All is the default value.
If the value of **BindAction** is Use, High-speed Apply Engine retains the plan after use, regardless of the value of **FreeOption** (for more information, see “*BindAction*” on page 131).

DB2 UDB Set the **FreeOption** parameter as follows:

- Specify Packages or All to free the packages.
- Specify None to retain the packages.

Library

DB2 The **Library** parameter specifies the name of the partitioned data set (PDS) that the High-speed Apply Engine uses to store the database request modules (DBRMs) for the apply request. You can also specify a DD name that appears in the JCL for the apply request.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Bind]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid PDS or DD name</td>
</tr>
<tr>
<td>Default value</td>
<td>APTDBRM DD statement</td>
</tr>
</tbody>
</table>

Usage

You can specify any partitioned data set name or a DD name. When you specify a data set name with the **Library** parameter, the default value of the **DISP** parameter becomes SHR.

If you do not specify a data set name for the **Library** parameter, High-speed Apply Engine uses the data set that is specified in the APTDBRM DD statement. If you do not include that DD statement in the JCL, High-speed Apply Engine creates a temporary data set to store the DBRMs.

If you specify a data set with this parameter (or with the APTDBRM DD statement), maintain the data set to avoid bind problems. Periodically delete old DBRMs that are no longer used by High-speed Apply Engine and compress the data set. If you do not maintain the data set properly, High-speed Apply Engine can encounter bind errors because of insufficient directory space or physical space on DASD storage.
PackagePrefix

The `PackagePrefix` parameter specifies the prefix to use for package names that are associated with the apply request. The High-speed Apply Engine uses this prefix and a sequential, numeric suffix as the package name.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Bind]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>1 to 4 alphanumeric characters. (The first character must be alphabetic.)</td>
</tr>
<tr>
<td>Default value</td>
<td>the apply request ID (generated by High-speed Apply Engine, the request ID is a four-character, alphanumeric string, with a range of AAAA to Z999)</td>
</tr>
</tbody>
</table>

Usage

The format of the package name is `PPPPnnnn`. `PPPP` is the value of the `PackagePrefix` parameter (which you can specify explicitly or by default). The `nnnn` suffix is a sequential number that High-speed Apply Engine generates automatically. High-speed Apply Engine updates the number for each package that the apply request generates.

You can specify up to four alphanumeric characters for the prefix. Special characters are not allowed.

To prevent potential naming conflicts, allow High-speed Apply Engine to generate the prefix, or use a consistent naming scheme. (Naming conflicts can occur if High-speed Apply Engine processes more than one request with the same `PackagePrefix`.)
PlanName

The PlanName parameter specifies the DB2 plan that the High-speed Apply Engine uses during apply processing.

NOTE

High-speed Apply Engine does not use this plan to access the DB2 catalog or the restart tables. To specify the plan name that accesses the restart tables, use the PlanName parameter in the [StartUp] section (“PlanName” on page 262).

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Bind]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>1 to 8 alphanumeric characters. (The first character must be alphabetic.)</td>
</tr>
<tr>
<td>Default value</td>
<td>generated plan name, based on value of PlanPrefix parameter and the apply request ID</td>
</tr>
</tbody>
</table>

Usage

Specify the name of a DB2 plan that High-speed Apply Engine can use to bind packages for the target tables. If you specify both PlanName and PlanPrefix, High-speed Apply Engine uses the value that you specify for PlanName.

To prevent potential naming conflicts, do not run concurrent jobs that specify the same DB2 application plan.

If you do not specify a value for the CollectionID parameter, High-speed Apply Engine uses the PlanName as the collection ID for any packages that it creates. For more information, see “CollectionID” on page 134 and “DB2 authorizations” on page 33.

If the value of BindAction is Use, High-speed Apply Engine uses (but does not bind) the plan specified by PlanName. For more information, see “BindAction” on page 131.
PlanPrefix

The PlanPrefix parameter specifies the prefix that the High-speed Apply Engine uses for the DB2 plan that is generated during apply processing.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Bind]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>1 to 4 alphanumeric characters. (The first character must be alphabetic.)</td>
</tr>
<tr>
<td>Default value</td>
<td>APT</td>
</tr>
</tbody>
</table>

Usage

The format of the plan name is as follows:

PPPPxxxx

PPPP is the prefix that you specify for the PlanPrefix parameter. The xxxx suffix is the apply request ID generated by High-speed Apply Engine. (The request ID is a four-character, alphanumeric string, with a range of AAAA to Z999.)

If you specify both PlanName and PlanPrefix, uses the value that you specify for PlanName.
The [BindTuning] parameters determine how the High-speed Apply Engine handles bind processing. Figure 24 shows an example of the [BindTuning] parameters.

Figure 24 Example of [BindTuning] parameter values

```
[BindTuning]
  Synchronous=YES
  MaxPackages=3
  MaxFailedBinds=5
  MaxRetries=2
  StatementCount=200
  StatementUsage=50
```

High-speed Apply Engine provides two basic groups of [BindTuning] parameters:

- **limits on bind actions for static SQL**

 This group determines how High-speed Apply Engine binds static SQL and when it stops binding static SQL. The group includes the `MaxFailedBinds`, `MaxRetries`, and `Synchronous` parameters. For more information, see the individual parameter descriptions that are included in this section.

- **performance of bind actions for static SQL**

 This group enables you to influence the frequency of bind actions, the size of bound packages, and the overall balance between static SQL and other methods (dynamic SQL with prepared statements and EXECUTE IMMEDIATE). This group includes the `MaxPackages`, `PackageUsage`, `StatementCount`, and `StatementUsage` parameters.

When you adjust one parameter, consider the values of the others. Because these parameters are used together, the following paragraphs contain information about their interaction.
Using [BindTuning] parameters for performance

Consider the following points as you adjust your [BindTuning] parameters. These points cover general principles; the circumstances of your data and your environment can vary. These points assume that static SQL provides a performance benefit in your environment. This assumption is most true when your input contains many repeated statements of the same distinct statement types.

- Use the `PackageUsage`, `StatementCount`, and `StatementUsage` parameters as a group. All three parameters set thresholds that determine when the High-speed Apply Engine performs a bind action.

- When you set a threshold higher, High-speed Apply Engine typically performs fewer bind actions, less frequently, with more distinct statement types in each bound package. Conversely, when you set a threshold lower, High-speed Apply Engine performs more bind actions, more frequently, with fewer distinct statement types in each bound package.

- The `MaxPackages` parameter value should vary inversely with the `PackageUsage`, `StatementCount`, and `StatementUsage` parameters. When the thresholds are low, High-speed Apply Engine binds more packages and `MaxPackages` should be higher.

- If an apply request includes a template file, the `StatementCount` and `MaxPackages` parameters also apply to the template file. Each entry in the template file counts as one occurrence of a distinct statement type. Any packages bound as High-speed Apply Engine processes the template file count against your `MaxPackages` limit.

- To force High-speed Apply Engine to use static SQL for all input statements, set the `Synchronous` parameter to Yes and set the `StatementCount` parameter to 1. If you use this technique, ensure that the `MaxPackages` value is high enough to accommodate the total number of distinct statement types in your input file.

Table 13 on page 144 summarizes the effects of changing values for these parameters.
Table 13 Summary of [BindTuning] parameter usage

<table>
<thead>
<tr>
<th>StatementCount, StatementUsage, and PackageUsage settings</th>
<th>Effects / usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Values</td>
<td>Effects:</td>
</tr>
<tr>
<td></td>
<td>High-speed Apply Engine</td>
</tr>
<tr>
<td></td>
<td>■ performs fewer bind actions.</td>
</tr>
<tr>
<td></td>
<td>■ performs less frequent bind actions.</td>
</tr>
<tr>
<td></td>
<td>■ binds packages that contain more distinct statement types.</td>
</tr>
<tr>
<td></td>
<td>■ binds packages that are larger.</td>
</tr>
<tr>
<td></td>
<td>■ executes more dynamic SQL and less static SQL.</td>
</tr>
<tr>
<td></td>
<td>■ performs bind actions and executes static SQL later in the apply request.</td>
</tr>
<tr>
<td></td>
<td>Usage:</td>
</tr>
<tr>
<td></td>
<td>■ MaxPackages can be set to a lower value (not required; no penalty with higher value).</td>
</tr>
<tr>
<td></td>
<td>■ Use higher values when the environment dictates more dynamic SQL (for example, if bind actions cause other activity to perform poorly).</td>
</tr>
<tr>
<td>Lower Values</td>
<td>Effects:</td>
</tr>
<tr>
<td></td>
<td>High-speed Apply Engine</td>
</tr>
<tr>
<td></td>
<td>■ performs more bind actions.</td>
</tr>
<tr>
<td></td>
<td>■ performs more frequent bind actions.</td>
</tr>
<tr>
<td></td>
<td>■ binds packages that contain fewer distinct statement types.</td>
</tr>
<tr>
<td></td>
<td>■ binds packages that are smaller.</td>
</tr>
<tr>
<td></td>
<td>■ executes more static SQL and less dynamic SQL.</td>
</tr>
<tr>
<td></td>
<td>■ performs bind actions and executes static SQL sooner in the apply request.</td>
</tr>
<tr>
<td></td>
<td>Usage:</td>
</tr>
<tr>
<td></td>
<td>■ MaxPackages should be set to a higher value.</td>
</tr>
<tr>
<td></td>
<td>■ Use lower values when environment dictates static SQL (for example, if dynamic SQL performs poorly).</td>
</tr>
<tr>
<td></td>
<td>■ Use lower values when input contains fewer distinct statement types (set StatementCount lower).</td>
</tr>
<tr>
<td></td>
<td>■ Use lower values when input includes many repeated statements of the same distinct statement types (set StatementUsage and PackageUsage lower).</td>
</tr>
</tbody>
</table>
MaxFailedBinds

The MaxFailedBinds parameter specifies how many bind actions can fail before the High-speed Apply Engine stops processing the apply request.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[BindTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 0 to 32767</td>
</tr>
<tr>
<td>Default value</td>
<td>5</td>
</tr>
</tbody>
</table>

Usage

When a bind action fails for reasons other than unavailable DB2 resources (for more information, see “MaxRetries” on page 147), High-speed Apply Engine counts the action as a failed bind action and continues to process the apply request, using dynamic SQL or EXECUTE IMMEDIATE. The MaxFailedBinds parameter defines the point when High-speed Apply Engine stops processing because of failed bind actions. When High-speed Apply Engine exceeds this limit, it issues message BMCAPT0072 and terminates processing with an error.

Specify a number representing how many failed bind actions High-speed Apply Engine accepts before it terminates processing.

Consider these points regarding the MaxFailedBinds parameter:

- Use this parameter to stop High-speed Apply Engine from processing large amounts of input dynamically when a problem in your environment prevents bind actions from succeeding. Frequent failed bind actions can indicate a serious problem with the target DBMS.

- When a bind action fails because of an unavailable DB2 resource condition and High-speed Apply Engine exceeds the MaxRetries limit (page 147), High-speed Apply Engine does not count the action as a failed bind for purposes of this parameter. High-speed Apply Engine continues processing with dynamic SQL or EXECUTE IMMEDIATE.

- High-speed Apply Engine does count a failed bind action for purposes of this parameter if the bind fails because of allocation errors, I/O errors, or any other conditions that are not related to unavailable DB2 resources.
The **MaxPackages** parameter specifies the maximum number of additional packages that the High-speed Apply Engine can add to the base plan.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[BindTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 0 to 9999</td>
</tr>
<tr>
<td>Default value</td>
<td>25</td>
</tr>
</tbody>
</table>

Usage

Use this parameter to expand or limit the amount of static SQL that High-speed Apply Engine can bind and process. The **PackageUsage**, **StatementCount**, and **StatementUsage** parameters determine how many distinct statement types High-speed Apply Engine includes in a package. The **MaxPackages** parameter determines how many packages High-speed Apply Engine can bind.

Specify a number of packages. Take into consideration the number of distinct input statement types and how quickly you want High-speed Apply Engine to start processing statically rather than dynamically.

- If you set this parameter to zero, High-speed Apply Engine cannot process any static SQL. In general, the lower you set this parameter, the smaller the number of distinct statement types High-speed Apply Engine can process as static SQL (subject to the values of the **PackageUsage**, **StatementCount**, and **StatementUsage** parameters).

- When High-speed Apply Engine has bound the number of packages specified by **MaxPackages**, it stops binding static SQL. High-speed Apply Engine continues processing. If an input statement type has not already been bound, High-speed Apply Engine processes it using dynamic SQL (either with prepared statements or EXECUTE IMMEDIATE).

- If you set the **PackageUsage**, **StatementCount**, and **StatementUsage** parameters to lower values, High-speed Apply Engine will perform more bind actions more frequently, with fewer distinct statement types in each bind. In this situation, set the **MaxPackages** parameter to a higher value to accommodate the higher number of bind actions.
If your SQL input includes a template file generated by Log Master for DB2, High-speed Apply Engine can bind a package or packages for all distinct statement types at the beginning of the apply request. The packages that High-speed Apply Engine binds as it processes the template file count against the `MaxPackages` limit.

The DBRM library must be large enough to hold the DBRM members. High-speed Apply Engine will factor in the `MaxPackages` parameter if you use a temporary DBRM library. For more information about the use of temporary data sets, see “Library” on page 138.

MaxRetries

The `MaxRetries` parameter specifies how many times the High-speed Apply Engine attempts to bind static SQL if the bind action fails due to unavailable DB2 resources (for example, DB2 catalog contention).

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[BindTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 1 to 32767</td>
</tr>
<tr>
<td>Default value</td>
<td>5</td>
</tr>
</tbody>
</table>

Usage

When a bind action fails because of unavailable DB2 resources, High-speed Apply Engine tries the bind action again, in case the resource (such as the DB2 catalog) becomes available. When the number of retry attempts exceeds this value, High-speed Apply Engine stops attempting to bind static SQL and continues processing with dynamic SQL or EXECUTE IMMEDIATE.

Specify a number representing how many times High-speed Apply Engine retries the bind action before it stops attempting to bind static SQL.
Consider these points regarding the MaxRetries parameter:

- Use this parameter to adapt High-speed Apply Engine’s retry attempts to the amount of DB2 catalog contention in your environment. If you have high amounts of catalog contention, set this parameter to a higher value.

- The MaxRetries parameter handles only bind actions that fail because of unavailable DB2 resources. High-speed Apply Engine does not retry bind actions that fail because of other reasons.

- The MaxFailedBinds parameter handles bind actions that fail for other reasons (for example, allocation failures or I/O errors). High-speed Apply Engine does not count bind actions that fail because of unavailable resources as failed binds for purposes of the MaxFailedBinds parameter. For more information, see “MaxFailedBinds” on page 145.

PackageUsage

The PackageUsage parameter specifies the total number of times that the High-speed Apply Engine can execute any of the distinct statement types in an unbound package before it performs a bind action.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[BindTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 1 to 32767</td>
</tr>
<tr>
<td>Default value</td>
<td>500</td>
</tr>
</tbody>
</table>

Usage

Specify a value to represent a number of dynamic execution attempts. (High-speed Apply Engine executes statement types in an unbound package dynamically.)

Specify a lower value to direct High-speed Apply Engine to perform more bind actions more frequently, with fewer distinct statement types in each bound package. For example, if your input includes many repeated statements of the same statement type, specify a lower value to make High-speed Apply Engine bind that statement type and execute it with static SQL sooner.
The **PackageUsage** parameter works in conjunction with the **StatementCount** and **StatementUsage** parameters to determine when to bind a package. You can adjust the value to expedite or delay binding of a package. For more information about using these parameters, see “Using [BindTuning] parameters for performance” on page 143.

StatementCount

The **StatementCount** parameter specifies the total number of distinct statement types that the High-speed Apply Engine can add to an unbound package before it performs a bind action.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[BindTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 1 to 32767</td>
</tr>
<tr>
<td>Default value</td>
<td>200</td>
</tr>
</tbody>
</table>

Usage

Specify a value to represent the number of distinct statement types. Specify a lower value to direct High-speed Apply Engine to perform more bind actions more frequently, with fewer distinct statement types in each bound package. For example, if your input includes a small number distinct statement types, specify a lower value to make High-speed Apply Engine bind the statement types and execute them with static SQL sooner.

Consider the following points as you specify this parameter:

- The **StatementCount** parameter works with the **StatementUsage** and **PackageUsage** parameters to determine when to bind a package. For more information about using these parameters, see “Using [BindTuning] parameters for performance” on page 143.

- If an apply request includes a template file, High-speed Apply Engine counts the entries in the template file against your **StatementCount** value. Each entry in the template file counts as one occurrence of a distinct statement type.
To force High-speed Apply Engine to use static SQL for all input statements, set this parameter to 1 and the **Synchronous** parameter to Yes. If you use this technique, ensure that the **MaxPackages** value is high enough to accommodate the total number of distinct statement types in your input file.

NOTE
The total number of statically bound distinct statement types will not exceed **StatementCount** times **MaxPackages**.

StatementUsage

The **StatementUsage** parameter specifies the number of times that the High-speed Apply Engine can execute one distinct statement type in an unbound package before it performs a bind action.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[BindTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 1 to 32767</td>
</tr>
<tr>
<td>Default value</td>
<td>200</td>
</tr>
</tbody>
</table>

Usage

Specify a value to represent the number of dynamic execution attempts. (High-speed Apply Engine executes statement types in an unbound package dynamically.)

Specify a lower value to direct High-speed Apply Engine to perform more bind actions more frequently, with fewer distinct statement types in each bound package. For example, if your input includes many repeated statements of the same statement type, specify a lower value to make High-speed Apply Engine bind that statement type and execute it with static SQL sooner.

The **StatementUsage** parameter works with the **StatementCount** and **PackageUsage** parameters to determine when to bind a package. Adjust the value of this parameter to expedite or delay the binding of a package. For more information about using these parameters, see “Using [BindTuning] parameters for performance” on page 143.
Synchronous

The Synchronous parameter specifies whether the High-speed Apply Engine can perform other processing (such as dynamic SQL) at the same time as it binds static SQL.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[BindTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Usage

Use this parameter to adapt bind processing to your environment.

- Specify a value of No to allow High-speed Apply Engine to perform other processing during bind actions. This setting can slightly improve performance because it increases parallelism. It also increases the amount of dynamic SQL processing. However, this setting can slightly increase the possibility of authorization conflicts during bind actions.

- Specify a value of Yes (the default value) to prevent High-speed Apply Engine from performing other processing. This setting reduces the amount of dynamic SQL processing.

Be aware of the following points regarding the Synchronous parameter:

- To force High-speed Apply Engine to use static SQL for all input statements, set this parameter to Yes and set the StatementCount parameter to 1. If you use this technique, ensure that the MaxPackages value is high enough to accommodate the total number of distinct statement types in your input file.

- If you specify a value for the AuthID parameter, High-speed Apply Engine forces the value of the Synchronous parameter to Yes and issues message BMC0198.
CommitTriggers parameters

The [CommitTriggers] parameters determine when the High-speed Apply Engine issues SQL COMMIT statements during an apply request. These parameters apply only when High-speed Apply Engine distributes work between multiple agents based on tables or partitions (when the DistributionType parameter is Object). High-speed Apply Engine ignores these parameters when the DistributionType parameter is UR.

Figure 25 shows an example of the [CommitTriggers] section.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommitOnDemand</td>
<td>page 153</td>
</tr>
<tr>
<td>StatementCount</td>
<td>page 154</td>
</tr>
<tr>
<td>Time</td>
<td>page 155</td>
</tr>
</tbody>
</table>

The [CommitTriggers] parameters are optional. They apply to each active agent for the apply request. Depending on the apply request, a given agent might not reach the commit threshold until the end of the job.

If you specify both StatementCount and Time parameters, High-speed Apply Engine issues a COMMIT statement when either limit is reached, and resets the counters for both parameters.
CommitOnDemand

The **CommitOnDemand** parameter specifies whether the High-speed Apply Engine processes or ignores any COMMIT or ROLLBACK statements included in SQL input (when the value of the **DistributionType** parameter is Object).

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[CommitTriggers]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>No</td>
</tr>
</tbody>
</table>

Usage

Use this parameter as one method to make High-speed Apply Engine to honor the original COMMIT or ROLLBACK statements in your SQL input.

- Specify No to direct High-speed Apply Engine to ignore COMMIT or ROLLBACK statements in the SQL input and issue COMMIT statements at points determined by other parameters (such as “StatementCount” on page 154 and “Time” on page 155). This value is the default.

- Specify Yes to direct High-speed Apply Engine to apply COMMIT or ROLLBACK statements to the target database at the same points where the COMMIT statements occur in the SQL input.

 — If you specify Yes, you must set the value of the **MaxAgents** parameter to 1.
 — You can specify Yes only for SQL input.
 — If you specify Yes, High-speed Apply Engine honors the input COMMIT or ROLLBACK statements, but it might perform additional commit or rollback actions in response to certain **Action** parameters of a conflict resolution rule or to resource shortages.

This parameter causes High-speed Apply Engine to honor the original COMMIT or ROLLBACK statements with only one agent and for SQL input. To honor these statements with more than one agent or in logical log input, set the **DistributionType** parameter to UR. For more information, see “**DistributionType**” on page 255.
StatementCount

The **StatementCount** parameter specifies the number of SQL statements that an apply agent processes before that agent issues a COMMIT statement.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[CommitTriggers]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 0 to 32767 is recommended</td>
</tr>
<tr>
<td>Default value</td>
<td>1000</td>
</tr>
</tbody>
</table>

Usage

The High-speed Apply Engine ignores this parameter when it distributes work between multiple agents based on units of recovery (when the **DistributionType** parameter is UR).

Specify a value for **StatementCount** to indicate the number of SQL statements that each agent of a High-speed Apply Engine request processes before issuing a COMMIT statement.

If you specify zero, High-speed Apply Engine commits all statements as a single transaction in most cases. There are, however, circumstances under which High-speed Apply Engine ignores the statement count and forces commits to occur. These circumstances include:

- conflict rules
- use of time as a commit trigger
- internal resource shortages (see Note 1)
- tables specified in input, but nonexistent in target DBMS
- partitioned tables where the partition key is not included in the SQL

Be aware of the following points regarding the **StatementCount** parameter:

- The value of the **StatementCount** parameter applies to each agent.

Note 1: An internal resource shortage can occur as High-speed Apply Engine runs, depending upon the number of agents and the amount of data that the SQL statements contain.
If you specify both the **StatementCount** and **Time** parameters, High-speed Apply Engine issues a COMMIT statement when either parameter reaches its specified limit. Both counters are reset after a commit or rollback occurs. At the end of a request, High-speed Apply Engine issues a final COMMIT statement as part of termination processing.

The value of this parameter affects checkpoint and restart processing. For more information, see page 239.

The BMC Software product LOADPLUS for DB2 passes the value of the APCOMMIT option to High-speed Apply Engine as the **StatementCount** parameter during an SQLAPPLY load action. For more information, see Appendix E, “LOADPLUS and High-speed Apply Engine.”

Time

The **Time** parameter specifies the number of seconds that can pass before an apply agent issues a COMMIT statement during apply processing.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[CommitTriggers]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 1 to 32400</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

Specify a value for the **Time** parameter to indicate the number of seconds between COMMIT statements during apply processing. Each time that an agent reaches or exceeds the value of the **Time** parameter, the agent issues a COMMIT statement.
Be aware of the following points regarding the **Time** parameter:

- The value of the **Time** parameter applies to each agent.

- If you specify both the **StatementCount** and **Time** parameters, the High-speed Apply Engine issues a COMMIT statement when either parameter reaches its specified limit. Both counters are reset after a commit or rollback occurs. At the end of a request, High-speed Apply Engine issues a final COMMIT statement as part of termination processing.

- High-speed Apply Engine ignores this parameter when it distributes work between multiple agents based on units of recovery (when the **DistributionType** parameter is UR).

- The value of this parameter affects checkpoint and restart processing. For more information, see page 239.

NOTE

Some conflict actions might cause a commit to occur, overriding the **Time** value (see page 154).

Configuration parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FileName (CFN)</td>
<td>page 157</td>
</tr>
</tbody>
</table>

The [Configuration] section contains the location of the configuration files for the apply request. This section can be specified *only in the apply request*; you cannot include this section in your configuration file.

If you do not specify a configuration file in the apply request, the High-speed Apply Engine uses a default UNIX or Windows file name, or a DD name. For more information about including a configuration file in the apply request, see “Creating and running apply requests” on page 63.

z/OS
Figure 26 shows sample configuration parameters on a mainframe target.

Figure 26
Example of [Configuration] parameters for mainframe targets

```zsh
//APTBMAIN  EXEC PGM=APTBMAIN,
//               PARM='CFN=APTCFG'
```
Figure 27 shows sample configuration parameters on UNIX.

Figure 27 Example of [Configuration] parameters for UNIX

```plaintext
apebmain CFN=/home/apply/apeconfig.ini
```

Windows Figure 28 shows sample configuration parameters on Windows.

Figure 28 Example of [Configuration] parameters for Windows

```plaintext
apebmain CFN=E:\home\apply\apeconfig.ini
```

FileName (CFN)

The `FileName` (CFN) parameter specifies the name of a data set or file that contains configuration parameters for an apply request.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Configuration]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>CFN</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>DB2</td>
</tr>
<tr>
<td></td>
<td>a fully qualified data set name or a DD name</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB or Oracle</td>
</tr>
<tr>
<td></td>
<td>a file name, including the path name if outside of the current directory</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>indicates that there is no configuration file</td>
</tr>
<tr>
<td></td>
<td>(High-speed Apply Engine uses default values)</td>
</tr>
<tr>
<td>Default values</td>
<td>mainframe targets</td>
</tr>
<tr>
<td></td>
<td>SYSIN</td>
</tr>
<tr>
<td></td>
<td>UNIX and Windows</td>
</tr>
<tr>
<td></td>
<td>apeconfig.ini</td>
</tr>
</tbody>
</table>
Conflict parameters

Usage

This parameter is frequently specified as an override in the apply request. If you do not specify this parameter in the request, the High-speed Apply Engine attempts to locate a file name, data set name, or DD name with the default value.

Because this parameter accepts a value of None, High-speed Apply Engine ignores any file, data set, or a DD statement with a name of “none” (regardless of uppercase or lowercase characters).

For UNIX and Windows, the file that you specify must exist on the server where you run High-speed Apply Engine. If the file is not in the current directory, you must provide the complete path and file name. For more information, see “Data set and file names” on page 105.

For the configuration file, when you do not specify a file name, High-speed Apply Engine uses the default configuration file name (apeconfig.ini).

For mainframe targets, you can specify either a data set name or a DD name, as follows:

- If you specify a name that is longer than eight characters, High-speed Apply Engine treats it as a fully qualified data set name. The data set must already be allocated and cataloged.

- If you specify a name that is eight characters or fewer, High-speed Apply Engine treats it as a DD name. The DD name must refer to a DD statement in the same apply request. If the character string is not a valid DD name, High-speed Apply Engine treats it as a data set name.

For the configuration file, you can use the DD statement to refer to multiple configuration files. For more information, see “Multiple configuration files for DB2 on mainframe targets” on page 48.

Conflict parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataType</td>
<td>page 159</td>
</tr>
<tr>
<td>RetryDelay</td>
<td>page 160</td>
</tr>
<tr>
<td>RetryFail</td>
<td>page 161</td>
</tr>
<tr>
<td>RetryLimit</td>
<td>page 161</td>
</tr>
<tr>
<td>RetryValue</td>
<td>page 163</td>
</tr>
</tbody>
</table>
The [Conflict] parameters define general procedures for conflict management. The High-speed Apply Engine uses these parameters to determine how often to retry conflict resolutions, and where to store deferred conflicts. If you do not include this section in the configuration, High-speed Apply Engine uses default values for conflict management. Figure 29 shows an example of the [Conflict] parameters.

Figure 29 Example of [Conflict] parameter values

<table>
<thead>
<tr>
<th>[Conflict]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RetryFail=abort</td>
</tr>
<tr>
<td>RetryLimit=count</td>
</tr>
<tr>
<td>RetryValue=5</td>
</tr>
</tbody>
</table>

DataType

The **DataType** parameter specifies which types of data that the High-speed Apply Engine sends to the conflict file.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Conflict]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>ID (for Statement Sequence ID)</td>
</tr>
<tr>
<td></td>
<td>Code (for Conflict code)</td>
</tr>
<tr>
<td></td>
<td>SQLCODE (for DBMS SQL code)</td>
</tr>
<tr>
<td></td>
<td>Message (for DBMS SQL message)</td>
</tr>
<tr>
<td></td>
<td>Statement (for SQL statement)</td>
</tr>
<tr>
<td>Default value</td>
<td>all information</td>
</tr>
</tbody>
</table>

Usage

You can specify multiple **DataType** values. The default is to provide all information.
RetryDelay

The RetryDelay parameter specifies the number of seconds that the High-speed Apply Engine waits between retry attempts for conflict resolution. High-speed Apply Engine uses this parameter only when the Code parameter of a conflict resolution rule is RIConflict (or the individual SQL codes defined by RIConflict) and the Action parameter is Retry.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Conflict]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 0 to 32767, representing a number of seconds</td>
</tr>
<tr>
<td>Default value</td>
<td>0 (no delay)</td>
</tr>
</tbody>
</table>

Usage

Specify the number of seconds that you want High-speed Apply Engine to wait between retry attempts. By default, High-speed Apply Engine does not wait (RetryDelay=0).

Use this parameter only when your apply request encounters time-dependent RI-related conflicts. This parameter changes the timing of any retry attempts for conflict resolution.

For example, assume a conflict resolution rule has a Code parameter of RIConflict. As the apply request runs, one agent attempts to insert a row in a child table before another agent has inserted the required row in the parent table. Conflict occurs. The RetryValue and RetryLimit parameters cause High-speed Apply Engine to retry the child insert action five times (in case the other agent performs the parent insert action), but the conflict is not resolved. You can increase your RetryValue and RetryLimit values, but that action increases the overhead with more retry attempts. Alternately, you can use this parameter to slow down the existing five retry attempts by waiting a given number of seconds between each attempt.
RetryFail

The **RetryFail** parameter specifies the action that the High-speed Apply Engine takes if all retry attempts for conflict resolution fail.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Conflict]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Terminate or Abort</td>
</tr>
<tr>
<td>Default value</td>
<td>Abort</td>
</tr>
</tbody>
</table>

Usage

Specify Terminate or Abort.

Use this parameter to define the action that High-speed Apply Engine takes when it reaches the limits specified by the **RetryLimit** and **RetryValue** parameters. For more information about the Terminate and Abort actions, see “Actions for conflict resolution” on page 91.

RetryLimit

The **RetryLimit** parameter indicates the measurement type used for the **RetryValue** parameter. You can specify whether the limit on conflict resolution retry attempts is based on time or on the number of retry attempts.
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Conflict]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Time or Count</td>
</tr>
<tr>
<td>Default value</td>
<td>Count</td>
</tr>
</tbody>
</table>

Usage

Specify one of the following values for the RetryLimit parameter. For more information about the RetryValue parameter, see “RetryValue” on page 163.

- Time indicates that the High-speed Apply Engine will issue retry attempts until it reaches the number of seconds specified by the RetryValue parameter.

- Count indicates that High-speed Apply Engine will issue retry attempts until it reaches the number of attempts specified by the RetryValue parameter.

The BMC Software product LOADPLUS for DB2 passes the value of the APRETRYLIM option to High-speed Apply Engine as the RetryLimit parameter during an SQLAPPLY load action. For more information, see Appendix E, “LOADPLUS and High-speed Apply Engine.”
RetryValue

The `RetryValue` parameter specifies the conflict resolution retry limit for each unit of recovery (transaction) in the request. When a transaction exceeds the specified limit, the High-speed Apply Engine takes the action specified by the `RetryFail` parameter. The measurement for this parameter is based on the value that you specify for the `RetryLimit` parameter. For more information, see “RetryLimit” on page 161.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>Conflict</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer that represents either the number of seconds or the number of retry attempts, depending on the value specified for the RetryLimit parameter</td>
</tr>
<tr>
<td>Default value</td>
<td>5</td>
</tr>
</tbody>
</table>

Usage

Specify a value for the number of seconds or the number of attempts that High-speed Apply Engine should retry the conflict resolution rules for each transaction in the apply request.

The BMC Software product LOADPLUS for DB2 passes the value of the APRETRYVAL option to High-speed Apply Engine as the `RetryValue` parameter during an SQLAPPLY load action. For more information, see Appendix E, “LOADPLUS and High-speed Apply Engine.”
ConflictFile parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATACLAS</td>
<td>page 165</td>
</tr>
<tr>
<td>DISP</td>
<td>page 165</td>
</tr>
<tr>
<td>FileNameModel</td>
<td>page 166</td>
</tr>
<tr>
<td>Like</td>
<td>page 169</td>
</tr>
<tr>
<td>MediaType</td>
<td>page 169</td>
</tr>
<tr>
<td>MaxVol</td>
<td>page 170</td>
</tr>
<tr>
<td>MGMTCLAS</td>
<td>page 171</td>
</tr>
<tr>
<td>Release</td>
<td>page 171</td>
</tr>
<tr>
<td>SingleFile</td>
<td>page 172</td>
</tr>
<tr>
<td>SPACE</td>
<td>page 173</td>
</tr>
<tr>
<td>SpacePri</td>
<td>page 174</td>
</tr>
<tr>
<td>SpaceSec</td>
<td>page 174</td>
</tr>
<tr>
<td>STORCLAS</td>
<td>page 175</td>
</tr>
<tr>
<td>UNIT</td>
<td>page 176</td>
</tr>
<tr>
<td>VOLSER</td>
<td>page 176</td>
</tr>
</tbody>
</table>

The [ConflictFile] parameters define how the files that contain deferred conflicts are allocated and managed. If you specify a conflict resolution rule with any of the defer actions, the deferred conflicts are stored in the files that you define with the parameters in this section. Figure 30 shows an example of the [ConflictFile] parameters.

Figure 30 Example of [Conflictfile] parameter values

```
[ConflictFile]
FileNameModel=&SYSUID..APT.&REQUESTID..D&DATe..T&TIME.
SingleFile=No
Storclas=CONFLICT
```
DATACLAS

The **DATACLAS** parameter identifies a data class defined by DFSMS. The High-speed Apply Engine uses the data class when it allocates conflict files.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a data class that is defined in DFSMS for your environment</td>
</tr>
<tr>
<td>Default value</td>
<td>the value of the DATACLAS parameter specified in the [TemporaryFiles] section</td>
</tr>
</tbody>
</table>

Usage

The data class defines data attributes for DFSMS-managed data sets. This parameter applies only to systems that use DFSMS. If your environment does not use DFSMS, High-speed Apply Engine specifies the **DATACLAS** parameter in its allocation request, but the operating system does not honor its value.

DISP

The **DISP** parameter specifies the disposition of the files allocated for deferred conflicts.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>NEW, OLD, or SHR</td>
</tr>
<tr>
<td>Default value</td>
<td>NEW</td>
</tr>
</tbody>
</table>
Usage

The DISP parameter specifies the disposition of the conflict file. You can specify one of the following values for the DISP parameter:

- NEW indicates that the data set is new. The High-speed Apply Engine creates a new data set each time it processes the apply request. NEW is the default value.
- OLD indicates that the data set exists and that it is not a shared data set.
- SHR indicates that the data set exists and that it is a shared data set.

NOTE

When you restart an apply request, High-speed Apply Engine ignores this value and conflict information is appended to the original conflict file, which must exist.

FileNameModel

The FileNameModel parameter defines the file name that the High-speed Apply Engine uses to store information about conflicts that you specify as deferred. You can use symbolic variables as part of the file name.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Text, symbolic variables, or both. Specify variables in uppercase. mainframe targets The name must resolve to a maximum length of 44 characters. This parameter supports GDG and PDS data set names.</td>
</tr>
</tbody>
</table>
| Default value | mainframe targets

UNIX and Windows

&SYSUID..BMCAPE.&REQUESTID..D&DATE..T&TIME.
Usage

You can use symbolic variables, character strings, or a combination of both as the value of the `FileNameModel` parameter. For an example of the file-name model, see Figure 30 on page 164.

In some circumstances, you might need to re-apply SQL statements that have been previously written to a conflict file. If you do, remember to ensure that the name of the former conflict file (now being read as the input file) is different than the name of the current conflict file.

Table 14 describes the symbolic variables available for High-speed Apply Engine. The variables that you specify are replaced with actual values when you run an apply request. They are resolved according to standard substitution rules.

NOTE

If the value for SingleFile is set to No, the agent ID will be appended to the name. For more information, see “SingleFile” on page 172.

Symbolic variables have the following format:

- All variables require an ampersand (&) prefix.
- Qualifiers in the model are separated by a period.
- If necessary for substitution, use a trailing period to delimit the variable name.
- For mainframe targets
 - the resulting name must be less than or equal to 44 characters long.
 - date and time variables must be prefixed by an alphabetic character.

You must specify the variables in uppercase. You can specify character strings in lowercase or mixed case if you enclose the value of `FileNameModel` in quotation marks.

Table 14 Symbolic variables for the FileNameModel parameter (part 1 of 2)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&REQUESTID</td>
<td>the job ID assigned by the system when the apply request is processed</td>
</tr>
<tr>
<td>&DATE</td>
<td>the current date in the format <code>yyyyddd</code>, where</td>
</tr>
<tr>
<td></td>
<td>- <code>yyyy</code> is the year</td>
</tr>
<tr>
<td></td>
<td>- <code>ddd</code> is the numeric day (001 to 366)</td>
</tr>
<tr>
<td></td>
<td>For mainframe targets, when the &DATE variable is part of the file name model, you must include an alphabetic prefix (for example, D&DATE).</td>
</tr>
</tbody>
</table>
For mainframe targets, High-speed Apply Engine supports the following additional data set naming conventions in the FileNameModel parameter:

- **generation data group (GDG)**

 Define the GDG base data set before you execute High-speed Apply Engine. For multiple conflict files (multiple agents), define a GDG base for each file (agent) before you execute High-speed Apply Engine. A typical GDG model name is shown in the following sample:

  ```
  &SYSUID..BASENAME..D&DATE..T&TIME.MIGR(+1)
  ```

- **partitioned data set (PDS) member names**

 High-speed Apply Engine does not support PDS data sets for multiple conflict files. A typical PDS model name is shown in the following sample:

  ```
  &SYSUID..BASENAME..D&DATE..T&TIME.MIGR(WKLY01)
  ```

Table 14 Symbolic variables for the FileNameModel parameter (part 2 of 2)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
</table>
| &DBSERVER | Oracle: the SID of the current Oracle server
If you specify a value for the Login parameter, High-speed Apply Engine uses that value to determine the SID. If you do not specify the Login parameter, High-speed Apply Engine determines the current SID from the ORACLE_SID environment variable.
DB2 for mainframe targets: the SSID of the current DB2 subsystem
You can specify either &DBSERVER, or &SSID for DB2 mainframe targets. High-speed Apply Engine determines this value from the SSID parameter
DB2 UDB: High-speed Apply Engine uses the database parameter from configuration. |
| &JOBNAME | the batch job name for the apply request |
| &SSID | the subsystem ID (SSID) of the target DB2 subsystem
This variable is not valid for Oracle and DB2 UDB targets. |
| &SYSUID | the user ID associated with the apply request |
| &TIME | the current time in the format hhmmss, where
- hh is the hour
- mm is the minute
- ss is the second
For mainframe targets, when the &TIME variable as part of the file name model, you must include an alphabetic prefix (for example, T&TIME). |
LIKE

z/OS The LIKE parameter lets you specify an existing data set as a model for the allocation attributes for the conflict files.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an existing data set that has the allocation attributes that you want to use for the conflict files</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

If you have already defined and created a data set to contain conflicts, you can use that data set name to define new conflict data sets. The data set name that you specify must refer to an existing data set on the system where the apply request runs.

MediaType

The MediaType parameter specifies the storage media for conflict information.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>DB2 File or Queue, DB2 UDB and Oracle File</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>
Usage

The MediaType parameter allows you to specify the type of storage media that will be used for the deferred-conflict information. The valid values are File or Queue. Queue refers to an MQSeries queue. For Oracle and DB2 UDB the only valid value is File.

MAXVOL

The MAXVOL parameter specifies the maximum number of disk volumes that the High-speed Apply Engine can use to allocate conflict files.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 1 to 255</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

(If you do not specify a value, High-speed Apply Engine does not include any maximum number of volumes as it allocates conflict files.)

Usage

If your environment uses DFSMS, High-speed Apply Engine specifies the MaxVol parameter in its allocation request, but the operating system does not honor its value.
The MGMTCLAS parameter identifies a management class defined in DFSMS. The High-speed Apply Engine uses the management class when it allocates conflict files.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a management class that is defined in DFSMS for your environment</td>
</tr>
<tr>
<td>Default value</td>
<td>the value of the MGMTCLAS parameter specified in the [TemporaryFiles] section</td>
</tr>
</tbody>
</table>

Usage

The management class defines how DFSMS manages the data sets in the class. This parameter applies only to systems that use DFSMS. If your environment does not use DFSMS, High-speed Apply Engine specifies the MGMTCLAS parameter in its allocation request, but the operating system does not honor its value.

RELEASE

The RELEASE parameter determines whether the High-speed Apply Engine requests the operating system to release any unused disk space when it closes conflict files.
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Usage

Use this parameter to manage any disk space that is allocated to conflict files, but not used during processing.

- Specify Yes to request that the operating system release any unused disk space at the end of processing.
- Specify No to avoid requesting that the operating system release any unused disk space.

SingleFile

The SingleFile parameter indicates whether the High-speed Apply Engine creates a single defer file or queue for all conflicts, or one for each apply agent.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>No</td>
</tr>
</tbody>
</table>
Usage

- Specify Yes to create a single conflict file for the entire apply request. Specify No to create a conflict file for each agent that processes the apply request.

- Specify No to direct High-speed Apply Engine to append the conflict file name to the agent ID, in the format .INn. The I indicates that the identifier is an agent ID. The nn variable is a sequential number between 1 and the maximum number of agents.

For more information about specifying the model for deferred-conflict file or queue names, see “FileNameModel” on page 166 or “RELEASE” on page 171.

SPACE

The **SPACE** parameter identifies the allocation unit to be used for conflict files.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>CYLINDER, CYL, TRACK, or TRK</td>
</tr>
<tr>
<td>Default value</td>
<td>Track</td>
</tr>
</tbody>
</table>

Usage

Specify an appropriate allocation unit for your environment, or accept the default value (track). The value that you specify determines the unit of measurement for the **SpacePri** and **SpaceSec** parameters.
The **SpacePri** parameter specifies the primary amount of space that is allocated for each conflict file. The unit of measurement for the **SpacePri** parameter is determined by the **SPACE** parameter.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer greater than or equal to 1</td>
</tr>
<tr>
<td>Default value</td>
<td>15</td>
</tr>
</tbody>
</table>

Usage

Specify a value that allocates enough primary storage space for the conflict files that the apply request might generate. The amount of storage that you need depends on the number of conflicts that will be generated, and whether you send all conflicts to a single file or have a file generated for each agent.

The **SpaceSec** parameter specifies the secondary amount of space that is allocated for each conflict file. The unit of measurement for the **SpaceSec** parameter is determined by the **SPACE** parameter.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer greater than or equal to 0</td>
</tr>
<tr>
<td>Default value</td>
<td>5</td>
</tr>
</tbody>
</table>
Usage

Specify a value that allocates enough secondary storage space for the conflict files that the apply request might generate. The amount of storage that you need depends on the number of conflicts that will be generated, and whether you send all conflicts to a single file or have a file generated for each agent.

STORCLAS

The STORCLAS parameter specifies a storage class defined by DFSMS. The High-speed Apply Engine uses the storage class to allocate conflict files.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a storage class that you have defined for DFSMS</td>
</tr>
<tr>
<td>Default value</td>
<td>the value of the STORCLAS parameter specified in the [TemporaryFiles] section</td>
</tr>
</tbody>
</table>

Usage

This parameter only applies to environments that use DFSMS. If your environment does not use DFSMS, High-speed Apply Engine specifies the STORCLAS parameter in its allocation request, but the operating system does not honor its value.
UNIT

The UNIT parameter specifies a unit type that the High-speed Apply Engine uses to allocate conflict files for apply processing.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>any valid storage unit identifier for your environment</td>
</tr>
<tr>
<td>Default value</td>
<td>the value of the UNIT parameter specified in the [TemporaryFiles] section</td>
</tr>
</tbody>
</table>

Usage

If you specify a value for the STORCLAS parameter, you do not need to specify a unit type. If your environment uses DFSMS, High-speed Apply Engine specifies the UNIT parameter in its allocation request, but the operating system does not honor its value.

VOLSER

The VOLSER parameter specifies the volume serial numbers that the High-speed Apply Engine uses to allocate conflict files for apply processing.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ConflictFile]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid volume serial number for a storage device</td>
</tr>
<tr>
<td>Default value</td>
<td>the value of the VOLSER parameter specified in the [TemporaryFiles] section</td>
</tr>
</tbody>
</table>
Usage

You can specify the VOLSER parameter as many times as necessary to define storage devices for the conflict files. If you specify a value for the STORCLAS parameter, you do not need to specify a volume serial number.

DDLConflict parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>page 128</td>
</tr>
<tr>
<td>Code</td>
<td>page 128</td>
</tr>
</tbody>
</table>

The [DDLConflict] parameters determine how the High-speed Apply Engine handles conflicts that occur for data definition language (DDL) statements in the input file. You can specify as many codes and actions as required for the types of DDL conflicts that might occur. Figure 31 shows an example of the [DDLConflict] parameters.

Figure 31 Example of [DDLConflict] parameter values

```
[DDLConflict]
  Code=TimeOut
  Action=Retry
```

If an SQL statement does not start with INSERT, UPDATE or DELETE, High-speed Apply Engine uses the rules defined the [DDLConflict] parameters. High-speed Apply Engine uses [DDLConflict] rules to process EXCHANGE statements.

For more information about the parameters that you can specify in the conflict sections, see “AnyConflict parameters” on page 127. For more information about valid values of the Code parameter, see “Codes for conflict resolution (SQL codes)” on page 87. For more information about valid values of the Action parameter, see “Actions for conflict resolution” on page 91.
DeleteConflict parameters

The [DeleteConflict] parameters describe how the High-speed Apply Engine handles conflicts that occur for DELETE statements in the apply request. You can specify as many codes and actions as required for the types of conflicts that might occur. The values that you specify in the [DeleteConflict] section override the values specified in the [AnyConflict] section (for DELETE statements). Figure 32 shows an example of the [DeleteConflict] parameters.

For more information about the parameters that you can specify in the conflict sections, see “AnyConflict parameters” on page 127. For more information about valid values of the Code parameter, see “Codes for conflict resolution (SQL codes)” on page 87. For more information about valid values of the Action parameter, see “Actions for conflict resolution” on page 91.

DiagnosticOutput parameter

The [DiagnosticOutput] parameter controls where the High-speed Apply Engine writes special diagnostic information used by BMC Software Customer Support in troubleshooting situations. High-speed Apply Engine writes output to this file when:

- it terminates with an error (for mainframe targets, a return code greater than or equal to 8)
- a restart occurs and the value of the RestartType parameter is other than None
High-speed Apply Engine writes diagnostic information to a standard, default location, depending on the operating system. You can use the FileName parameter to override the default location for this information. Figure 33 shows an example of the [DiagnosticOutput] parameters.

Figure 33 Example of [DiagnosticOutput] parameter values

<table>
<thead>
<tr>
<th>[DiagnosticOutput]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FileName=APPLY.DIAG</td>
</tr>
</tbody>
</table>

FileName

The FileName parameter in the [DiagnosticOutput] section specifies the location where the High-speed Apply Engine writes special diagnostic information used by BMC Software Customer Support in troubleshooting situations. Use this parameter to override the default location for the diagnostic output file.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[DiagnosticOutput]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
</tbody>
</table>
| Valid values | DB2
| | a fully qualified data set name or a DD name |
| | DB2 UDB or Oracle |
| | a file name, including the path name if outside of the |
| | default path |
| Default values | DB2
| | APTDIAG |
| | DB2 UDB, Oracle |
| | apediag |
DisplayOutput parameter

Usage

High-speed Apply Engine writes output to this file only when a restart occurs and the value of the RestartType parameter is other than None.

You can specify any valid data set or DD name, or a UNIX or Windows file name for the FileName parameter. For more information about specifying file names on different operating systems, see Usage in “FileName (CFN)” on page 157.

For mainframe targets, you can use a DD statement to allocate and catalog a new data set. The default DD name for the diagnostic output file is APTDIAG.

DisplayOutput parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FileName (DFN)</td>
<td>page 180</td>
</tr>
</tbody>
</table>

The [DisplayOutput] parameter controls how the High-speed Apply Engine displays statistics and messages that are generated during apply processing. High-speed Apply Engine always writes messages and statistics to a standard location for the operating system, or the file defined by the APTPRINT DD statement. You can use the FileName parameter to identify an additional, optional location for these messages. Figure 34 shows an example of the [DisplayOutput] parameters.

Figure 34 Example of [DisplayOutput] parameter values

<table>
<thead>
<tr>
<th>[DisplayOutput]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FileName=APPLY.DISPLAY</td>
</tr>
</tbody>
</table>

FileName (DFN)

The FileName (DFN) parameter specifies an optional, supplemental location where the High-speed Apply Engine sends the messages that are generated during apply processing. On UNIX and Windows, this is a copy of stdout. For mainframe targets, this is a copy of APTPRINT.
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[DisplayOutput]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>DFN</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>DB2</td>
</tr>
<tr>
<td></td>
<td>a fully qualified data set name or a DD name</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB or Oracle</td>
</tr>
<tr>
<td></td>
<td>a file name, including the path name if outside of the default path</td>
</tr>
<tr>
<td>Default values</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

You can specify any valid data set or DD name, or a UNIX or Windows file name for the FileName parameter. The display output file also contains messages generated by the apply request. You specify the display output file as described in “DisplayOutput parameter” on page 180.

For more information about specifying file names on different operating systems, see Usage in “FileName (CFN)” on page 157. You can use a DD statement to allocate and catalog a new data set.

DistributionTuning parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxImmediateDML</td>
<td>page 183</td>
</tr>
<tr>
<td>PartitionClustering</td>
<td>page 184</td>
</tr>
<tr>
<td>RIClustering</td>
<td>page 186</td>
</tr>
<tr>
<td>RIRecursionLimit</td>
<td>page 187</td>
</tr>
<tr>
<td>SimpleTSClustering</td>
<td>page 188</td>
</tr>
<tr>
<td>URCheckRI</td>
<td>page 189</td>
</tr>
</tbody>
</table>

The [DistributionTuning] parameters control how the High-speed Apply Engine distributes work between multiple agents during apply processing. For more information about the different techniques you can use to distribute work between agents, see “Distribution of work” on page 38.
Figure 35 shows an example of the [DistributionTuning] parameters.

Figure 35 Example of [DistributionTuning] parameter values

<table>
<thead>
<tr>
<th>[DistributionTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PartitionClustering=No</td>
</tr>
<tr>
<td>RIClustering=Yes</td>
</tr>
<tr>
<td>RIRecursionLimit=3</td>
</tr>
<tr>
<td>SimpleTSClustering=Yes</td>
</tr>
</tbody>
</table>

Default distribution of work

If you do not change any default values, the High-speed Apply Engine distributes work between multiple agents according to the following criteria:

- By default, High-speed Apply Engine always uses distribution by object. You must explicitly request distribution by UR. For more information, see “DistributionType” on page 255.

- For tables that are part of RI relationships, High-speed Apply Engine uses the same agent to process updates to both parent and child tables (subject to parameters that you can adjust). For more information, see “RIRecursionLimit” on page 187.

- For partitioned tables, High-speed Apply Engine distributes work by partition.

- For tables that reside in a simple (nonsegmented) table space, High-speed Apply Engine uses the same agent to process all updates to all tables in the table space.

- For tables that reside in segmented table spaces and are not subject to RI, High-speed Apply Engine distributes work by table. High-speed Apply Engine uses the same agent for all updates to each table.

Precedence for distribution of work by object

The following list shows how the High-speed Apply Engine resolves conflicts between different types of distribution by object (when you define more than one type in your configuration). A type of distribution higher on this list takes precedence over a type that is lower on the following list:

- user-defined groups of tables
 (defined by [ObjectCluster] parameters)

- groups of tables defined by RI relationships
 (when RIClustering is Yes)
user-defined partitions
(defined by [ObjectPartition] parameters)

- partitions defined by partitioned table spaces
 (when PartitionClustering is No)

- DB2 range partitions
 (when both range and hash partitioning are specified)

- DB2 groups of tables defined by simple table spaces
 (when SimpleTSClustering is No)

- individual tables

MaxExecuteImmediateDML

The MaxExecuteImmediateDML parameter defines a limit on how many data manipulation language (DML) statements the High-speed Apply Engine can process as EXECUTE IMMEDIATE.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[DistributionTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer greater than or equal to zero</td>
</tr>
<tr>
<td>Default value</td>
<td>none (By default, High-speed Apply Engine does not limit the number of DML statements processed with EXECUTE IMMEDIATE.)</td>
</tr>
</tbody>
</table>

Usage

Normally, High-speed Apply Engine processes data definition language (DDL) statements by issuing an EXECUTE IMMEDIATE command. High-speed Apply Engine also processes a few types of complex DML statements this way (for example, an INSERT statement with an embedded SELECT clause). However, when High-speed Apply Engine experiences problems processing statements with static or dynamic SQL, it attempts to continue processing by using EXECUTE IMMEDIATE as a last resort.
PartitionClustering

Specify a number of statements to impose a limit. By default, High-speed Apply Engine does not impose a limit.

- Use this parameter to stop High-speed Apply Engine from executing an unusually large number of DML statements in a less than optimal manner. When High-speed Apply Engine exceeds the limit set by this parameter, it issues message BMCAPT0196 and terminates processing.

- Depending on the MaxExecuteImmediateDML value you specify, message BMCAPT0196 can indicate that High-speed Apply Engine is not using static or dynamic SQL processing as much as it should be.

- The message can also indicate that you should adjust the values of the [BindTuning] parameters, particularly MaxPackages. For more information, see “Using [BindTuning] parameters for performance” on page 143 and “MaxPackages” on page 146.

PartitionClustering

The PartitionClustering parameter determines how the High-speed Apply Engine distributes a request for partitioned target tables.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[DistributionTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>No</td>
</tr>
</tbody>
</table>

Usage

Use this parameter to enable or disable the distribution of work between multiple agents based on the physical partitions of a target table (as defined in the DBMS). Select one of the following values:

- Specify Yes to process all of the partitions in a target table with a single agent.

- Specify No to process each partition in a target table with a separate agent. The default value is No.
For more information, see “Distribution of work” on page 38. Be aware of the following points when you specify this parameter:

- High-speed Apply Engine ignores this parameter when it distributes work between multiple agents based on units of recovery (when the DistributionType parameter is UR).

- BMC Software recommends setting this parameter to Yes if any SQL statement in your input updates the partitioning key so that a row in the target table moves from one partition to another. If you set the parameter to No in this situation, you increase the possibility that High-speed Apply Engine can execute SQL statements in an incorrect order or that multiple agents can encounter deadlock conditions.

- If you specify No, exercise caution when the partitioning key of a target table is not the same as the primary key. High-speed Apply Engine can encounter synchronization errors between the agents that process different partitions. To avoid synchronization errors, define logical partitions (with [ObjectPartition] parameters) based on the table’s primary key.

- High-speed Apply Engine supports the standard range partitions available on DB2 for mainframe targets.

- High-speed Apply Engine supports the standard range and hash partitions available on DB2 Universal Database targets on UNIX or Windows.

- High-speed Apply Engine supports range partitions available on Oracle on UNIX or Windows. High-speed Apply Engine does not support hash, list, composite range-hash, or composite range-list partitioning.
RICIustering

The **RICIustering** parameter determines whether the High-speed Apply Engine distributes work between multiple agents based on the referential integrity (RI) settings of the target tables.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[DistributionTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Usage

Use this parameter to group tables based on database-defined RI relationships, and to send the SQL statements affecting any table in an RI group to the same agent. This type of work distribution reduces the possibility of RI-related conflicts. To create the groups, High-speed Apply Engine follows the chain of *parent* tables in RI relationships, up to the number of generations specified by the **RIRecursionLimit** parameter (for more information, see page 187). As it encounters new tables, High-speed Apply Engine dynamically updates the groups of tables. Select one of the following values:

- Specify Yes if you want High-speed Apply Engine to group target tables based on database-defined RI relationships and distribute work for each group to a different agent. The default value is Yes.

- Specify No to permit multiple agents to process the target tables in an RI relationship. If you specify No, RI-related conflicts can occur because High-speed Apply Engine does not always process the statements in the same order in which they were input. You might want to set up conflict rules to handle such errors by deferring them, then reprocessing the deferred SQL. If you specify No, High-speed Apply Engine ignores the value of the **RIRecursionLimit** parameter.

This parameter does not apply under distribution by unit of recovery (when the **DistributionType** parameter is UR). To control RI processing under distribution by unit of recovery, use the **URCheckRI** parameter. If you include the [ObjectCluster] section in your configuration, High-speed Apply Engine sets this parameter to No, regardless of the value specified in the configuration.
Because this parameter is Yes by default, the most common reason to specify it is to disable this type of distribution and prevent High-speed Apply Engine from grouping tables based on database-defined RI. You might want to disable RI distribution for the following reasons:

- You know there are RI relationships between the target tables in your apply request, but you know that either 1) there are no RI conflicts in your input data, or 2) you can safely ignore any RI conflicts. By disabling distribution based on RI, you can
 — enable multi-threaded execution for faster performance
 — avoid unnecessary processing as High-speed Apply Engine interrogates the target DBMS to determine RI relationships.

- Your apply request includes partitioned tables that are part of RI relationships, but none of the other RI-related tables are included in the apply request. In this situation, you disable RI distribution to let High-speed Apply Engine distribute work between agents based on partitions instead of RI relationships. For more information, see “Precedence for distribution of work by object” on page 182.

RIRecursionLimit

The RIRecursionLimit parameter determines how many generations of referential integrity (RI) relationships the High-speed Apply Engine examines as it creates groups of tables based on database-defined RI.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[DistributionTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 0 to 32767, or the keyword Max</td>
</tr>
<tr>
<td>Default value</td>
<td>Max</td>
</tr>
</tbody>
</table>
Usage

Use this parameter to control how much processing High-speed Apply Engine performs to determine the RI relationships of the target tables in the apply request. With this parameter, you can avoid unnecessary RI-related processing when your target database contains many generations of RI relationships, but your target tables are related by only a few generations of RI relationships. Select one of the following values:

- Specify 0 to disable RI-related processing. (Alternately, you can set the value of the RIClustering parameter to No).
- Specify a number between 1 and 32767 to define a number of generations in the chain of RI parent relationships.
- Specify Max to direct High-speed Apply Engine to determine all of the “parent” RI relationships beginning with the target tables of the apply request. For compatibility with earlier versions, the default value is Max.

Be aware of the following points regarding this parameter:

- If either the RIClustering parameter or the URCheckRI parameter are set to No, High-speed Apply Engine ignores the value of the RIRecursionLimit parameter.
- High-speed Apply Engine looks at only the parent tables in RI relationships. High-speed Apply Engine starts with the first target table it encounters. If the RIClustering parameter is Yes and this parameter is greater than zero, High-speed Apply Engine interrogates the target DBMS to find the immediate parent tables of the target table. Then it determines the parents of the parents and so forth, depending on the number of generations that you specify. When High-speed Apply Engine encounters a new target table, it follows the chain of RI parent relationships again, up to the number of generations you specify.

For example, if you know that your input includes only child tables and their immediate RI parents, specify 1 to prevent High-speed Apply Engine from acquiring RI information for any grandparent tables. Match the scope of RI-related processing to the scope of the RI relationships in your input data.

SimpleTSClustering

The SimpleTSClustering parameter indicates whether the High-speed Apply Engine uses the same apply agent to process updates to all tables in a simple table space.
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[DistributionTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Usage

Select one of the following values:

- Specify Yes to direct High-speed Apply Engine to cluster the tables of a simple table space together and send all statements for the tables to the same apply agent.

- Specify No to direct High-speed Apply Engine to distribute the statements by table. The consequence of specifying No is a greater risk of deadlocks between the agents.

High-speed Apply Engine ignores this parameter when it distributes work between multiple agents based on units of recovery (when the DistributionType parameter is UR).

URCheckRI

The URCheckRI parameter determines whether the High-speed Apply Engine accommodates dependencies between units of recovery (transactions) based on database-defined referential integrity (RI) relationships. High-speed Apply Engine uses this parameter only when it distributes work between multiple agents based on transactions (when the DistributionType parameter is UR).
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[DistributionTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Usage

When you select distribution by UR, High-speed Apply Engine can direct multiple agents to wait as needed when statements in two different transactions update tables that are part of a database-defined RI relationship. (High-speed Apply Engine directs the agent processing the later transaction to wait until the agent processing the earlier transaction finishes and performs a commit action.) For more information about distribution by UR, see page 38 or page 255. Select one of the following values:

- Specify Yes to accommodate transaction dependencies based on database-defined RI relationships. This value is the default.
- Specify No to ignore transaction dependencies based on database-defined RI relationships. High-speed Apply Engine does not examine the RI relationships of the target tables in your input data. Use this value to avoid RI-related processing when you know that 1) your input data does not contain any RI dependencies or that 2) you can safely ignore the RI dependencies in your input data.

Be aware of the following points regarding the URCheckRI parameter:

- This parameter does not apply under distribution by object (when the DistributionType parameter is Object). To control RI processing under distribution by object, use the RIClustering parameter.
- Set this parameter to Yes when your input contains a larger number of RI dependencies. If the input contains fewer RI dependencies, consider setting this parameter to No and using a conflict resolution rule with an Code parameter of RIConflict and an Action parameter of Retry.
The [ErrorOutput] parameter controls where the High-speed Apply Engine displays error messages that are generated during apply processing. The messages are always written to a standard location for the operating system, or the file defined by the APTERR DD statement. You can use the FileName parameter to identify an additional, optional location for these messages. Figure 36 shows an example of the [ErrorOutput] parameter.

Figure 36 Example of [ErrorOutput] parameter values

```
[ErrorOutput]
  FileName=APTErr
```

FileName (EFN)

The FileName (EFN) parameter lets you specify an optional, supplemental location to which the High-speed Apply Engine sends error messages that the apply request generates. On UNIX and Windows, this is a copy of stderr. For mainframe targets, this is a copy of APTERR.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ErrorOutput]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>EFN</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>DB2</td>
</tr>
<tr>
<td></td>
<td>a fully qualified data set name or a DD name</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB or Oracle</td>
</tr>
<tr>
<td></td>
<td>a file name, including the path name if outside of the default path</td>
</tr>
<tr>
<td>Default values</td>
<td>none</td>
</tr>
</tbody>
</table>
Usage

You can specify any valid data set or DD name, or a UNIX or Windows file name for the FileName parameter. The error output file also contains messages and statistics that the apply request generates. You specify the error output file as described in “ErrorOutput parameter” on page 191.

For more information about specifying file names on different operating systems, see Usage in “FileName (CFN)” on page 157. For mainframe targets, you can use a DD statement to allocate and catalog a new data set.

InsertConflict parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>page 128</td>
</tr>
<tr>
<td>Code</td>
<td>page 128</td>
</tr>
</tbody>
</table>

The [InsertConflict] parameters describe how the High-speed Apply Engine handles conflicts that occur for INSERT statements in the apply request. You can specify as many codes and actions as required for the types of conflicts that might occur. The values that you specify in the [InsertConflict] section override the values specified in the [AnyConflict] section (for INSERT statements). Figure 37 shows an example of the [InsertConflict] parameters.

Figure 37 Example of [InsertConflict] parameter values

```
[InsertConflict]
  Code=NoRows
  Action=Abort
```

For more information about the parameters that you can specify in the conflict sections, see “AnyConflict parameters” on page 127. For a list of valid values for the Code parameter, see “Codes for conflict resolution (SQL codes)” on page 87. For a list of valid values for the Action parameter, see “Actions for conflict resolution” on page 91.
LogicalLog parameters

When you apply logical log input created by Log Master for DB2 (or an application program that conforms to the published format), the [LogicalLog] parameters control how the High-speed Apply Engine processes your input. Figure 38 shows an example of the [LogicalLog] parameters. For more information about logical log file format, see the chapter about logical log files in the Log Master for DB2 Reference Manual.

Figure 38 Example of [LogicalLog] parameter values

```plaintext
[LogicalLog]
IncludeRI=Yes
IncludeTrigger=Yes
Qualify=CHANGED
Sort=YES
SQLType=MIGRATE
UpdateColumns=CHANGED
```
CCSIDCompatible

The CCSIDCompatible parameter indicates whether the High-speed Apply Engine should bypass character conversion in a specific situation.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogicalLog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>No</td>
</tr>
</tbody>
</table>

Usage

Use this parameter to bypass character conversion when you know that the Coded Character Set Identifiers (CCSIDs) of two different sets of host variables are compatible, but High-speed Apply Engine encounters an error as it attempts to convert characters. Select one of the following values:

- Specify Yes to assume the CCSIDs are compatible and bypass character conversion.
- Specify No to assume the CCSIDs are not compatible and cause High-speed Apply Engine to report an error when it cannot find character conversion information in the SysStrings table of the DB2 catalog.

High-speed Apply Engine checks the value of this parameter only when all of the following conditions are true:

- The CCSID of the host variables for the source database is different than the CCSID of the host variables for the target database
- High-speed Apply Engine cannot locate either
 — SysStrings information from the DB2 catalog
 — a string conversion utility for the two specified CCSIDs
The IncludeDDL parameter determines whether the High-speed Apply Engine processes or ignores any data definition language (DDL) information that is present in logical log input. This parameter is valid only for logical log input generated by Log Master for DB2.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogicalLog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Usage

High-speed Apply Engine uses EXECUTE IMMEDIATE to process all DDL statements. Select one of the following values:

- Specify Yes to direct High-speed Apply Engine to process any DDL information in the logical log input.

- Specify No to direct High-speed Apply Engine to ignore any DDL information in the logical log input.

For more information, see the chapter about Log Master for DB2 syntax in the Log Master for DB2 Reference Manual.
IncludeLOB

The IncludeLOB parameter specifies whether the High-speed Apply Engine processes or ignores records in the logical log that apply to large object (LOB) columns. If you need to update LOB columns in the target tables, set this parameter to Yes.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogicalLog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes, No, Inline</td>
</tr>
<tr>
<td>Default value</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Usage

Specify Yes to include LOB column data in the changes to target tables. Specify No when the source tables do not contain LOB columns or when they contain LOB columns, but you do not want to attempt to update the LOB columns in the target tables. Specify Inline to include only inline LOB data in the changes to target tables, ignoring the auxiliary LOB tables. The default value of this parameter is Yes.

Be aware of the following points regarding High-speed Apply Engine and LOB processing:

- Valid logical log input files include LOB column data in separate LOB VSAM files (one set of LOB VSAM files for each LOB column, or each partition of each LOB column). Ensure that the appropriate LOB VSAM files are available to High-speed Apply Engine along with the logical log input file.

- If your input file contains LOB column data, consider specifying a value of Yes for the LargeStatementSupport parameter to accommodate the larger amount of data.

- A LOB table space that corresponds to a LOB column (or a partition of a LOB column) can be logged or not logged at the discretion of database administration personnel. If a LOB table space is not logged when the logical log input files are generated, High-speed Apply Engine inserts default values into the LOB column (or the partition of the LOB column) of the target tables.
When the value of the `SQLType` parameter is Undo, High-speed Apply Engine cannot apply changes to undo the effect of a delete action on a row that contains a LOB column. The logical log records that exist for a delete action on a LOB table space associated with a LOB column do not contain LOB column data. Consequently, High-speed Apply Engine cannot insert the data into the LOB column to undo the delete action. In this situation High-speed Apply Engine issues a warning message and either inserts default values for the LOB column or skips the LOB column and allows DB2 to insert default values.

When the value of the `SQLType` parameter is Undo, High-speed Apply Engine might not be able to apply changes to undo the effect of an update action on a row that contains a LOB column. The logical log records that exist for an update to a LOB table space associated with a LOB column might not contain the “before image” of the LOB column data. If it cannot undo the effects of an update action, High-speed Apply Engine issues a warning message and either includes default values in the LOB column or skips the LOB column and allows DB2 to insert default values.

IncludeRI

The `IncludeRI` parameter specifies whether the High-speed Apply Engine uses the referential integrity (RI) records in the logical log when it processes the apply request. If you need to maintain referential integrity for the target tables, set this parameter to Yes.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogicalLog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>If the value of the <code>SQLType</code> parameter is Undo, the default value of <code>IncludeRI</code> is Yes.</td>
</tr>
<tr>
<td></td>
<td>If the value of the <code>SQLType</code> parameter is Redo or Migrate, the default value of <code>IncludeRI</code> is No.</td>
</tr>
</tbody>
</table>
IncludeTrigger

Usage

Select one of the following values:

- Specify Yes when the source tables are defined with RI and the target tables are not defined with RI.

To maintain RI, High-speed Apply Engine must sort the logical log file before it processes it. If the value of IncludeRI is Yes, High-speed Apply Engine sets the Sort parameter to Yes, overriding the value set in the configuration if necessary. For more information, see “Sort” on page 203.

- Specify No when the source tables are defined with RI and the target tables are defined with identical RI relationships.

The default value of this parameter depends on the value of the SQLType parameter (for more information, see “SQLType” on page 204).

IncludeTrigger

The IncludeTrigger parameter specifies whether the High-speed Apply Engine uses records in the logical log that result from trigger activity.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogicalLog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Usage

Use this parameter to apply (or avoid applying) input records that reflect database changes that result from activity defined within a trigger. The activity can be performed directly within the trigger or by other processes nested beneath the trigger (for example, in a stored procedure called from within a trigger).
This parameter is frequently used when a target database environment defines the same triggers and relationships as the source environment where a logical log input file was created. In this situation, set the IncludeTrigger parameter to No. This action causes High-speed Apply Engine to ignore any trigger records in the input file. As High-speed Apply Engine processes the input, the triggers defined in the target environment are activated as they were in the source environment, and you can avoid any duplication of database changes.

Select one of the following values:

- Specify Yes to include (apply) trigger records. For consistency with past versions of High-speed Apply Engine, this value is the default.

- Specify No to exclude (ignore) trigger records.

To distinguish input records resulting from trigger activity, High-speed Apply Engine requires input logical log files to be generated by a Log Master for DB2 version of 7.3 or later, running against a DB2 Version of 8.1 or later.

IncludeXML

The IncludeXML parameter specifies whether the High-speed Apply Engine processes or ignores records in the logical log that apply to XML columns. If you need to update XML columns in the target tables, set this parameter to Yes.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogicalLog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Usage

Specify Yes to include data from XML columns in the changes to your target tables. Specify No when the source tables do not contain XML columns or when they contain XML columns, but you do not want to update the corresponding columns in the target tables.
Be aware of the following points regarding High-speed Apply Engine and XML processing:

- Valid logical log input files include XML column data in separate VSAM files (one set of VSAM files for each XML column, or each partition of each XML column). Ensure that the appropriate VSAM files are available to High-speed Apply Engine along with the logical log input file.

- If the DB2 subsystem of the target tables is different than the subsystem where your logical log input file was generated, ensure that an XMLSTRING control file — was generated along with your logical log input file — is available to High-speed Apply Engine with the logical log input file.

 The logical log XMLSTRING control file contains the string IDs and string data that DB2 uses to encode the data in XML columns. The product or program that generates the logical log must obtain this data from the DB2 catalog table SYSIBM.SYSXMLSTRINGS. On a different DB2 subsystem, High-speed Apply Engine requires this data to serialize your XML data correctly.

- If your input file contains XML column data, consider specifying a value of Yes for the **LargeStatementSupport** parameter to accommodate the larger amount of data.

- XML columns (and the XML table spaces that correspond to them) can be logged or not logged at the discretion of database administration personnel. If an XML column is not logged when the logical log input files are generated, High-speed Apply Engine inserts default values into that XML column in the target table.

IncludeHistory

DB2

The **IncludeHistory** parameter specifies whether the High-speed Apply Engine uses history records in the logical log when it processes the apply request. If you need to maintain versioning updates for the target tables, set this parameter to Yes.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogicalLog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>No</td>
</tr>
</tbody>
</table>
Usage

Select one of the following values:

- Specify Yes to process the logical log records that are associated with updates to the history table that is associated with a system-maintained temporal table.
- Specify No to exclude (ignore) history records.

Qualify

The **Qualify** parameter specifies how the High-speed Apply Engine selects the rows in the target table to be updated. High-speed Apply Engine uses the value that you specify to generate a WHERE clause as it applies SQL statements to the target table.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogicalLog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Key, Changed, or All</td>
</tr>
<tr>
<td>Default value</td>
<td>Key</td>
</tr>
</tbody>
</table>

Usage

Specify one of the following values for the **Qualify** parameter:

- **Key** indicates that only those columns designated as key values are included in the WHERE clause. Key is the default value.
- **Changed** indicates that all key columns and any column with changes are included in the WHERE clause of the SQL statement.
- **All** indicates that all columns referenced in the input file are included in the WHERE clause.

For more information about what columns can be included in the generated WHERE clauses, see the chapter about Log Master for DB2 syntax in the *Log Master for DB2 Reference Manual*.
PartitionDistribution

When the High-speed Apply Engine distributes work between agents based on the physical partitions of a table, it must determine the partition that is affected by each record in the input. The **PartitionDistribution** parameter specifies how High-speed Apply Engine determines the partition or group of partitions that are affected by an input record. This parameter is valid only for logical log input generated by Log Master for DB2.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogicalLog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>UseHeader or Calculate</td>
</tr>
<tr>
<td>Default value</td>
<td>If the value of the SQLType parameter is Migrate, the default value of PartitionDistribution is Calculate</td>
</tr>
<tr>
<td></td>
<td>If the value of the SQLType parameter is Redo or Undo, the default value of PartitionDistribution is UseHeader</td>
</tr>
</tbody>
</table>

Usage

High-speed Apply Engine can determine the affected partition in the following ways:

- Specify UseHeader to direct High-speed Apply Engine to determine the partition by using the partition number provided in the header of each logical log record in the input. This value can improve performance of the initial run and any restarted runs of an apply request.

- Specify Calculate to direct High-speed Apply Engine to determine the partition by reading the values of partitioning key columns in the input record, building a key value, and comparing that value to the high limit key.

Consider the following points as you use the **PartitionDistribution** parameter:

- High-speed Apply Engine ignores this parameter when any of the following conditions is true:
 - the value of the **PartitionClustering** parameter is Yes
 - the value of the **DistributionType** parameter is UR
When you specify logical partitions for a table with [ObjectPartition] parameters, High-speed Apply Engine determines the partition by reading the values of partitioning key columns (Calculate) for all input statements that affect that table.

The value of this parameter applies to the entire logical log input file.

Do not set this parameter to UseHeader if your input contains data definition language (DDL) objects that change the partitioning limit keys of the target table.

If the partitioning limit keys of the target table are different than those of the source table from which the input was generated, but you execute the input because the differences are compatible, the partition distribution statistics in messages such as BMCAPT0048 reflect the distribution of work based on the partitions of the target table.

Sort

The **Sort** parameter specifies whether to sort the data in a logical log file before processing the apply request.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogicalLog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Usage

BMC Software recommends that you accept the default value for this parameter. The default value is Yes. Specifying **IncludeRI**=Yes or **SQLType**=Undo overrides the value of the **Sort** parameter if necessary, so that the logical log is always sorted. If you need to change the value of the **Sort** parameter to No, contact BMC Software Customer Support.
SQLType

The **SQLType** parameter determines which records in your logical log input the High-speed Apply Engine uses to generate and apply SQL statements.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogicalLog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Redo, Undo, or Migrate</td>
</tr>
<tr>
<td>Default value</td>
<td>Migrate</td>
</tr>
</tbody>
</table>

Usage

Logical log input that conforms to the published format includes a field named SQLTYPE in the header of each record in the logical log data file. The **SQLType** parameter causes High-speed Apply Engine to select a different set of records based on the value in this field. High-speed Apply Engine generates SQL statements from the records it selects. For more information about logical log data records, see chapter 4, “Logical log files” in the *Log Master for DB2 Reference Manual*.

Specify one of the following values for the **SQLType** parameter:

- Specify Redo to cause High-speed Apply Engine to generate SQL statements from redo records in the logical log input (where the SQLTYPE field is 'R'). A logical log input file does not contain any redo records unless a REDO recovery point was specified when the logical log was generated.

- Specify Undo to cause High-speed Apply Engine to generate SQL statements from undo records in the logical log input (where the SQLTYPE field is 'U'). If this parameter is UNDO, High-speed Apply Engine

 — reverses the statement type of the original data changes (for example, if the original statement was an INSERT, High-speed Apply Engine generates and executes a DELETE statement)

 — reverses the order of the original data changes

 (To accomplish this High-speed Apply Engine must sort the logical log input. When **SQLType** is UNDO, High-speed Apply Engine sets the value of the **Sort** parameter to Yes, regardless of the value in your configuration. For more information, see “**Sort**” on page 203.)
Specify Migrate to cause High-speed Apply Engine to generate SQL statements from undo records in the logical log input (where the SQLTYPE field is 'U'). If this parameter is Migrate, High-speed Apply Engine does not reverse the statement type or the order of the original data changes.

For more information about these values, see the chapter about Log Master for DB2 syntax in the Log Master for DB2 Reference Manual.

The value of this parameter affects the default value of the IncludeRI parameter (for more information, see “IncludeRI” on page 197).

UpdateColumns

The **UpdateColumns** parameter specifies whether the apply request updates all of the columns in the target table, or only the changed columns.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>LogicalLog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>All or Changed</td>
</tr>
<tr>
<td>Default value</td>
<td>Changed</td>
</tr>
</tbody>
</table>

Usage

Specify Changed to improve the performance of apply requests that update tables with large numbers of columns.

UseLLogSysStrings

A logical log file generated by the BMC Software product Log Master for DB2 contains SysStrings records that define the translation information, including the coded character set identifiers (CCSIDs), that was in use when the file was generated. The **UseLLogSysStrings** parameter determines whether the High-speed Apply Engine uses the translation information from the logical log to translate input data before it applies the data to the target DB2 subsystem.
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>LogicalLog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>No</td>
</tr>
</tbody>
</table>

Usage

BMC Software recommends that you use the default value of No for normal processing.

- Specify Yes to direct High-speed Apply Engine to translate the input data before applying it to the target subsystem. Use this value when DB2 would not be able to successfully translate between the source column and target column encoding schemes by itself. This situation can occur when a translation scheme is either undefined or different in the SysStrings information on the target subsystem.

 For example, you can specify Yes when the SYSIBM.SYSSTRINGS table on the source DB2 subsystem contains a user-defined translation scheme that is not available on the target subsystem. High-speed Apply Engine performs the translation using information from the logical log file. In this example, DB2 would still need to be able to successfully translate from the source application encoding scheme to the target column encoding scheme.

- Specify No to direct High-speed Apply Engine to apply the input data directly to the target subsystem as is (without translation). Use this value for normal processing when the conditions described for the Yes value do not exist. Specifying No can improve performance in some cases by avoiding unnecessary translation actions. This value is the default.

WORKNUM

The WORKNUM parameter specifies the number of sort work data sets that the High-speed Apply Engine uses to process your apply request.
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogicalLog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 0 to 255</td>
</tr>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
</tbody>
</table>

Usage

Specify either of the following values:

- a number of sort work data sets from 1 to 255
- a value of 0

This value indicates that the sort routine sets the number of sort work data sets dynamically, depending on conditions in your environment. This value is the default.

For more information about sort work data sets, see “Sort work data sets” on page 34.

LogOutput parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FileName (LFN)</td>
<td>page 208</td>
</tr>
<tr>
<td>LogType</td>
<td>page 209</td>
</tr>
<tr>
<td>Overlap</td>
<td>page 210</td>
</tr>
<tr>
<td>Threshold</td>
<td>page 210</td>
</tr>
</tbody>
</table>

The [LogOutput] parameters control the types of information that the High-speed Apply Engine records in the log file and the location of the log file. BMC Software Customer Support can use the information in the log file for diagnostic and troubleshooting purposes. Figure 39 on page 208 shows an example of the [LogOutput] parameters.
The `FileName (LFN)` parameter specifies the file name, data set name, or DD name of the file where the High-speed Apply Engine writes the log entries that the apply request generates.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogOutput]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>LFN</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
</tbody>
</table>
| Valid values | DB2 for mainframe targets
 a fully qualified data set name or a DD name
 DB2 UDB or Oracle
 a file name, including the path name if outside of the default path |
| Default values| Mainframe operating systems
 APTLOG
 UNIX and Windows
 no default value |
LogType

The **LogType** parameter indicates the type of information that is captured for an apply request.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogOutput]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Conflict, Display, Exec_immed, Host_vars, Work_item</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

You specify the **LogType** parameter for each type of log entry that you want to capture. Consider the number of types that you specify for this parameter when you specify the **Threshold** and **Overlap** parameters.

Specify one of the following values for the **LogType** parameter. You can repeat the **LogType** parameter for as many values as necessary.

- **Conflict** indicates that High-speed Apply Engine logs the conflicts that are encountered during apply processing.

- **Display** indicates that High-speed Apply Engine logs the messages that are written to the location specified by the [DisplayOutput] parameters.

- **Exec_immed** indicates that High-speed Apply Engine logs those SQL statements that will be applied to the target table without validation or preparation.
Host_vars indicates that High-speed Apply Engine logs the host variables associated with the target DB2 subsystem or Oracle instance.

Work_item indicates that High-speed Apply Engine logs the work queue items generated for the apply request.

Overlap

The Overlap parameter indicates whether the log file can be overwritten when it exceeds the value specified for the Threshold parameter. If you do not allow the log file to overlap, log processing ends when the file exceeds the threshold.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogOutput]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Usage

- Specify Yes to ensure that log processing continues until the end of the apply request, and that the most recent log entries are available.

- Specify No to ensure that log processing ends when the file exceeds the threshold. Be sure that you specify an adequate amount of space for the log file by using the Threshold parameter. Otherwise, log processing stops when the log file exceeds the threshold value for the log.

Threshold

The Threshold parameter specifies the amount of space (in bytes) allocated for the log file. If you set the Overlap parameter to Yes, the log entries are overwritten from the top of the file when the log size reaches the threshold value.
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[LogOutput]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>number of bytes, greater than or equal to 0 (zero)</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

Specify the number of bytes, greater than or equal to zero, that can be allocated for the log file. If you specify zero, the size of the log file is unlimited.

When you specify the Threshold parameter, consider the resources available on the system where the apply request runs. If you anticipate a large number of log entries for the apply request, consider setting a reasonable size for the log file (1,000,000 bytes, for example). Then, use the Overlap parameter to guarantee that log processing continues until the apply request ends. This practice allows you to log the problems that lead to a failure, but conserves the system resources during apply processing.

MonitorTuning parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommitTrigger</td>
<td>page 212</td>
</tr>
<tr>
<td>CommitValue</td>
<td>page 213</td>
</tr>
<tr>
<td>InputTrigger</td>
<td>page 214</td>
</tr>
<tr>
<td>InputValue</td>
<td>page 215</td>
</tr>
<tr>
<td>ScanInterval</td>
<td>page 216</td>
</tr>
</tbody>
</table>

The [MonitorTuning] parameters help you control how the High-speed Apply Engine displays progress messages during an apply request. The progress messages display statistics about the SQL statements that High-speed Apply Engine has processed as input and committed against the target tables. Figures 40 and 41 on page 212 show examples of [MonitorTuning] parameters.

High-speed Apply Engine displays progress messages during an apply request, so that you can determine

- how many SQL statements in the input file High-speed Apply Engine has examined and dispatched to an agent for application to the target tables
CommitTrigger

- how many SQL statements High-speed Apply Engine has committed against the target tables

Use the following guidelines to adjust progress messages with these parameters:

- Set the parameters to display fewer progress messages for existing apply requests that you run frequently in production.
- Set the parameters to display more frequent progress messages as you tune the performance of a new apply request, or to diagnose an existing apply request that experiences performance or other problems

Figure 40 Example of production [MonitorTuning] parameters

```plaintext
[MonitorTuning]
ScanInterval=1
InputTrigger=Time
InputValue=300
CommitTrigger=Count
CommitValue=10000
```

Figure 41 Example of diagnostic [MonitorTuning] parameters

```plaintext
[MonitorTuning]
ScanInterval=1
InputTrigger=Time
InputValue=10
CommitTrigger=Count
CommitValue=5000
```

CommitTrigger

The **CommitTrigger** parameter indicates the type of units used in the **CommitValue** parameter. You can specify whether the number defined by the **CommitValue** parameter represents a number of seconds or a number of SQL statements committed by the High-speed Apply Engine.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[MonitorTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
</tbody>
</table>
CommitValue

The CommitValue parameter specifies a numeric value that determines how often the High-speed Apply Engine displays progress messages for committed SQL statements. The units for this parameter are based on the value that you specify for the CommitTrigger parameter.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[MonitorTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 1 to 32767 that represents</td>
</tr>
<tr>
<td></td>
<td>a number of seconds</td>
</tr>
<tr>
<td></td>
<td>a number of committed SQL statements</td>
</tr>
<tr>
<td></td>
<td>depending on the value specified for the CommitTrigger parameter</td>
</tr>
<tr>
<td>Default value</td>
<td>5000</td>
</tr>
</tbody>
</table>

Usage

Use this parameter along with the CommitValue parameter to define how often High-speed Apply Engine displays progress messages for committed SQL statements. You can also use this parameter to prevent High-speed Apply Engine from displaying these messages. Specify one of the following values.

- Time indicates that the number defined by the CommitValue parameter represents a number of seconds.

- Count indicates that the number defined by the CommitValue parameter represents a number of SQL statements committed against the target tables.

- None prevents High-speed Apply Engine from displaying progress messages for committed SQL statements.

If the value of this parameter is Time or Count, you must specify the CommitValue parameter. For information about the CommitValue parameter, see “CommitValue.”
Usage

Use this parameter along with the `CommitTrigger` parameter to define how often High-speed Apply Engine displays progress messages for committed SQL statements.

Specify a numeric value for the number of seconds or the number of committed SQL statements.

If the value of the `CommitTrigger` parameter is Time or Count, you must specify this parameter. For more information about the `CommitTrigger` parameter, see “CommitTrigger” on page 212.

InputTrigger

The `InputTrigger` parameter indicates the type of units used in the `InputValue` parameter. You can specify whether the number defined by the `InputValue` parameter represents a number of seconds or a number of input SQL statements that the High-speed Apply Engine has processed.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[MonitorTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Time, Count, None</td>
</tr>
<tr>
<td>Default value</td>
<td>Time</td>
</tr>
</tbody>
</table>

Usage

Use this parameter along with the `InputValue` parameter to define how often High-speed Apply Engine displays progress messages for SQL statements that High-speed Apply Engine has processed as input. You can also use this parameter to prevent High-speed Apply Engine from displaying these messages. Specify one of the following values.

- **Time** indicates that the number defined by the `InputValue` parameter represents a number of seconds.
InputValue

The InputValue parameter specifies a numeric value that determines how often the High-speed Apply Engine displays progress messages for SQL statements that it has processed as input. The units for this parameter are based on the value that you specify for the InputTrigger parameter.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[MonitorTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 1 to 32767 that represents</td>
</tr>
<tr>
<td></td>
<td>a number of seconds</td>
</tr>
<tr>
<td></td>
<td>a number of input SQL statements</td>
</tr>
<tr>
<td></td>
<td>depending on the specified value of the InputTrigger parameter</td>
</tr>
<tr>
<td>Default value</td>
<td>10</td>
</tr>
</tbody>
</table>

Usage

Use this parameter along with the InputTrigger parameter to define how often High-speed Apply Engine displays progress messages for input SQL statements.

Specify a numeric value for the number of seconds or the number of input SQL statements.

If the value of the InputTrigger parameter is Time or Count, you must specify this parameter. For more information about the InputTrigger parameter, see “InputTrigger” on page 214.
ScanInterval

The **ScanInterval** parameter determines how frequently the High-speed Apply Engine scans its own internal processes to determine if any of the triggers defined by other [MonitorTuning] parameters have been activated.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[MonitorTuning]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer from 1 to 32767</td>
</tr>
<tr>
<td>Default value</td>
<td>1</td>
</tr>
</tbody>
</table>

Usage

Use this parameter to determine the precision with which High-speed Apply Engine monitors the triggers set by other [MonitorTuning] parameters. Normally, the scan interval should be short enough to ensure that High-speed Apply Engine will not activate one of the progress message triggers more than once during the scan interval.

For example, assume that for diagnostic reasons, you set the **CommitTrigger** and **CommitValue** parameters to display progress messages after every 10 committed SQL statements. If you set the **ScanInterval** parameter to 30 seconds, High-speed Apply Engine might commit 100 statements before High-speed Apply Engine checks to determine if your trigger has been activated. Your progress messages would not have the scope you desire.

NOTE

BMC Software recommends that you do not change the default value of this option unless you have a specific reason to do so. You can consult BMC Software Customer Support before changing this option.
MultiRowInsert parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxConflicts</td>
<td>page 217</td>
</tr>
<tr>
<td>MaxRows</td>
<td>page 218</td>
</tr>
<tr>
<td>MultiRowInsert</td>
<td></td>
</tr>
</tbody>
</table>

The [MultiRowInsert] parameters determine whether the High-speed Apply Engine inserts more than one row into a target table in one insert action (by using host variable arrays and the FOR n ROWS form of the INSERT statement). Additional parameters enable you to control the number of rows in each insert action and to set the level of insert conflicts that High-speed Apply Engine tolerates before it switches to single row insert actions.

Figure 42 shows an example of the [MultiRowInsert] section.

Figure 42 Example of [MultiRowInsert] parameter values

```plaintext
[MultiRowInsert]
    MultiRowInsert=Yes
    MaxRows=500
    MaxConflicts=5
```

The [MultiRowInsert] parameters are optional. If you do not specify any of the parameters, High-speed Apply Engine does not perform multiple row insert actions.

MaxConflicts

The **MaxConflicts** parameter enables you to control how many insert-related conflicts High-speed Apply Engine tolerates during all multiple row insert actions of an apply request. If the number of insert-related conflicts exceeds the value that you specify, High-speed Apply Engine stops using multiple row insert actions and switches to single row insert actions.

When the insertion of any row within a multiple row insert action violates a constraint or causes a conflict, High-speed Apply Engine performs the actions defined by the conflict rule in the [InsertConflict] section that specifies a Code value of MultiRowConflict. The rule can be defined explicitly or by default values. For more information, see “Codes for conflict resolution (SQL codes)” on page 87.
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[MultiRowInsert]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>any integer value greater than or equal to 0</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

Specify any integer value greater than or equal to zero. A value of zero indicates that High-speed Apply Engine does not tolerate any conflicts and switches to single row insert actions after it encounters the first conflict.

Be aware of the following points regarding this parameter:

- High-speed Apply Engine supports multiple row insert actions only under version 8 and later versions of DB2 for mainframe targets.

- As it processes multiple row insert actions, High-speed Apply Engine uses the ATOMIC clause of the multiple row INSERT statement. If an insert action for any row fails, all changes made to the target table by any of the insert actions are backed out (including changes made by successful insert actions).

- To simply conflict processing, when High-speed Apply Engine performs a multiple row insert action and encounters an SQL code other than 0 or -911, it resets the SQL code to -254 so that it can process the conflict rule defined by the Code value of MultiRowConflict in the [InsertConflict] section.

MaxRows

The MaxRows parameter enables you to control how many rows High-speed Apply Engine includes in each multiple row insert action of an apply request. Use this parameter to balance the improved performance of multiple row insert actions against the increased overhead that can occur when High-speed Apply Engine must process conflicts and possibly retry the insertion of large numbers of rows.
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[MultiRowInsert]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer value between 1 and 32,767</td>
</tr>
<tr>
<td>Default value</td>
<td>100</td>
</tr>
</tbody>
</table>

Usage

Specify any integer value greater between 1 and 32,767. The default value is 100 rows in each multiple row insert action.

Be aware of the following points regarding this parameter:

- High-speed Apply Engine supports multiple row insert actions only under version 8 and later versions of DB2 for mainframe targets.
- The performance benefits of multiple row insert actions depend on conditions in your environment. BMC Software recommends that you measure results for several values of this parameter in a test environment before implementing changes in a production environment.
- When the insertion of any row during a multiple row insert action violates a constraint or causes a conflict, High-speed Apply Engine performs the actions defined by the conflict rule in the [InsertConflict] section that specifies a Code value of MultiRowConflict. For more information, see “Codes for conflict resolution (SQL codes)” on page 87.

MultiRowInsert

The MultiRowInsert parameter enables or disables High-speed Apply Engine’s processing of multiple row insert actions. When the value of this parameter is Yes, High-speed Apply Engine can insert more than one row into a target table in one insert action (by using host variable arrays and the FOR n ROWS form of the INSERT statement).

Multiple row insert actions can provide performance benefits, but they can also increase the overhead of conflict resolution processing when insert-related conflicts occur. Use the MaxRows and MaxConflicts parameters to balance increased performance against increased conflict resolution overhead.
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[MultiRowInsert]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>No</td>
</tr>
</tbody>
</table>

Usage

Specify Yes to enable multiple row insert actions. The default value of No causes High-speed Apply Engine to perform single row insert actions for all inserts in the input file.

Be aware of the following points regarding this parameter:

- High-speed Apply Engine supports multiple row insert actions only under version 8 and later versions of DB2 for mainframe targets.

- The performance benefits of multiple row insert actions depend on conditions in your environment. BMC Software recommends that you measure results for several values of the MaxRows and MaxConflicts parameters in a test environment before implementing changes in a production environment.

ObjectCluster parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>page 221</td>
</tr>
<tr>
<td>Table</td>
<td>page 222</td>
</tr>
</tbody>
</table>

[ObjectCluster] parameters let you specify a group of target tables to be processed by the same apply agent. You can use the parameters in this section to define groups of related tables or to optimize workload distribution. Figure 43 on page 221 shows an example of the [ObjectCluster] parameters.
When you define a group of target tables, the High-speed Apply Engine uses the same agent to process all updates to that group. However, High-speed Apply Engine does not guarantee that the agent processes only that group. If the number of groups you define is greater than the number of agents you permit, High-speed Apply Engine can use one agent to process more than one group. For more information, see “MaxAgents” on page 124.

The position of the [ObjectCluster] parameters is significant. The Cluster parameter must appear first in the section, and it must be followed by at least one table name. For an example of [ObjectCluster] parameters, see Figure 43.

WARNING

If you include the [ObjectCluster] section in the configuration, the RIClustering parameter is set to No when you run the apply request, regardless of the value specified in the configuration. If you define an object cluster, High-speed Apply Engine ignores any referential integrity constraints on the members of the cluster.

Figure 43 Example of [ObjectCluster] parameter values

```
[ObjectCluster]
Cluster=HUMANRES
Table=HR.*
Cluster=ACC1Q
Table=ACC.JAN
Table=ACC.FEB
Table=ACC.MAR
Cluster=ACC2Q
Table=ACC.APR
Table=ACC.MAY
Table=ACC.JUN
```

Cluster

The Cluster parameter lets you specify a name for the group of target tables that you define with the Table parameters. You can specify this parameter as many times as necessary to define the clusters that you want to use for the apply request. The Cluster parameter must be the first parameter in the [ObjectCluster] section.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ObjectCluster]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
</tbody>
</table>
Usage

Specify any character string to identify the group of target tables in the cluster, or leave the value for the parameter blank. If you do not specify a value, the High-speed Apply Engine processes the cluster correctly, but the cluster is not identified in the output messages for the request.

You can specify as many clusters as you need to distribute the workload for the apply request. You define a table as a member of a cluster by using the **Table** parameter, as described in “Table.” A cluster includes all of the **Table** parameters that follow it, until another **Cluster** parameter is specified. Each **Cluster** parameter indicates the start of a new object cluster.

High-speed Apply Engine groups all of the tables defined for a cluster to be processed by a single agent. When you define clusters, consider the amount of work required for the target tables. If you group large tables or tables that require large numbers of updates, you can negatively impact the performance of High-speed Apply Engine.

Table

The **Table** parameter specifies the name of a target table that is a member of an object cluster. This parameter must appear after a **Cluster** parameter in the [ObjectCluster] configuration section.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ObjectCluster]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid target table name</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>
Usage

Specify the name of a target table for the apply request. You can repeat this parameter as many times as necessary to define the tables for an object cluster. The format of the table name is described in “Object names” on page 106. Wildcards are supported for this table name. For more information, see “Wildcards in object names” on page 108.

ObjectMap parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SourceColumn (SC)</td>
<td>page 226</td>
</tr>
<tr>
<td>SourceTable (ST)</td>
<td>page 226</td>
</tr>
<tr>
<td>TargetColumn (TC)</td>
<td>page 227</td>
</tr>
<tr>
<td>TargetTable (TT)</td>
<td>page 228</td>
</tr>
</tbody>
</table>

The [ObjectMap] parameters let you specify target table and column names that differ from the source table and column names.

For each target table that has a different definition than your source table, you must specify a set of [ObjectMap] parameters. If you do not include an [ObjectMap] section, the High-speed Apply Engine uses the source object names as the target names. Figure 44 shows an example of the [ObjectMap] parameters. Figure 45 on page 224 shows how to change the name of a column without changing the name of the table that contains the column.

To specify object mapping parameters for DB2 objects with long names, you might need to use multiple lines in your configuration file. For more information, see “File format” on page 99.

NOTE

Be aware of the following considerations when specifying [ObjectMap] parameters:

- Do not specify [ObjectMap] parameters if your input contains data definition language (DDL) statements in SQL input (or DDL objects in logical log input). Due to processing constraints, High-speed Apply Engine does not support the combination of object mapping and DDL input.

- A logical log file generated with overtime mode might contain multiple instances of the same object, (for example, a table that was dropped and then recreated). Therefore, you should not specify [ObjectMap] parameters for a table with multiple instances.

Figure 44 Example of [ObjectMap] parameter values

```
[ObjectMap]
SourceTable=ACCTG.EMPLYE
```
Positional requirements for object mapping

The position of the [ObjectMap] parameters is significant. If the parameters are out of order, the High-speed Apply Engine issues messages that describe the problem, and apply processing terminates. You must specify the parameters in the following order. For an example of the parameter order, see Figure 44 on page 223.

1. **SourceTable** must be the first parameter in the section.

2. **TargetTable** must follow its corresponding **SourceTable** parameter.

3. **SourceColumn** must follow the **SourceTable**/**TargetTable** pair that contains its source table.

4. **TargetColumn** must follow its corresponding **SourceColumn** parameter.

You can repeat the **SourceTable** and **TargetTable** parameters as often as necessary to complete the table-name mapping for the apply request. Within a **SourceTable**/**TargetTable** pair, you can repeat the **SourceColumn** and **TargetColumn** parameters as many times as necessary to complete the column-name mapping.

Using wildcards to map object names

You can use wildcard patterns as part of the table and column names for the [ObjectMap] parameters. The wildcards that the High-speed Apply Engine supports are described in “Wildcards in object names” on page 108.
For object-name mapping, the High-speed Apply Engine attempts to match the source object names to the target object names. If no match exists, High-speed Apply Engine processes the request by using the source object name as the target. Table 15 shows how you might use wildcards to perform specific object-mapping tasks.

Table 15 Wildcard pattern for object-name mapping

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SourceTable=TEST.*</td>
<td>This example maps all of the tables owned by the TEST user ID to the equivalent tables owned by the PROD user ID.</td>
</tr>
<tr>
<td>TargetTable=PROD.*</td>
<td></td>
</tr>
<tr>
<td>SourceTable=AP1.DS*</td>
<td>This example represents data migration between tables owned by the application AP1. Tables that start with DS will be mapped to tables that start with AT.</td>
</tr>
<tr>
<td>TargetTable=AP1.AT*</td>
<td></td>
</tr>
<tr>
<td>SourceTable=AP2.WK??</td>
<td>This example shows how data from one or more source tables can be applied to a single target table. If the input file included updates from tables AP2.WK01, AP2.WK02, and AP2.WK22, those updates would be applied to the AP3.WEEK table. Because of the single-character wildcards, updates from table AP2.WK101 would not be applied to the AP3.WEEK table.</td>
</tr>
<tr>
<td>TargetTable=AP3.WEEK</td>
<td></td>
</tr>
</tbody>
</table>

Wildcards specified for the source object must match the type and format of the wildcards specified for the target object. Table 16 describes examples of valid and invalid mappings.

Table 16 Valid and invalid wildcard pattern matches

<table>
<thead>
<tr>
<th>Example</th>
<th>Valid/invalid</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SourceTable=ACCT.WE??</td>
<td>Valid</td>
<td>The wildcards are the same type (single character) and format.</td>
</tr>
<tr>
<td>TargetTable=ACCT.AT??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourceTable=*.SALARY</td>
<td>Invalid</td>
<td>The wildcards are not the same type. The pattern for the source table is a string, but the pattern for the target table is three single characters.</td>
</tr>
<tr>
<td>TargetTable=???.RATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourceTable=???.SALARY</td>
<td>Invalid</td>
<td>The wildcards are not the same type. The different lengths render this mapping invalid.</td>
</tr>
<tr>
<td>TargetTable=???.RATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourceTable=*.R???</td>
<td>Valid</td>
<td>The wildcards are the same type and format. Note that the constants do not need to be the same length for the mapping to be valid.</td>
</tr>
<tr>
<td>TargetTable=*.JED???</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SourceColumn

The **SourceColumn** (SC) parameter lets you specify a column name in the source table that differs from the column name in the target table. Specifying the **SourceColumn** parameter with a corresponding **TargetColumn** parameter defines how the High-speed Apply Engine maps column names. You can specify this parameter as many times as necessary to map the columns for the table named in the **SourceTable** parameter.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ObjectMap]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>SC</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid column name from the source table</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

If you specify **SourceColumn**, the corresponding **TargetColumn** parameter must immediately follow it. You can include wildcard characters as part of the column name. For more information about using wildcard characters in object-name mapping, see “Using wildcards to map object names” on page 224.

This parameter is not valid if your input contains data definition language (DDL) statements in SQL input (or DDL objects in logical log input).

SourceTable

The **SourceTable** (ST) parameter specifies the name of the source table for the apply request. You must specify **SourceTable** only if object-name mapping is required between the source and target tables.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ObjectMap]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>ST</td>
</tr>
</tbody>
</table>
TargetColumn

Usage

This parameter must precede the corresponding **TargetTable** parameter. The format of the table name is described in “Object names” on page 106. You can include wildcard characters as part of the table name. For more information about using wildcard characters in object-name mapping, see “Using wildcards to map object names” on page 224.

This parameter is not valid if your input contains data definition language (DDL) statements in SQL input (or DDL objects in logical log input).

TargetColumn

The **TargetColumn** (TC) parameter lets you specify a column name in the target table that differs from the column name in the source table. Specifying the **TargetColumn** parameter with a corresponding **SourceColumn** parameter defines how the High-speed Apply Engine maps the column name for the apply request. You can specify this parameter as many times as necessary to map the columns defined with the **SourceColumn** parameter.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ObjectMap]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>TC</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid column name from the target table</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

If you specify **TargetColumn**, the **SourceColumn** parameter must immediately precede it. You can include wildcard characters as part of the column name. For more information about using wildcard characters in object-name mapping, see “Using wildcards to map object names” on page 224.
This parameter is not valid if your input contains data definition language (DDL) statements in SQL input or DDL objects (in logical log input).

TargetTable

The **TargetTable** (TT) parameter specifies the name of the target table for the apply request. You must specify a **TargetTable** parameter for each corresponding **SourceTable** parameter.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ObjectMap]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>TT</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>the table name of the target table</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

The **TargetTable** parameter must immediately follow the corresponding **SourceTable** parameter in the configuration file. The format of the table name is described in “Object names” on page 106. You can include wildcard characters as part of the table name. For more information about using wildcard characters in object-name mapping, see “Using wildcards to map object names” on page 224.

This parameter is not valid if your input contains data definition language (DDL) statements in SQL input (or DDL objects in logical log input).
ObjectPartition parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>page 232</td>
</tr>
<tr>
<td>LimitKey</td>
<td>page 233</td>
</tr>
<tr>
<td>Order</td>
<td>page 234</td>
</tr>
<tr>
<td>Partition</td>
<td>page 235</td>
</tr>
<tr>
<td>Table</td>
<td>page 235</td>
</tr>
<tr>
<td>Value</td>
<td>page 236</td>
</tr>
</tbody>
</table>

ObjectPartition parameters enable you to specify logical data partitions for the target tables. The High-speed Apply Engine uses the values that you specify in this section to distribute the workload between apply agents. You can use these parameters to:

- optimize High-speed Apply Engine performance for tables that are not physically partitioned
- optimize performance by using partitions that are different than the physical partitions of the target tables

Figure 46 shows an example of the [ObjectPartition] parameters for a DB2 target on a mainframe.

Figure 46 Example, [ObjectPartition] parameters for DB2 mainframe target

```plaintext
/ObjectPartition/
Table=ACCT.PAYABLE
  Column=AcctNumber
  Column=Date
  Order=DESC
  Partition=CC5700_YTD
  Value=5700
  Value=2008-05-01
  Partition=CC5700_MTD
  Value=5700
  Value=2008-05-18
Table=ACCT.MONTHLY
  Column=TTIME
  Partition=Part1
  LimitKey='000101010080000003'
  Partition=Part3
  LimitKey='00010101008000000A'
```
Positional requirements for [ObjectPartition] parameters

DB2 UDB Figure 47 shows an example of the [ObjectPartition] parameters for a DB2 UDB target.

Figure 47 Example, [ObjectPartition] parameters for DB2 UDB target

```
[ObjectPartition]
  Table=ACCT.PAYBLE
  Column=AcctNumber
  Column=Date
  Partition=CC5700_YTD
  Value=5700
  Value=2008-05-01
  Partition=CC5700_MTD
  Value=5700
  Value=2008-05-18
```

Oracle Figure 48 shows an example of the [ObjectPartition] parameters for an Oracle target.

Figure 48 Example, [ObjectPartition] parameters for Oracle target

```
[ObjectPartition]
  Table=ACCT.PAYBLE
  Column=AcctNumber
  Column=Date
  Partition=CC5700_YTD
  Value=5701
  Value=TO_DATE('2008/05/01 00:00:00','YYYY/MM/DD HH24:MI:SS')
  Partition=CC5700_MTD
  Value=5701
  Value=TO_DATE('2008/05/18 00:00:00','YYYY/MM/DD HH24:MI:SS')
  Partition=CCREST
  Value=MAXVALUE
  Value=MAXVALUE
```

Positional requirements for [ObjectPartition] parameters

The position of the [ObjectPartition] parameters is significant. If the parameters are out of order, the High-speed Apply Engine issues message number BMCAPT0060E, and apply processing terminates. You must specify the parameters in the following order. For an example of the parameter order, see Figure 46 on page 229.

1. A Table parameter must be the first parameter in the section.

2. The Column parameter set follows the Table parameter. The Column parameters must also be ordered so that they correspond to their associated Value parameters in each definition that starts with a Partition parameter.
3. If you specify the Order parameter, it must directly follow its associated Column parameter. The Order parameter is valid only for DB2 targets on a mainframe.

4. The first Partition parameter follows all of the Column parameters specified for the table.

5. A set of Value parameters or a LimitKey parameter must come after a Partition parameter. The LimitKey parameter is valid only for DB2 targets on a mainframe. You cannot include both a set of Value parameters and a LimitKey parameter after the same Partition parameter (the two are mutually exclusive).

Partition key length

The High-speed Apply Engine can create partition keys from the columns and values that you specify within a partition definition. High-speed Apply Engine derives partition keys as follows:

- **Oracle**
 For Oracle and DB2 UDB targets, High-speed Apply Engine defines the partition key as the first 256 bytes of the values that are specified for the associated Column and Value parameters. Each partition key must resolve to a unique value.

- **DB2**
 For DB2 mainframe targets, High-speed Apply Engine defines the partition key as either the first 255 bytes of the values that are specified for the associated Column and Value parameters or the LimitKey parameter. Each partition key must resolve to a unique value.

Considerations for Oracle data types

- **Oracle**
 For Oracle targets, there are some limits on the data types and functions that you can use as partition keys.

Date data types

The following considerations apply to partition keys that contain date data types:

- The High-speed Apply Engine accepts dates specified with the TO_DATE function.

- You can also specify a date enclosed in single quotation marks.

- The J date format (Julian date) is not supported.
When High-speed Apply Engine starts, it reads the date and time formats that are specified in the Oracle NLS settings. If the input file contains an ALTER SESSION command that modifies the formats, the results of the apply request are unpredictable. To define a different default format for an apply request, specify configuration parameters. For more information, see “DateFormat” on page 252, “TimestampFormat” on page 265, or “TimestampTzFormat” on page 266.

Character data types

The High-speed Apply Engine does not support the TO_CHAR function for partition keys that contain character data types (VARCHAR, VARCHAR2, or CHAR).

Numeric data types

The following considerations apply to partition keys that contain numeric data types:

- High-speed Apply Engine does not support the TO_NUMBER function for partition keys that include the FLOAT or NUMBER data types.

- High-speed Apply Engine converts numeric data types to Oracle internal formats.

- If you use a decimal notation that is *not* a period (.), delimit numeric literals with single quotation marks (for example, ’5,123’). Delimiting the literals prompts High-speed Apply Engine to use the decimal notation specified by the NLS_NUMERIC_CHARACTERS initialization parameter.

Column

The **Column** parameter specifies a key column name for the logical partition. You can specify this parameter as many times as necessary to define the key columns for the partition.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ObjectPartition]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, Oracle, DB2 UDB</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid target column name</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>
Usage

Specify a valid column name in the target table. For each Column parameter that you include, you must also include a Value parameter, or for DB2, compose a single aggregate limit key. For more information about the Value parameter, see “Value” on page 236.

Ensure that the column or columns you specify as the partitioning key resolve to a unique partition key value within the length determined by your target DBMS. For more information, see “Partition key length” on page 231.

LimitKey

The LimitKey parameter corresponds to the LIMITKEY column in the SYSIBM.SYSTABLEPART table of the DB2 catalog. If you know this value, you can define the partition key by specifying the LimitKey parameter (instead of specifying a set of Value parameters for each set of columns).

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ObjectPartition]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a hexadecimal limit key that represents the column and value of the partition key</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

The LimitKey parameter follows the Partition parameter in the [ObjectPartition] section. The value of the LimitKey parameter is an aggregate hexadecimal notation of the values for the Column set. The High-speed Apply Engine converts the value that you specify to an internal format and uses it as the upper limit for the partition key.
Order

The Order parameter specifies whether the column that you identify with the Column parameter is sorted in ascending or descending order. The Order parameter must immediately follow its corresponding Column parameter in the [ObjectPartition] section.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ObjectPartition]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Asc (ascending) or Desc (descending)</td>
</tr>
<tr>
<td>Default value</td>
<td>Asc</td>
</tr>
</tbody>
</table>

Usage

- Specify Asc to sort the column in ascending order.
- Specify Desc to sort the column in descending order.

If you do not include the Order parameter for a given column, the sort order is ascending (Asc).
Partition

The **Partition** parameter lets you label the partition definition with a specific name. The name that you specify will be used to identify the partition in the output messages related to the apply request.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ObjectPartition]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a character string</td>
</tr>
<tr>
<td>Default value</td>
<td>blank</td>
</tr>
</tbody>
</table>

Usage

Specify a name that describes the partition. If you include a partition definition without a value for the **Partition** parameter, the partition will process correctly, but the output messages for the apply request cannot identify the partition.

Table

The **Table** parameter specifies the name of a target table to be partitioned. You can repeat this parameter as many times as necessary to include the tables that you want to logically partition.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ObjectPartition]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid target table name</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>
Usage

Specify the name of a target table for the apply request. The format of the table name is described in “Object names” on page 106. Note that wildcard characters are not permitted for the **Table** parameter when it is used in the [ObjectPartition] section.

Value

The **Value** parameter identifies the limit of the partition key for a corresponding **Column** parameter. Together, the **Value** and **Column** parameters define a partition key for the target table.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[ObjectPartition]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
</tbody>
</table>

Valid values
- The limit or boundary of the partition for the corresponding **Column** parameter
- Oracle: you can also specify MAXVALUE

Default value
- none

Usage

The value that you specify must be the same data type as the column of the corresponding **Column** parameter. If you specify more than one partition, the values that you specify must be unique and in ascending order in the configuration file.

Oracle

For Oracle, the value represents the partition boundary for the column. The partition contains all keys less than the limit that you specify with the **Value** parameter. If you specify MAXVALUE for a partition, the partition contains all remaining keys in the table, greater than or equal to the limit specified by the previous partition.

DB2 & DB2 UDB

For DB2 and DB2 UDB the value represents the upper limit of the partition. The partition contains all keys less than or equal to the limit that you specify with the **Value** parameter.
For DB2 Version 10 or later, the product supports the TIMESTAMP WITH TIME ZONE data type. Enter a value in local time; the product converts the time value to Coordinated Universal Time (UTC) when taking the following actions:

- generating the partition key
- before using the data to determine the partitioning group for distribution purposes

The product supports the use of columns defined as TIMESTAMP WITH TIME ZONE as part of a partitioning key with [ObjectPartition]. Enter a value that adheres to the proper format for the column type, using the precision and time zone offset.

Ensure that the column that you specify as the partitioning key resolves to a unique value within the length determined by your target DBMS. For more information, see “Partition key length” on page 231.

Restart parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CheckpointFrequency</td>
<td>page 238</td>
</tr>
<tr>
<td>RestartID</td>
<td>page 240</td>
</tr>
<tr>
<td>RestartType</td>
<td>page 241</td>
</tr>
<tr>
<td>RetainTime</td>
<td>page 242</td>
</tr>
<tr>
<td>Retry</td>
<td>page 243</td>
</tr>
<tr>
<td>TableName</td>
<td>page 244</td>
</tr>
</tbody>
</table>

The [Restart] parameters control processing during a restart. Figure 49 on page 238 shows an example of the [Restart] parameters.

The [Restart] section is optional, but BMC Software recommends that you record restart information for your apply requests, so that you can successfully complete apply processing in the event of an operating environment or DBMS failure.

WARNING

In general, do not modify the input file of an apply request between the initial run and restart. Modify the configuration file only to the extent required to resolve error conditions. Ensure that changes to the configuration do not alter the distribution of work between agents. For example, do not change the values of configuration parameters such as MaxAgents, DistributionType, PartitionClustering, or RIClustering.

For more information about restarting the High-speed Apply Engine, see Chapter 4, “Restart and recovery.” For more information about using these parameters, see “Summary of restart parameter usage” on page 83.
CheckpointFrequency

The `CheckpointFrequency` parameter determines how often the High-speed Apply Engine performs checkpoint processing to update the restart table with a statement ID that reflects the overall progress of all agents through the input file. When you restart an apply request, High-speed Apply Engine uses this information to speed up restart processing.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Restart]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
</tbody>
</table>
| Valid values | a positive integer that represents the number of transactions each agent processes between checkpoints
| Default value | 5 |

Usage

Specify the number of commit actions that each agent performs before it performs checkpoint processing. Specify 0 to turn off checkpoint processing.

NOTE

The checkpoint frequency is a number of commit actions for each agent, but High-speed Apply Engine updates the restart table with a statement ID only after all agents have reached their checkpoint threshold.

Use this parameter to balance the overhead of checkpoint processing against the benefits of shorter run time when you restart an apply request. Checkpoint processing imposes a small amount of overhead during an apply request. When you restart an apply request, however, previous checkpoint processing can provide a
large benefit because High-speed Apply Engine can begin processing more quickly. (High-speed Apply Engine uses the statement ID in the restart table to read through the initial part of the input file without performing extra processing to determine if it has already processed an input statement.)

Consider the following situations:

- An apply request processes a large input file and failures occur frequently because of communication problems in your environment. In this case, set the **CheckpointFrequency** parameter to a lower value. Each agent performs checkpoint processing more frequently. The apply request can run slightly slower, but if it fails and you restart it, High-speed Apply Engine reads through the initial portion of the large input file quickly before it begins performing the extra processing. The restarted request runs faster.

- An apply request processes a smaller input file and you know from previous runs that failures are rare. In this case, set the **CheckpointFrequency** parameter to a higher value. Each agent performs checkpoint processing less frequently. The apply request runs slightly faster. If you have to restart the request, the restarted run takes longer.

Consider the following points as you set a value for **CheckpointFrequency**.

- Your checkpoint frequency is a number of commit actions. With distribution by object, your commit actions are determined by the values of the **StatementCount** and **Time** parameters. (For more information, see page 154 and page 155.) Consider the values of these parameters as you set the checkpoint frequency. (With distribution by UR, the commit actions are determined by the original transactions in the input SQL statements.)

 The number of commit actions is also influenced by the number of agents that process an apply request. Consider the values of your [Agent] parameters when you select a value for **CheckpointFrequency**.

- When High-speed Apply Engine processes data definition language (DDL) statements in an input file, it uses only one agent and issues a COMMIT statement after each DDL statement. This behavior can affect your checkpoint frequency.
RestartID

The RestartID parameter identifies information in the restart table associated with a specific apply request.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Restart]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>RestartType = Restart yes
RestartType = New/Restart yes
Other Restart Types no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a character string up to 16 characters long (You cannot specify the string NONE.)</td>
</tr>
<tr>
<td>Default value</td>
<td>If RestartType = New, a default restart ID will be generated</td>
</tr>
</tbody>
</table>

Usage

You can specify a restart ID and RestartType = New for an initial restart ID. After a restart ID exists, if the RestartType parameter is set to New/Restart or Restart, the High-speed Apply Engine uses the user-specified restart ID value as the starting point for restart processing.

For more information about using the RestartType parameter and the RestartID parameter, see “Summary of restart parameter usage” on page 83.
RestartType

The **RestartType** parameter specifies whether the High-speed Apply Engine records restart information for the apply request.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Restart]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>New, None, New/Restart, Restart</td>
</tr>
<tr>
<td>Default value</td>
<td>New</td>
</tr>
</tbody>
</table>

Usage

If you include the [Restart] section in your configuration file, you must specify the **RestartType** parameter. You can choose one of the following values for this parameter:

- New indicates that High-speed Apply Engine saves restart information for this apply request under a specified or generated restart ID. If you specify **RestartType**=New and you specify a value for **RestartID**, High-speed Apply Engine uses your restart ID value. If you specify **RestartType**=New and do not specify a restart ID, High-speed Apply Engine generates a restart ID.

 You can subsequently specify the restart ID to restart the request after a system failure.

- None indicates that High-speed Apply Engine does not collect restart information or generate a restart ID for the apply request. If a failure occurs, no restart information is available for the apply request.

- New/Restart indicates that High-speed Apply Engine treats this request as either New or Restart, depending on whether restart information exists for the restart ID. If you use **RestartType**=New/Restart, you must use the **RestartID** parameter to specify a value for restart ID. If restart information exists for the specified restart ID, restart processing will be performed, otherwise it is treated as a new request.

- Restart indicates that High-speed Apply Engine will use the restart information that exists for the restart ID for processing. If you use **RestartType**=Restart, you must use the **RestartID** parameter to specify a value for restart ID.

For more information about using the **RestartType** parameter and the **RestartID** parameter, see “Summary of restart parameter usage” on page 83.
RetainTime

The **RetainTime** parameter specifies how long the High-speed Apply Engine retains records in the restart table. This parameter is optional.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Restart]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
</tbody>
</table>
| Valid values | - a positive integer that represents the number of days to retain restart records
- All |
| Default value | 7 |

Usage

Specify the number of days that you want High-speed Apply Engine to keep restart records in the current restart table. Specify All to bypass record deletion and retain all records in the current restart table.

When you specify a number of days, consider the following criteria:

- how many of your apply requests use the same restart table
- the number of transactions processed by your apply requests
- the available storage space on the system that contains the restart table

High-speed Apply Engine issues message BMCAPT0191 and deletes information from the restart table when either of the following conditions are true:

- High-speed Apply Engine is not restarting a previous apply request and any restart information in the current restart table is older than the number of days specified by the **RetainTime** parameter. This situation can occur either when **RestartType** is New, or when **RestartType** is New/Restart and the previous run of the request was successful.

For this condition, High-speed Apply Engine deletes all restart information in the current restart table that is older than the **RetainTime** value. (To preserve restart information for one restart ID when information for other restart IDs is older than the **RetainTime** value, use separate restart tables. For more information, see “Creating a restart table” on page 72.)
Any restart information (regardless of its age) exists in the restart table for the current restart ID, but **RestartType** is New.

If restart information exists, the previous run of the request was unsuccessful, but a restart type of New indicates that you want to bypass the restart and start from the beginning of the input file. For this condition, High-speed Apply Engine deletes only the restart information for the current restart ID.

Retry

The **Retry** parameter specifies the number of times that the High-speed Apply Engine tries to access the restart table if the table is unavailable. (For example, High-speed Apply Engine tries to access the restart table again if it receives a resource-unavailable status from DB2, such as -904 or -913).

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Restart]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer that represents the number of retry attempts</td>
</tr>
<tr>
<td>Default value</td>
<td>3</td>
</tr>
</tbody>
</table>

Usage

If the restart table is unavailable when you start the request, High-speed Apply Engine attempts to access the table repeatedly. It continues to try to access the restart table until one of the following situations occurs:

- The restart table becomes available.
- The number of attempts to access the restart table equals the value that you specified for the **Retry** parameter.

If you do not include the **Retry** parameter, High-speed Apply Engine uses the default value.
TableName

The **TableName** parameter specifies the name of the DBMS table that contains restart information for the apply request. To enable restart processing, a restart table must be available for the High-speed Apply Engine to store restart information.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[Restart]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid table name (nondelimited), an alias, a DB2 synonym, or an Oracle public synonym</td>
</tr>
</tbody>
</table>
| Default value | Mainframe operating systems
BMCAPT_APTRSCL (alias)
UNIX and Windows
BMCAPE_APERSCL (public synonym) |

Usage

The table that you specify must exist when you run the apply request. It must reside in the same DB2 subsystem, DB2 UDB database, or Oracle instance as the target tables. Use one of the formats shown in Table 17.

If you specify an unqualified name for the restart table, be aware of the value of the BindQualifier parameter in your configuration (for more information, see “BindQualifier” on page 250).

Table 17 Restart table name formats (part 1 of 2)

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>owner.tableName</td>
<td>To fully qualify a table name, specify the owner and table name, as follows:</td>
</tr>
<tr>
<td></td>
<td>- The owner is the user ID of the table owner.</td>
</tr>
<tr>
<td></td>
<td>- The period is a required separator.</td>
</tr>
<tr>
<td></td>
<td>- The tableName is the DB2, DB2 UDB or Oracle table name.</td>
</tr>
<tr>
<td>tableName</td>
<td>If you specify a table name without an owner, High-speed Apply Engine uses the user ID that runs the apply request as the owner of the table.</td>
</tr>
</tbody>
</table>
By default, the High-speed Apply Engine uses a single restart table for all apply requests. (This table can be the restart table created during installation, or one that you designate.) In normal use, this practice works well. However, if you run a large number of apply requests simultaneously on the same target database, you might begin to experience resource contention for the single restart table.

If you experience resource contention, create a restart table for each apply request that runs simultaneously on the target database. This practice ensures that resource contention for the restart table will not occur.

For more information, see “Creating a restart table” on page 72.
SQL parameters

[SQL] parameters define values for SQL input for the apply request. Figure 50 shows an example of the [SQL] parameters.

Figure 50 Example of [SQL] parameter values

![SQL Parameter Example]

DecimalPoint

The *DecimalPoint* parameter specifies which character the High-speed Apply Engine expects to represent the decimal point in the input SQL file.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[SQL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Period (.), or comma (,)</td>
</tr>
</tbody>
</table>
| Default value | DB2
 - High-speed Apply Engine uses character defined as decimal point in the DSNHDECP module of current subsystem
 - High-speed Apply Engine extracts character from the locale setting obtained from the current operating system
 - Oracle High-speed Apply Engine obtains character from the nls_session_parameters (specifically, nls_numeric_characters)
Usage

Some environments use target DBMS options to define a comma (,) instead of a period (.) as the decimal point in any numeric values contained within SQL statements. If your input SQL file is generated in such an environment, use this parameter to direct High-speed Apply Engine to interpret a comma within a numeric value as a decimal point character.

WARNING

Exercise caution when the decimal point character of the input file is not supported by the target database. If High-speed Apply Engine processes an input statement as EXECUTE IMMEDIATE, the statement contains the input decimal point character. If that character is not supported by the target database, the results are unpredictable.

Format

The **Format** parameter specifies the format of SQL input statements.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[SQL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Standard or Packed72</td>
</tr>
<tr>
<td>Default value</td>
<td>DB2</td>
</tr>
<tr>
<td></td>
<td>Packed72</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Oracle</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
</tbody>
</table>
Usage

Specify the format of the SQL statements that will serve as input for the apply request.

- Specify Standard if your input is coming from Oracle or DB2 UDB for UNIX or Windows.

 Standard refers to a format of SQL variable-length statements. This value indicates that the input file contains regular SQL with statements on one or more lines. (Quoted strings cannot span multiple lines.)

- Specify Packed72 if your input is coming from a mainframe source. (Most SQL from mainframe sources is generated in fixed-length data sets.) This format is compatible with the DB2 SPUFI utility. If the file does not match this format, results are unpredictable.

 Packed72 refers to a format of SQL fixed-length records which are in packed 72 bytes. This format indicates that the input file contains SQL was generated by Log Master for DB2 on a mainframe source or formatted by the user. This format is processed as though all rows in the file are 72 bytes long and quoted strings can span multiple lines.

StartUp parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BindQualifier</td>
<td>page 250</td>
</tr>
<tr>
<td>ConnectionVersion</td>
<td>page 251</td>
</tr>
<tr>
<td>Database</td>
<td>page 252</td>
</tr>
<tr>
<td>DateFormat</td>
<td>page 252</td>
</tr>
<tr>
<td>DBMSType</td>
<td>page 253</td>
</tr>
<tr>
<td>DefaultOpts (DOPT)</td>
<td>page 254</td>
</tr>
<tr>
<td>DistributionType</td>
<td>page 255</td>
</tr>
<tr>
<td>FileName (IFN)</td>
<td>page 256</td>
</tr>
<tr>
<td>InputMediaType</td>
<td>page 258</td>
</tr>
<tr>
<td>InputType (IT)</td>
<td>page 258</td>
</tr>
<tr>
<td>LargeStatementSupport</td>
<td>page 259</td>
</tr>
<tr>
<td>Login</td>
<td>page 260</td>
</tr>
<tr>
<td>Password</td>
<td>page 261</td>
</tr>
<tr>
<td>PlanName (PLAN)</td>
<td>page 262</td>
</tr>
<tr>
<td>PublicPlan</td>
<td>page 263</td>
</tr>
<tr>
<td>SQLTerminator</td>
<td>page 264</td>
</tr>
</tbody>
</table>
The [StartUp] (SU) parameters specify initialization options for the High-speed Apply Engine. The parameters that you specify vary depending on the DBMS and operating system platform where you run High-speed Apply Engine.

DB2 Figure 51 shows an example of the [StartUp] parameters for a DB2 mainframe target. The [Startup] section is required for DB2 targets on a mainframe. You must specify the **FileName**, **SSID**, and **PlanName** parameters.

Figure 51 Example of [StartUp] parameters for DB2 on mainframe targets

```plaintext
/StartUp/
   FileName=USER14.MIGRATE.SQL
   InputType=SQL
   SSID=DBAM
   PlanName=APTSMDB2
```

DB2 UDB Figure 52 shows an example of the [StartUp] parameters for DB2 UDB. The [StartUp] section is required for DB2 UDB targets. You must specify the **FileName**, **Database**, and **DbmsType** parameters.

Figure 52 Example of [StartUp] parameters for DB2 UDB

```plaintext
[StartUp]
   FileName=/home/operations/migrate.sql
   Database=ACCT
   DbmsType=DB2
```

Oracle Figure 53 shows an example of the [StartUp] parameters for Oracle. If the target database is configured for automated login, and the input file name is the default name, the [StartUp] section is not required. If you do not use automated login, you must include the **Login** parameter.

Figure 53 Example of [StartUp] parameters for Oracle

```plaintext
[StartUp]
   FileName=User14.Migrate.SQL
   Login=user14/******@Ora10
```
The **BindQualifier** parameter specifies a qualifier value that High-speed Apply Engine uses to execute dynamic SQL against the restart table if the restart table is defined in your configuration with an unqualified name. High-speed Apply Engine does not use this parameter when it binds packages to apply user data (from either SQL or logical log input).

Other BMC Software products for DB2 use the value of this parameter during execution to dynamically bind internal packages that are distributed with the products (frequently as the QUALIFIER value in a BIND PACKAGE command). High-speed Apply Engine does not use this parameter in this way because all SQL distributed with High-speed Apply Engine contains fully-qualified names.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>A string up to 16 characters long that is a valid DB2 qualifier value</td>
</tr>
<tr>
<td>Default value</td>
<td>APT<sup>v</sup>v<sub>r</sub></td>
</tr>
</tbody>
</table>

Usage

Specify any value that is valid for the QUALIFIER option of a DB2 BIND command, up to 16 bytes in length. The default value is APT^vv_r, where ^vv represents a two-character version number and _r represents a one-character release number.

You can specify this parameter in the installation options module during the install process or you can specify it in the configuration file.
The **ConnectionVersion** parameter identifies the version number of the Oracle client and server.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>any supported version of the Oracle client and server software. For a list of supported versions, see Table 22 on page 290 or Table 24 on page 304.</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

Specify the version number of the Oracle client and server for the target tables. Enter the version number in the format \(v.r.m\), separated by periods, for example:

```plaintext
ConnectionVersion=10.2.0
```

If you do not specify this parameter, the High-speed Apply Engine attempts to determine the Oracle version for the target tables by using the SQL*Plus program. The directory that contains SQL*Plus must be included in the path for the server, so that High-speed Apply Engine can run the program. If High-speed Apply Engine cannot determine the Oracle version number from the configuration or the server, it cannot process the apply request.

You need to specify this parameter only if High-speed Apply Engine cannot determine the version. In that case High-speed Apply Engine generates the message BMCAPT0123, “Unable to determine connection version”.

Oracle

The **ConnectionVersion** parameter identifies the version number of the Oracle client and server.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>any supported version of the Oracle client and server software. For a list of supported versions, see Table 22 on page 290 or Table 24 on page 304.</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

Specify the version number of the Oracle client and server for the target tables. Enter the version number in the format \(v.r.m\), separated by periods, for example:

```plaintext
ConnectionVersion=10.2.0
```

If you do not specify this parameter, the High-speed Apply Engine attempts to determine the Oracle version for the target tables by using the SQL*Plus program. The directory that contains SQL*Plus must be included in the path for the server, so that High-speed Apply Engine can run the program. If High-speed Apply Engine cannot determine the Oracle version number from the configuration or the server, it cannot process the apply request.

You need to specify this parameter only if High-speed Apply Engine cannot determine the version. In that case High-speed Apply Engine generates the message BMCAPT0123, “Unable to determine connection version”.

Chapter 7 Configuration parameters 251
Database

- **DB2 UDB** The **Database** parameter specifies the name of the target database.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2 UDB</td>
</tr>
<tr>
<td>Required?</td>
<td>yes (unless the Login parameter is specified)</td>
</tr>
<tr>
<td>Valid values</td>
<td>Any valid DB2 UDB database name (usually the local alias of the target database.)</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

Specify the database name of the DB2 UDB database that contains the target tables for the apply request.

Date Format

- **Oracle** The **Date Format** defines the default date format that the High-speed Apply Engine uses when it updates date columns in an Oracle target database.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Any valid Oracle date format mask for example: ‘MM/DD/YYYY’</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>
Usage

Specify a valid Oracle date format mask that matches the dates in your input.

Consider the following points regarding this parameter:

- Use this parameter when your input was generated in another Oracle environment (or on a DBMS other than Oracle) that uses a different date format than the format of the date columns in your target tables. When you specify this parameter, the High-speed Apply Engine issues an ALTER SESSION SET statement to change the date format (the nls_date_format parameter).

- For valid date format masks, consult the Oracle DBMS technical documentation.

DBMSType

The **DBMSType** parameter specifies the database type for the tables that contain information for the apply request.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
</tbody>
</table>

Required?

- DB2, Oracle: no
- DB2 UDB: yes

Valid values

- DB2, Oracle

Default value

- Mainframe operating systems
- DB2
- UNIX, Windows
- Oracle

Usage

The **DBMSType** parameter is not required. If you choose to indicate the DBMSType, specify Oracle for an Oracle database or DB2 for a mainframe or a DB2 UDB target.

DB2 UDB If you are using DB2 UDB on a UNIX or Windows platform the [StartUp] section of your configuration file must specify **DBMSType=DB2**.
DefaultOpts

The **DefaultOpts** (DOPT) parameter specifies the name of an installation options module that you have created that contains default configuration values.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>DOPT</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid module name or the word None</td>
</tr>
<tr>
<td>Default value</td>
<td>APTDOPTS</td>
</tr>
</tbody>
</table>

Usage

Use the **DefaultOpts** parameter to specify the name of a user-created installation options module. Use None as the value if you do not want to use an installation options module.

You can generate a default configuration options module during installation. For more information, see Appendix B, “Installing High-speed Apply Engine on mainframe targets.”

NOTE

Any configuration information specified in the apply request or the configuration file will override the values in the installation options module.
DistributionType

The **DistributionType** parameter selects one of two major techniques that the High-speed Apply Engine can use to distribute work between multiple agents. For more information about these two options, see “Distribution of work” on page 38.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Object, UR</td>
</tr>
<tr>
<td>Default value</td>
<td>Object</td>
</tr>
</tbody>
</table>

Usage

Specify one of the following values:

- **Object** directs High-speed Apply Engine to distribute work based on the tables or partitions that the SQL statements in the input file update. This technique does not preserve transaction integrity during the apply request. This is the default value.

- **UR** directs High-speed Apply Engine to distribute work based on the units of recovery (transactions) contained in the input file. High-speed Apply Engine uses the same agent to process all SQL statements in an original transaction, regardless of what tables or partitions the statements update. This technique preserves transaction integrity during the apply request.

Use this parameter to override the High-speed Apply Engine default value and select distribution by UR. With distribution by UR, the same agent processes a given transaction, but different agents can process two different transactions that update the same tables or partitions. Distribution by UR causes High-speed Apply Engine to honor the original COMMIT or ROLLBACK statements that occur in the input.

Under distribution by UR, High-speed Apply Engine ignores the values of configuration parameters related to distribution by object (such as [CommitTriggers], [ObjectPartition], and many [DistributionTuning] parameters, such as PartitionClustering and RIClustering).
Under distribution by UR, High-speed Apply Engine ensures that it can restart the apply request by directing multiple agents to wait as needed to preserve the order of the original transactions. High-speed Apply Engine can also direct agents to wait to accommodate dependencies between transactions. The following dependencies cause High-speed Apply Engine to coordinate the actions of multiple agents.

- when statements in two different transactions update the same table

 High-speed Apply Engine directs the agent processing the later transaction to process all statements up to the first statement that updates the common table. Then the agent processing the later transaction waits until the agent processing the earlier transaction finishes and performs a commit action.

- when statements in two different transactions update tables that are part of a database-defined referential integrity (RI) relationship

 High-speed Apply Engine directs the agent processing the later transaction to wait until the agent processing the earlier transaction finishes and performs a commit action. Use the `URCheckRI` parameter to control whether High-speed Apply Engine accommodates this type of dependency. (For more information, see page 189.) When `URCheckRI` is Yes, the `RIClustering` parameter does not apply.

- when any transaction contains a data definition language (DDL) statement

 Other agents continue to process transactions without DDL statements. However, High-speed Apply Engine does not assign any additional transactions to agents for processing until after the agent processing the DDL statement finishes and performs a commit action. High-speed Apply Engine takes this action in case the DDL statement changes the structure of the tables being updated by other agents.

Under distribution by UR, High-speed Apply Engine honors the COMMIT or ROLLBACK statements in your input, but it might perform additional commit or rollback actions in response to certain Action parameters of a conflict resolution rule or to resource shortages.

FileName (IFN)

The FileName (IFN) parameter specifies the name of the input file for the apply request. The High-speed Apply Engine accepts the following types of input:

- SQL generated by any standard SQL generator

- logical log control files generated by Log Master for DB2 (or other application programs that conform to the published format)
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>IFN</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
</tbody>
</table>
| Valid values | DB2
a fully qualified data set name or a DD name
DB2 UDB or Oracle
a file name, including the path name if outside of the default path |
| Default value | Mainframe operating systems
SQLIN for an SQL input file and
LLOGIN for a logical log input file
UNIX and Windows
no default value |

Usage

For the FileName parameter, you can specify any valid data set or DD name, or a UNIX or Windows file name. For more information about file names on different operating systems, see Usage in “FileName (CFN)” on page 157.

IBM z/OS You can specify any valid data set, including a partitioned data set (PDS) or a generation data group (GDG) name.

As with other parameters that require a file name, when you specify a name that is eight characters or fewer, High-speed Apply Engine treats the name as a DD name. The DD name must refer to a DD statement in the apply request. However, in the case of the input file, the default DD name depends on the input type, as follows:

— For SQL input, the default is SQLIN.
— For a logical log file, the default is LLOGIN.

(If the character string is not a valid DD name, High-speed Apply Engine treats it as a data set name.)

NOTE

If you include the SQLIN or LLOGIN DD statement in the apply request, and you do not specify the InputType parameter, High-speed Apply Engine uses the DD name to determine whether the input file is SQL or a logical log control file. If you include both DD statements in an apply request, you must specify the InputType parameter, or the request cannot be processed.
InputMediaType

The `InputMediaType` parameter specifies the media type of the input to the High-speed Apply Engine.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>File or Queue (Message Queue)</td>
</tr>
<tr>
<td>Default value</td>
<td>By default, High-speed Apply Engine attempts to determine the media type of the input source by examining the value of other parameters.</td>
</tr>
</tbody>
</table>

Usage

In most situations, High-speed Apply Engine can determine the media type of the input from the value of other parameters. Specify this parameter only if the input media cannot be determined by other parameters.

Specify File if the input media is a file. Specify Queue if the input media is an MQSeries message queue.

InputType

The `InputType` (IT) parameter specifies whether the input file is a logical log control file or an SQL file.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>IT</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
</tbody>
</table>
Usage

Specify one of the following values for the **InputType** parameter:

- LogicalLog indicates that the input file is a logical log control file generated by Log Master for DB2 (or by an application program that conforms to the published format).
- SQL indicates that the input file contains only SQL statements. To provide restartability, ensure that your input file does not contain more than one SQL statement on the same line.

If you do not specify the **InputType** parameter, and High-speed Apply Engine cannot determine the input type from the default DD name for the input file, High-speed Apply Engine cannot process the apply request.

LargeStatementSupport

The **LargeStatementSupport** parameter specifies whether the High-speed Apply Engine can process SQL statements or logical log input records that are longer than 65,536 bytes (64K).

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes, No</td>
</tr>
<tr>
<td>Default value</td>
<td>No</td>
</tr>
</tbody>
</table>
Usage

Specify one of the following values for the **LargeStatementSupport** parameter:

- **No** directs High-speed Apply Engine to issue error message BMCAPT0046 if either an SQL statement or a logical log record in the input file is longer than 64K bytes. No is the default value.

- **Yes** directs High-speed Apply Engine to extend the limit on an input statement or record to 327,680 bytes (320K).

If you are processing logical log input that includes data from large volume columns (such as XML or LOB columns), consider specifying Yes for this parameter to accommodate the larger amount of data. If processing in your environment requires that you process an SQL statement or a logical log record that is longer than 320K, contact BMC Software Customer Support for assistance.

Login

The **Login** parameter specifies all of the startup information required for an apply request on an Oracle or DB2 UDB target. The parameter includes the user ID, password, and database name for the target database.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>Oracle</td>
</tr>
<tr>
<td></td>
<td>yes (unless the Oracle login is automated)</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB</td>
</tr>
<tr>
<td></td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Oracle</td>
</tr>
<tr>
<td></td>
<td>a user ID and password in the format: 'userid/password'</td>
</tr>
<tr>
<td></td>
<td>DB2 UDB</td>
</tr>
<tr>
<td></td>
<td>a user ID, password, and database name (formats): '@databaseName' 'userid/password@databaseName'</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>
Usage

Specify values for the **Login** parameter as follows:

- Specify a user ID and password with the appropriate database authority for the apply request.
- Specify the name of the instance or database that contains the target tables for the request.

Oracle If the target Oracle instance is configured for automated login, you do not need to include the **Login** parameter in your configuration. If your Oracle user ID or password include lowercase characters, enclose the values in quotes to prevent the High-speed Apply Engine from converting the characters. For example,

`'userID/password'`

DB2 UDB By default, High-speed Apply Engine converts the user ID and password to uppercase characters. If your DB2 UDB user ID or password include lowercase characters, enclose the values in quotes to prevent High-speed Apply Engine from converting the characters. For example,

`'userID/password@databaseName'`

Password

DB2 UDB The **Password** parameter specifies the password associated with the user ID used to access the target database.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2 UDB</td>
</tr>
</tbody>
</table>

Required?

- When accessing DB2 UDB through a client
 - yes
- When running DB2 UDB on the server
 - no

Valid values

- any valid password in the format `'password'`

Default value

- none
Usage

The password is used in conjunction with the user ID. For more information, see “UserID” on page 267.

The need for Password and UserID depends on the authentication settings on the server to which the High-speed Apply Engine connects. For more information about the authentication settings, consult the server documentation.

By default, High-speed Apply Engine converts the value of both UserID and Password to uppercase characters. If your DB2 UDB user ID or password includes lowercase characters, enclose the value in quotes to prevent High-speed Apply Engine from converting the characters (for example ‘password’).

PlanName

The PlanName (PLAN) parameter specifies the name of the DB2 plan that the High-speed Apply Engine uses to access the DB2 catalog tables and the restart tables.

NOTE

High-speed Apply Engine does not use this plan to access your target DB2 tables. To specify the plan name that accesses the target tables, use the PlanName parameter in the [Bind] section. (For more information, see “PlanName” on page 140).

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>PLAN</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid DB2 plan name</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

(default value in installation options module is APTBvvr, where vvr represents the version and release level of High-speed Apply Engine)
Usage

This plan name can be specified in the installation options module during the install process or you can specify it with this parameter, but High-speed Apply Engine must have this plan name in order to run an apply request.

PublicPlan

The PublicPlan parameter determines whether the High-speed Apply Engine grants the authority to run High-speed Apply Engine (execute against the base plan) to PUBLIC.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Default value</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Usage

Use this option to avoid specific grants of authority to individual users that run High-speed Apply Engine. Specify one of the following values for the PublicPlan parameter:

- Specify a value of Yes (the default value) to direct High-speed Apply Engine to grant EXECUTE authority on the base plan to PUBLIC. All users have authority to run High-speed Apply Engine.

- Specify a value of No to prevent High-speed Apply Engine from granting EXECUTE authority on the base plan to PUBLIC. If you specify No, you must grant EXECUTE authority on the base plan to all specific users that run High-speed Apply Engine.
Be aware of the following points regarding the **PublicPlan** parameter and the High-speed Apply Engine base plan.

- In most cases, BMC Software recommends accepting the default value of Yes. You can specify this parameter in the installation options module during the install process or you can specify it in the configuration file.

- The name of the High-speed Apply Engine base plan is determined by the **PlanName** parameter ("PlanName" on page 262).

SQLTerminator

The **SQLTerminator** parameter specifies the character that ends each SQL statement in the input file. This parameter allows you to set the SQL terminator character to something other than a semicolon (;), which is the default.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2, DB2 UDB, Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
</tbody>
</table>
| Valid values | DB2
 - any character except space, comma, single quote ('),
 - double quote ("), left parenthesis, right parenthesis,
 - or underscore (_)

 DB2 UDB
 - any character except space, left parenthesis, or right parenthesis

 Oracle
 - any character except space, single quote ('), or double quote ("") |
| Default value | semicolon (;) |

Usage

If your SQL statements terminate with a character other than a semicolon, use the **SQLTerminator** parameter to specify that character. The High-speed Apply Engine also uses the current terminator (from the configuration or from the SQL file) for any statements written to the conflict file.

You can also designate a terminator character in your input SQL. For more information, consult the DBMS documentation.
The SSID parameter specifies the DB2 subsystem ID or the group attachment name for a data sharing group.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>yes</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid DB2 SSID or group attachment name</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

Specify the SSID of the DB2 subsystem or the group attachment name of the data sharing group that contains the target tables. If you do not specify this parameter, the apply request cannot be processed.

The TimestampFormat defines the default timestamp format that the High-speed Apply Engine uses when it updates timestamp columns in an Oracle target database.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Any valid Oracle datetime format mask for example: 'YYYY-MM-DD HH:MI:SS.FF'</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>
Usage

Specify a valid Oracle datetime format mask that matches the timestamps in your input.

Consider the following points regarding this parameter:

- Use this parameter when your input was generated on a DBMS other than Oracle (or a different Oracle environment) that uses a different timestamp format than the format of the timestamp columns in your target tables. When you specify this parameter, High-speed Apply Engine issues an ALTER SESSION SET statement to change the timestamp format (the nls_timestamp_format parameter).

- For valid datetime format masks, consult the Oracle DBMS technical documentation.

- High-speed Apply Engine uses this parameter only when the target version of the Oracle DBMS is 9i or later. For earlier versions, High-speed Apply Engine ignores this parameter.

TimestampTzFormat

The TimestampTzFormat defines the default timestamp with time zone format that the High-speed Apply Engine uses when it updates timestamp columns in an Oracle target database.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>Oracle</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>Any valid Oracle datetime format mask for example: 'YYYY-MM-DD HH:MI:SS.FF TZH:TZM'</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>
Usage

Specify a valid Oracle datetime format mask that matches the timestamps and time zones in your input.

Consider the following points regarding this parameter:

- Use this parameter when your input was generated on a DBMS other than Oracle (or in a different Oracle environment) that uses a different timestamp with time zone format than the format of the timestamp columns in your target tables. When you specify this parameter, High-speed Apply Engine issues an ALTER SESSION SET statement to change the timestamp with time zone format (the nls_timestamp_tz_format parameter).

- For valid datetime format masks, consult the Oracle DBMS technical documentation.

- High-speed Apply Engine uses this parameter only when the target version of the Oracle DBMS is 9i or later. For earlier versions, High-speed Apply Engine ignores this parameter.

UserID

The UserID parameter specifies the user ID that the High-speed Apply Engine uses to access the target database.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[StartUp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2 UDB</td>
</tr>
<tr>
<td>Required?</td>
<td>When accessing DB2 UDB through a client yes</td>
</tr>
<tr>
<td></td>
<td>When running DB2 UDB on the server no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid user ID</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>
Usage

Specify a user ID and password with the appropriate database authority for the apply request.

Generally, the **UserID** parameter is required if you are accessing DB2 UDB through a client. It is not required if you are running DB2 UDB on the server. However, the need for **Password** and **UserID** depends on the authentication settings on the server to which High-speed Apply Engine connects. For more information about the authentication settings, consult the DB2 UDB server documentation.

By default, High-speed Apply Engine converts the value of both **UserID** and **Password** to uppercase characters. If your DB2 UDB user ID or password includes lowercase characters, enclose the value in quotes to prevent High-speed Apply Engine from converting the characters (for example ‘*userID*’).

TemporaryFiles parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATACLAS</td>
<td>page 269</td>
</tr>
<tr>
<td>Directory (DIR)</td>
<td>page 270</td>
</tr>
<tr>
<td>Like</td>
<td>page 270</td>
</tr>
<tr>
<td>MGMTCLAS</td>
<td>page 271</td>
</tr>
<tr>
<td>SPACE</td>
<td>page 272</td>
</tr>
<tr>
<td>SpacePri</td>
<td>page 272</td>
</tr>
<tr>
<td>SpaceSec</td>
<td>page 273</td>
</tr>
<tr>
<td>STORCLAS</td>
<td>page 273</td>
</tr>
<tr>
<td>UNIT</td>
<td>page 274</td>
</tr>
<tr>
<td>VOLSER</td>
<td>page 275</td>
</tr>
</tbody>
</table>

The [TemporaryFiles] parameters specify how to store the temporary files created during apply processing. **Figure 54** shows an example of the [TemporaryFiles] parameters.

Figure 54 Example of [TemporaryFiles] parameter values

```
[TemporaryFiles]
STORCLAS=TEMP
```
The **DATACLAS** parameter identifies a data class defined by DFSMS. The High-speed Apply Engine uses the data class when it allocates temporary files.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[TemporaryFiles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a data class that is defined in DFSMS for your environment</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

The data class defines data attributes for DFSMS-managed data sets. This parameter applies only to systems that use DFSMS. If your environment does not use DFSMS, High-speed Apply Engine specifies the **DATACLAS** parameter in its allocation request, but the operating system does not honor its value.

The value of this parameter is also used as the default value of the **DATACLAS** parameter in the [ConflictFile] section.
The **Directory** (Dir) parameter specifies where to store the temporary files created during apply processing.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[TemporaryFiles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>Dir</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2 UDB</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid path name</td>
</tr>
<tr>
<td>Default value</td>
<td>High-speed Apply Engine checks environment variables TEMP, TMP or TMPDIR; if these variables are not set, High-speed Apply Engine uses the current working directory.</td>
</tr>
</tbody>
</table>

Usage

High-speed Apply Engine uses this parameter to determine where to store any temporary files created during processing.

LIKE

The **LIKE** parameter lets you specify an existing data set as a model for the allocation attributes of all temporary files.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[TemporaryFiles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>the name of an existing data set that has the allocation attributes that you want to use for all temporary files</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>
Usage

Specify the name of an existing data set. The name that you specify must refer to a data set on the system where the apply request runs. When the High-speed Apply Engine allocates new temporary files, it will use the same allocation attributes as those of the existing data set.

MGMTCLAS

The MGMTCLAS parameter identifies a management class defined in DFSMS. The High-speed Apply Engine uses the management class when it allocates temporary files.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[TemporaryFiles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a management class that is defined in DFSMS for your environment</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

The management class defines how DFSMS manages the data sets in the class. This parameter applies only to systems that use DFSMS. If your environment does not use DFSMS, High-speed Apply Engine specifies the MGMTCLAS parameter in its allocation request, but the operating system does not honor its value.

The value of this parameter is also used as the default value of the MGMTCLAS parameter in the [ConflictFile] section.
The SPACE parameter identifies the allocation unit to be used for all temporary files.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[TemporaryFiles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>CYLINDER, CYL, TRACK, or TRK</td>
</tr>
<tr>
<td>Default value</td>
<td>TRACK</td>
</tr>
</tbody>
</table>

Usage

Specify an appropriate allocation unit for your environment, or accept the default value (TRACK). The value that you specify determines the unit of measurement for the SpacePri and SpaceSec parameters.

SpacePri

The SpacePri parameter specifies the primary amount of space that is allocated for each temporary file. The unit of measurement for this parameter is determined by the SPACE parameter.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[TemporaryFiles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer greater than or equal to 1</td>
</tr>
<tr>
<td>Default value</td>
<td>15</td>
</tr>
</tbody>
</table>
Usage

Specify a value that allocates enough primary storage space for the temporary files that the apply request might generate.

SpaceSec

The **SpaceSec** parameter specifies the secondary amount of space that is allocated for each temporary file. The unit of measurement for the **SpaceSec** parameter is determined by the **SPACE** parameter.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[TemporaryFiles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>an integer greater than or equal to 0</td>
</tr>
<tr>
<td>Default value</td>
<td>5</td>
</tr>
</tbody>
</table>

Usage

Specify a value that allocates enough secondary storage space for the temporary files that the apply request might generate.

STORCLAS

The **STORCLAS** parameter specifies a storage class defined by the IBM product Data Facility Storage Management System (DFSMS). The High-speed Apply Engine uses the storage class to allocate temporary files for apply processing.
Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[TemporaryFiles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a storage class that you have defined for DFSMS</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

Usage

This parameter applies only to systems that use DFSMS. If your environment does not use DFSMS, High-speed Apply Engine specifies the **STORCLAS** parameter in its allocation request, but the operating system does not honor its value.

The value of this parameter is also used as the default value of the **STORCLAS** parameter in the [ConflictFile] section.

UNIT

The **UNIT** parameter specifies a storage unit type that the High-speed Apply Engine uses to allocate temporary files for apply processing.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[TemporaryFiles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>any valid storage unit identifier for your environment, except VIO</td>
</tr>
<tr>
<td>Default value</td>
<td>SYSALLDA</td>
</tr>
</tbody>
</table>
Usage

If you specified a value for the STORCLAS parameter, you do not need to specify a unit type. If your environment uses DFSMS, High-speed Apply Engine specifies the UNIT parameter in its allocation request, but the operating system does not honor its value.

VOLSER

The VOLSER parameter specifies the volume serial number that the High-speed Apply Engine uses to allocate temporary files for apply processing. If you specified a value for the STORCLAS parameter, you do not need to specify a volume serial number.

Attributes

This parameter has the following attributes:

<table>
<thead>
<tr>
<th>Section</th>
<th>[TemporaryFiles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>none</td>
</tr>
<tr>
<td>DBMS</td>
<td>DB2</td>
</tr>
<tr>
<td>Required?</td>
<td>no</td>
</tr>
<tr>
<td>Valid values</td>
<td>a valid volume serial number for a storage device</td>
</tr>
<tr>
<td>Default value</td>
<td>none</td>
</tr>
</tbody>
</table>

UpdateConflict parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>page 128</td>
</tr>
<tr>
<td>Code</td>
<td>page 129</td>
</tr>
</tbody>
</table>

The [UpdateConflict] parameters describe how the High-speed Apply Engine handles conflicts that occur for UPDATE statements in the apply request. You can specify as many codes and actions as required for the types of conflicts that might occur. The values that you specify in the [UpdateConflict] section override the values specified in the [AnyConflict] section (for UPDATE statements). Figure 55 on page 276 shows an example of the [UpdateConflict] parameters.
Figure 55 Example of [UpdateConflict] parameter values

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Code=Positive</td>
</tr>
<tr>
<td>Action=Rollback</td>
</tr>
</tbody>
</table>

For more information about the parameters that you can specify in the conflict sections, see “AnyConflict parameters” on page 127. For a list of values for the Code parameter, see “Codes for conflict resolution (SQL codes)” on page 87. For a list of values for the Action parameter, see “Actions for conflict resolution” on page 91.
Logical log input

The High-speed Apply Engine can read logical log input produced by either Log Master for DB2 or an application program that conforms to the published format. For more information, see the chapter on logical log files in the Log Master for DB2 Reference Manual.

Be aware of the following points regarding High-speed Apply Engine and logical log input:

- High-speed Apply Engine reads logical log input only for apply requests for DB2 on mainframe targets.

- Logical log input consists of the following files:
 - The logical log control file contains information about the format and content of the logical log.
 - The logical log data file contains actual change information (updates, deletes, inserts, or DDL objects) in logical log format.
 - (optional) The large volume VSAM files contain data from DB2 columns that hold large volumes of data (such as XML columns or LOB columns). The product or program that generates the logical log must generate these files to enable High-speed Apply Engine to apply data to large volume columns.
 - (optional) The logical log XMLSTRING control file contains the string IDs and string data that DB2 uses to encode the data in XML columns. High-speed Apply Engine needs this file when the logical log includes XML data and the DB2 subsystem of the target tables is different than the subsystem where the logical log was generated. The product or program that generates the logical log must obtain this information from the DB2 catalog table SYSIBM.SYSXMLSTRINGS. To apply the changes to a different target subsystem, High-speed Apply Engine uses the string IDs and data to serialize your XML data correctly.
The published format for logical log input does not define an order for the records in either the logical log control file or the logical log data file.

High-speed Apply Engine does not use all of the records in logical log input. It reads the following records in either the logical log control file or the logical log data file:

- CLUS LOB/XML Cluster Data Set Record
- DCCL Clustering Index Column Description Record
- DCDX Clustering Index Description Record (deprecated)
- DCL2 DB2 Column Description Record Part Two
- DCLI DB2 Column Information Record
- DCOL DB2 Column Description Record (deprecated)
- DCXI Clustering Index Information Record
- DDSM Data Sharing Member Record
- DLCI Logical Log Column Information Record
- DLOD Logical Log Column Description Record (deprecated)
- DLDS Logical Log Data Set Record
- DLGE Log Information End Record
- DLGI Log Information Record
- DLOB LOB Column Description Record
- DSS1 SysStrings Base Record
- DSS2 SysStrings TransTable Record
- DTBC Table Record Count Record
- DTBI Table Information Record
- DTBL Table Description Record (deprecated)
- DTBR Table RBA Record (deprecated)
- DTS2 Table Space Description Record Part Two (deprecated)
- DTSI Table Space Information Record
- DTSP Table Space Description Record (deprecated)
- DXML XML Column Description Record
- DXSF XMLSTRING Data Set Name Record
- XPTH Current Path Record
- XTYP Type Record
- LLDF Data Change Record (in logical log data file)
Installing High-speed Apply Engine on mainframe targets

This appendix contains the following topics:

- Overview and prerequisites .. 279
- DB2 authorizations for plans, packages, and collections 280
 - Using the user ID running High-speed Apply Engine 281
 - Using BindOwner and a pre-bound plan 282
 - Using the AuthId parameter ... 284
 - Summary of DB2 authorization requirements 285
- Installation options ... 287
- Generating installation options ... 288

Overview and prerequisites

This appendix describes the installation for versions of the High-speed Apply Engine that run against DB2 on mainframe operating systems.

The High-speed Apply Engine is a component of the BMC Log Master for DB2 product. As a component, High-speed Apply Engine is also used by the BMC LOADPLUS for DB2 product. High-speed Apply Engine is automatically installed when you install the following solutions and products from BMC:

- Log Master for DB2
- Recovery Management for DB2
- LOADPLUS for DB2
- Database Administration for DB2

You can also install High-speed Apply separately by selecting it from the list in the Installation System. The High-speed Apply Engine honors passwords for Log Master, the Recovery Management for DB2 solution, or itself.
To install High-speed Apply Engine to run against DB2 on mainframe operating systems, use the BMC Software Installation System. This program is an ISPF application that provides a common interface for installing BMC Software products for DB2. Before installing and using the High-speed Apply Engine, review the constraints and recommendations in “Considerations for DB2 on mainframe targets” on page 31 and the Backup and Recovery Products for DB2 Installation Guide.

To install and run the High-speed Apply Engine successfully, your software environment must meet the requirements shown in Table 18.

Table 18 High-speed Apply Engine installation requirements for mainframe targets

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>database</td>
<td>The DB2 relational database system from IBM, version 8.1 or later</td>
</tr>
<tr>
<td>operating system</td>
<td>an IBM operating system that supports your release of DB2 (such as z/OS, or successors.)</td>
</tr>
<tr>
<td>related products (one or both)</td>
<td>a supported version of the BMC Software Log Master for DB2 product</td>
</tr>
<tr>
<td></td>
<td>a supported version of the BMC Software LOADPLUS for DB2 product to perform an SQLAPPLY load action</td>
</tr>
</tbody>
</table>

DB2 authorizations for plans, packages, and collections

DB2 authorizations that the user ID that runs the High-speed Apply Engine must have are described in “DB2 authorizations” on page 33. The High-speed Apply Engine creates plans, packages, and collections. Depending on the privileges that you are willing to grant to the user ID that runs High-speed Apply Engine, you can grant the DB2 authorizations and privileges for these activities using one of the methods described in this section.
Table 19 defines the variables that appear in all of the GRANT examples in this section.

Table 19 Variables used in DB2 authorization examples

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aptPlan</td>
<td>name of High-speed Apply Engine plan that is specified during installation For more information, see “PlanName” on page 262.</td>
</tr>
<tr>
<td>collectionIDs</td>
<td>names of collections to which High-speed Apply Engine dynamically binds packages during processing This name can be:</td>
</tr>
<tr>
<td></td>
<td>■ one specific package designated for use by High-speed Apply Engine</td>
</tr>
<tr>
<td></td>
<td>■ list of specific packages designated for use by High-speed Apply Engine</td>
</tr>
<tr>
<td></td>
<td>■ "*" This variable represents all collections. Your security policies might not permit this specification.</td>
</tr>
<tr>
<td>databaseName</td>
<td>target database being changed by the apply request</td>
</tr>
<tr>
<td>tableName</td>
<td>target tables being changed by the apply request</td>
</tr>
<tr>
<td>userid01</td>
<td>authorization ID of the user running the apply request You can specify PUBLIC or a specific authorization ID.</td>
</tr>
<tr>
<td>userid02</td>
<td>authorization ID (different than userid01) with authority to bind plans, bind packages, and administer collections This authorization ID can be a secondary authorization ID. The privileges that are granted to this authorization ID vary, depending on how you enable High-speed Apply Engine bind processing.</td>
</tr>
<tr>
<td>userPlan01</td>
<td>name of a pre-bound plan that is bound by using special bind options (optional, when BindAction parameter is Use) For more information, see “PlanName” on page 140.</td>
</tr>
</tbody>
</table>

Using the user ID running High-speed Apply Engine

With this method, you must grant authority and privileges to the user ID running the High-speed Apply Engine. Table 20 on page 286 contains a row that summarizes the requirements for this method. This method has the following requirements:

- The user ID that runs High-speed Apply Engine (userid01) must have BINDADD authority, and one of the following statuses:
 - PACKADM authority
 - CREATE privileges on all packages (*)
 - CREATE privileges on a specific collection or list of collections designated for use by High-speed Apply Engine
Using BindOwner and a pre-bound plan

- If userid01 has CREATE privileges only on specific collections, the apply request must specify one of those collection names as the value of the CollectionID parameter (see “CollectionID” on page 134).

Authorization examples for the user ID running High-speed Apply Engine

The examples in this section show the grant actions that are normally done during and after installation. The authorizations that you grant depend on your security policies. For definitions of the variables shown in these examples, see Table 19 on page 281.

The following example shows the authorizations that provide access to the High-speed Apply Engine plan and restart table. These authorizations are normally granted during installation.

```
GRANT EXECUTE ON PLAN aptPlan TO userid01;
GRANT EXECUTE ON PACKAGE BMCAPT.APTREB2 TO userid01;
```

The following example shows additional authorizations that are required to run High-speed Apply Engine. These authorizations are normally granted after installation.

```
GRANT INSERT, UPDATE, SELECT, DELETE ON tableNames TO userid01;
GRANT BINDADD TO userid01;
GRANT PACKADM ON COLLECTION collectionIDs TO userid01;
or
GRANT CREATE ON COLLECTION collectionIDs TO userid01;
```

Using BindOwner and a pre-bound plan

With this method, High-speed Apply Engine uses a pre-bound plan that was created under the authority of a different user ID. The pre-bound plan is validated at runtime; therefore, it must have been previously bound by a different user ID with appropriate privileges. (For a sample BIND command, see “BindAction” on page 131.)
This method has the following requirements:

- The user ID that runs High-speed Apply Engine (userid01) must have
 - EXECUTE privilege on a specific pre-bound plan
 - BINDAGENT authority

- To be validated at run time, the plan must have been previously bound by a different user ID (userid02) with appropriate privileges.

 For a sample BIND command, see “BindAction” on page 131.

- userid02 must have BINDADD authority, and one of the following statuses:
 - PACKADM authority
 - CREATE privileges on all packages (*)
 - CREATE privileges on a specific collection or list of collections that is designated for use by High-speed Apply Engine

- The apply request must specify the following parameter values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BindAction</td>
<td>Use</td>
<td>“BindAction” on page 131</td>
</tr>
<tr>
<td>BindOwner</td>
<td>user ID that bound the plan</td>
<td>“BindOwner” on page 133</td>
</tr>
<tr>
<td>CollectionID</td>
<td>name of the High-speed Apply Engine collection</td>
<td>“CollectionID” on page 134</td>
</tr>
<tr>
<td></td>
<td>Note: This value is required if the user ID that binds the plan has CREATE privileges only on specific collections.</td>
<td></td>
</tr>
<tr>
<td>PlanName</td>
<td>name of the specific prebound plan</td>
<td>“PlanName” on page 140</td>
</tr>
</tbody>
</table>

Authorization examples for using a pre-bound plan

The examples in this section show the authorizations that are normally granted during and after installation. The authorizations that you grant depend on your own security policies. For definitions of the variables shown in these examples, see Table 19 on page 281.

The following example shows the authorizations that provide access to the High-speed Apply Engine plan and restart table. These authorizations are normally granted during installation:

```
GRANT EXECUTE ON PLAN aptPlan TO userid01;
GRANT EXECUTE ON PACKAGE BMCAPT.APTREB2 TO userid01;
```
The following example shows additional authorizations that are required to run High-speed Apply Engine. These authorizations are normally granted after installation:

```sql
GRANT INSERT, UPDATE, SELECT, DELETE ON tableNames TO userid01;
GRANT EXECUTE ON PLAN userPlan01 TO userid01;

GRANT BINDAGENT TO userid01;
GRANT BINDADD TO userid02;

GRANT PACKADM ON COLLECTION collectionIDs TO userid02;

or

GRANT CREATE ON COLLECTION collectionIDs TO userid02;
```

Using the AuthId parameter

With this method, High-speed Apply Engine binds by using the authority of a specified user ID. High-speed Apply Engine uses this user ID only for bind processing. This method has the following requirements:

- The user ID that runs High-speed Apply Engine (userid01) must have EXECUTE privilege for the High-speed Apply Engine plan and restart table package. This user ID does not require special privileges for bind actions.

- The user ID that you specify for bind processing (userid02) can be a primary or secondary authorization ID, and
 - must have SYSADM authority or SYSCTRL authority
 - must be a valid TSO logon ID; otherwise, your security software can issue warning messages or prevent required processing
 - cannot be a group ID

- The apply request must specify userid02 as the value of the AuthId configuration parameter (see “AuthID” on page 130).

Authorization examples for using the AuthId parameter

The examples in this section show the authorizations that are normally granted during and after installation. The authorizations that you grant depend on your own security policies. For definitions of the variables shown in these examples, see Table 19 on page 281.
The following example shows the authorizations that provide access to the High-speed Apply Engine plan and restart table package. These authorizations are normally granted during installation.

```
GRANT EXECUTE ON PLAN aptPlan TO userid01;
GRANT EXECUTE ON PACKAGE BMCAPT.APTREB2 TO userid01;
```

The following shows additional authorizations that are required to run High-speed Apply Engine. These authorizations are normally granted after installation.

```
GRANT INSERT, UPDATE, SELECT, DELETE ON tableNames TO userid01;
GRANT SYSADM TO userid02;
or
GRANT SYSCTRL TO userid02;
```

Summary of DB2 authorization requirements

Table 20 on page 286 summarizes the DB2 authorization requirements for different methods of specifying the [Bind] parameters to run the High-speed Apply Engine. Note the following authorization considerations:

- Though any of the listed DB2 authorizations or privileges can be granted to PUBLIC, many of them normally are not; for example, SYSADM, SYSCTRL, BINDADD, and PACKADM.

- The BindOwner value must be one of the following:
 - a valid primary or secondary authorization ID of the user running High-speed Apply Engine
 - an authorization ID (with sufficient authority) that has granted BINDAGENT authority to the user running High-speed Apply Engine

- The AuthID value
 - must be a valid TSO logon ID, not a group ID
 - does not have to be a valid secondary authorization ID of the user running High-speed Apply Engine
Table 20 Summary of DB2 authorization requirements for High-speed Apply Engine

<table>
<thead>
<tr>
<th>[Bind] parameter usage method</th>
<th>DB2 authorization</th>
<th>Granted to one of listed IDs or to PUBLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default [Bind] parameters</td>
<td></td>
<td>primary authorization ID (user ID)</td>
</tr>
<tr>
<td>(if you do not specify any</td>
<td></td>
<td>secondary authorization ID</td>
</tr>
<tr>
<td>parameters in your</td>
<td></td>
<td></td>
</tr>
<tr>
<td>configuration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXECUTE privilege for High-speed Apply Engine plan (for example, APTBver)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXECUTE privilege for restart table package (for example, APTBver.APTREB2)</td>
<td>primary authorization ID (user ID)</td>
</tr>
<tr>
<td></td>
<td>BINDADD authority</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PACKADM authority or CREATE IN privilege for collection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELECT, INSERT, UPDATE, and DELETE privileges on target tables</td>
<td></td>
</tr>
<tr>
<td>Specify value for</td>
<td>EXECUTE privilege for High-speed Apply Engine plan (for example, APTBver)</td>
<td>primary authorization ID (user ID)</td>
</tr>
<tr>
<td>BindOwner (APOWNER)</td>
<td>EXECUTE privilege for restart table package (for example, APTBver.APTREB2)</td>
<td>secondary authorization ID</td>
</tr>
<tr>
<td>parameter</td>
<td>BINDADD authority</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PACKADM authority or CREATE IN privilege for collection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELECT, INSERT, UPDATE, and DELETE privileges on target tables</td>
<td></td>
</tr>
<tr>
<td>Specify value for AuthID</td>
<td>EXECUTE privilege for High-speed Apply Engine plan (for example, APTBver)</td>
<td>primary authorization ID (user ID)</td>
</tr>
<tr>
<td>parameter</td>
<td>EXECUTE privilege for restart table package (for example, APTBver.APTREB2)</td>
<td>secondary authorization ID</td>
</tr>
<tr>
<td></td>
<td>SYSADM or SYSCTRL authority</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELECT, INSERT, UPDATE, and DELETE privileges on target tables</td>
<td>primary authorization ID (user ID)</td>
</tr>
<tr>
<td>Specify value for AuthID and</td>
<td>EXECUTE privilege for High-speed Apply Engine plan (for example, APTBver)</td>
<td>primary authorization ID (user ID)</td>
</tr>
<tr>
<td>BindOwner (APOWNER) parameters</td>
<td>EXECUTE privilege for restart table package (for example, APTBver.APTREB2)</td>
<td>secondary authorization ID</td>
</tr>
<tr>
<td></td>
<td>SYSADM or SYSCTRL authority</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELECT, INSERT, UPDATE, and DELETE privileges on target tables</td>
<td>authorization ID specified by BindOwner parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>authorization ID specified by AuthID parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>primary authorization ID (user ID)</td>
</tr>
</tbody>
</table>
Installation options

During installation, you specify several options for the High-speed Apply Engine. The Installation System allows you to customize the default values for your site and saves them in the Installation System profile variables. This section describes installation options and their default values.

For quick reference, Table 21 presents the options in alphabetical order. The variable vvr shown in the Default value column represents the 3-digit version and release number for High-speed Apply Engine. For example, for version 10.1.00, the default value for Creator Name is APT101.

Table 21 High-speed Apply Engine installation options for mainframe targets (part 1 of 2)

<table>
<thead>
<tr>
<th>High-speed Apply Engine installation option</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
</table>
| Creator Name | APTvvr | qualifier for all tables and indexes that High-speed Apply Engine creates *during installation*
Ensure that the Creator Name is the same as the Plan owner.
High-speed Apply Engine uses the Plan owner as the Creator of the default restart table. |
| Database Name | APTvvr | name of a database that will be created during installation
The database contains the DB2 objects that High-speed Apply Engine creates during installation. Do not specify an existing database. |
| Plan Name | APTBvvr | name of the plan that High-speed Apply Engine uses to access the temporary and restart tables that it creates during apply processing
This option is equivalent to the PlanName parameter in the [Startup] section of the configuration file. You can specify any valid DB2 plan name. The default value is APTBvvr. vvr represents the version and release level of High-speed Apply Engine.
You must specify PlanName (PLAN) in the [Startup] section of the installation options. Or, if you are not using a installation options module, you must specify the PlanName (PLAN) in the [Startup] section of the configuration. |
| Bind Qualifier | APTvvr | qualifier for the internal plans and packages that High-speed Apply Engine binds (*not* the qualifier for packages bound *during execution*)
This option is equivalent to the BindQualifier parameter in the [Startup] section of the configuration file. |
| Public Plan | Yes | determines whether High-speed Apply Engine grants the authority to run the product (execute against the High-speed Apply base plan) to PUBLIC. |
| Restart Table Space Name | APTRSCLS | DB2 table space name for the default restart table |
Generating installation options

When you install the High-speed Apply Engine using the BMC Software Installation System, the installation process generates a customized installation data set. This data set contains all jobs required to install High-speed Apply Engine into your specific DB2 environment. One of these jobs establishes the installation option values (also known as DOPTs).

The $C30DOPT member of the installation data set contains a job that runs the assembler with an options macro that establishes the installation processing values for High-speed Apply Engine. The format of the installation options specification is the same as for an High-speed Apply Engine configuration file. (For more information about the High-speed Apply Engine configuration file format, see Chapter 6, “Configuration file format”.) The PlanName (PLAN) parameter in the [Startup] section is a required value. You can optionally tailor other default configuration information as needed.

When you submit the generated job containing the installation options, it assembles and links this option macro call to create an installation options module in the APF authorized library that you designated during installation. The default name for this module is APT$OPTS. When High-speed Apply Engine runs, it must be able to locate and read an installation options module (either the default module or a module that you have edited, assembled and linked). If it cannot read an installation options module, High-speed Apply Engine displays an error message and terminates processing.

If you modify any of the values in the installation options after High-speed Apply Engine has been installed, you must rerun the installation job for these changes to take effect. If you have previously installed High-speed Apply Engine and want to keep the same installation option values, you can

- gather your existing option values before you start to install and then enter the same values as you run the Install System
- use the Options Migration feature of the Installation System (for more information, see the Backup and Recovery Products for DB2 Installation Guide)

Table 21 High-speed Apply Engine installation options for mainframe targets (part 2 of 2)

<table>
<thead>
<tr>
<th>High-speed Apply Engine installation option</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restart Table Name</td>
<td>APTRSCLT</td>
<td>table name for the default restart table</td>
</tr>
<tr>
<td>STOGROUP</td>
<td>SYSDEFLT</td>
<td>type of DFSMS storage allocation to be used for the table spaces and index spaces that contain the restart tables Specify an existing storage group.</td>
</tr>
</tbody>
</table>
Installing High-speed Apply Engine on UNIX

This appendix contains the following topics:

Overview and prerequisites ... 289
 Installation considerations ... 290
 Controlling access .. 291
Installing High-speed Apply Engine 291
Additional procedures ... 297
 Verifying High-speed Apply Engine installation 298
 Dropping an existing restart table 298
 Creating a default restart table after installation 299
Uninstalling High-speed Apply Engine 302

Overview and prerequisites

This appendix describes the requirements and procedures for installing the High-speed Apply Engine on a UNIX system for the following targets:

- DB2 UDB
- Oracle

NOTE

For the most recent and most accurate information about installing High-speed Apply Engine, refer to the High-speed Apply Engine release notes and readme file. The release notes and readme file contain the most current updates to the installation information.
To install and run the High-speed Apply Engine, your software environment must meet the requirements shown in Table 22.

Table 22 High-speed Apply Engine installation requirements for UNIX

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>operating system</td>
<td>one of the following operating systems:</td>
</tr>
<tr>
<td></td>
<td>IBM AIX, version 5.3 or later</td>
</tr>
<tr>
<td></td>
<td>Hewlett Packard HP-UX, version 11.11 or later (Oracle only)</td>
</tr>
<tr>
<td></td>
<td>Sun Solaris, version 10 or later</td>
</tr>
<tr>
<td>database</td>
<td>one of the following versions of Oracle server and client:</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>one of the following versions of DB2 Universal Database server and client,</td>
</tr>
<tr>
<td></td>
<td>running on IBM AIX or Sun Solaris:</td>
</tr>
<tr>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>9.7</td>
</tr>
<tr>
<td>storage</td>
<td>55 to 68 MB of available storage for each installed copy of High-speed</td>
</tr>
<tr>
<td></td>
<td>Apply Engine</td>
</tr>
</tbody>
</table>

Installation considerations

When you install the High-speed Apply Engine on a UNIX system, consider the following constraints and recommendations:

- High-speed Apply Engine must be installed on the same server or client system as the target database server or client.

- The target database must have enough threads available to process the apply request. Ensure that at least two threads are available, or one thread more than the maximum number of agents for the request.

- The restart table must reside in the same database as the target tables.

- The user ID that submits the apply request must have the appropriate authorizations to run the request. For more information, see “Controlling access” on page 291.
Controlling access

To run the High-speed Apply Engine you must have a valid DB2 UDB or Oracle user ID and password with the following privileges.

- On the target tables that are changed by the apply request, appropriate table privileges (INSERT, UPDATE, and DELETE).

The privileges that High-speed Apply Engine requires depend on the transactions that an apply request performs on the target tables.

- On the restart table that an apply request uses, INSERT, UPDATE, SELECT and DELETE privileges.

Installing High-speed Apply Engine

The procedures in this section explains how to install the High-speed Apply Engine on a UNIX server. The procedure apply to DB2 UDB targets and Oracle targets. Any step that is unique for either target is identified as applying to DB2 UDB only or to Oracle only.

During installation, you use the installation script to

- install High-speed Apply Engine
- update the BMC Software registry information
- create a default restart table
- verify the installation
- view the readme file

During installation, the installation script creates the installationDirectory that you specify, and creates the subdirectories shown in Table 23. The variables in the directory names are as follows:

- platform is the UNIX platform for the installation (aix, hp11, or sol).
- v.r.m is the version, release, and maintenance level of High-speed Apply Engine.

Table 23 Installation directory contents (part 1 of 2)

<table>
<thead>
<tr>
<th>Subdirectory</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>/High-speed Apply/platform/v.r.m/bin</td>
<td>software files</td>
</tr>
<tr>
<td>/High-speed Apply/platform/v.r.m/doc</td>
<td>documentation in PDF format</td>
</tr>
</tbody>
</table>
After installation, you can

- update the BMC Software registry information
- create a default restart table
- verify the installation

NOTE
After installing High-speed Apply Engine, the installation script (install.sh) copies itself to the `HighSpeedApply/platform/v.r.m` directory within the installation directory that you specified previously. After you perform the installation, you can invoke install.sh from this directory or from the CD.

To install High-speed Apply Engine on a UNIX server

1. Insert the CD in the CD-ROM drive of the computer where you want to install High-speed Apply Engine.

2. Log on to the host computer as a root user.

NOTE
You must update the BMC Software registry information, which requires that you log on as a root user.

If you do not log on as a root user, you must log on as a user with write privileges on the directory where you install High-speed Apply Engine.

3. Start the installation script:

 A Mount the CD at a suitable mount point (for example, `/mnt`). For more information about mount and unmount, consult the UNIX documentation.

 B Change to the unix directory under the mount point by using one of the following commands:

   ```
   cd /mnt/unix
   ```

   ```
   cd /cdrom
   ```
C Run the installation script by using the following command:

```
./install.sh
```

The installation script prompts you to view the readme file.

D Type y, and then press Enter.

The installation script displays the readme file, followed by the initial installation menu (Figure 56).

Figure 56 Initial installation menu for UNIX

```
############ #   # #######
#   # #   # #    #   #
#   # #   # #    #   #
#   # # # # # # # # # #
#   # #   # #   #   #
#   # #   # #   #   #
#   # # # # # # # #
#   #   #   #   #   #
S O F T W A R E
```

Copyright (c) 1999-2011 BMC Software, Inc. as an unpublished licensed work. All rights reserved.

Please select an action:

1. Install High-speed Apply Engine
2. Update BMC Registry For High-speed Apply Engine (Requires Root Authority)
3. High-speed Apply Engine Setup
4. High-speed Apply Engine Verification
97. View Readme File
98. Help
99. Exit

Choice:

4 Type 1 in the Choice field, and then press Enter.

The installation script displays the High-speed Apply Engine license agreement, and prompts you to accept the terms of the agreement.

5 Type y to accept the terms of the license agreement, and then press Enter.

The installation script displays the High-speed Apply Engine packages that are available for UNIX (Figure 57 on page 294).
To select the package that you want to install, type the appropriate number in the selection field, and then press **Enter**. Separate multiple selections with spaces.

The installation script prompts you to confirm your selection.

Type **y** in the selection field, and then press **Enter**. (To return to the package selection list, type **n**, and then press **Enter**.)

The installation script displays the default installation directory for High-speed Apply Engine.

To accept the default directory, press **Enter**. To specify a different directory, type the directory name. If you enter the name of a directory that does not exist, the installation script prompts you to create the directory.

The installation script displays a summary of the installation packages and options, and prompts you to confirm your choices.

Type **y** at the Start Installation prompt, and then press **Enter**.

The installation script notifies you when it has completed installing the required files, and prompts you to view the readme file.

Type **y** or **n** at the prompt, and then press **Enter**.

Continue with “To update the BMC registry information for High-speed Apply Engine” on page 295.
To update the BMC registry information for High-speed Apply Engine

After installing High-speed Apply, you must update the BMC Software registry with the path names of the installation directory and the directory where the High-speed Apply Engine executable files reside.

This registry update procedure must be completed before you can perform the following tasks:

- choose the following options from the initial installation menu (Figure 56 on page 293)
 - choice 3, High-speed Apply Engine Setup
 - choice 4, High-speed Apply Engine Verification
- use the sample execution scripts HighSpeedApply or apearv

Before you begin

- Complete the High-speed Apply Engine installation as described in “To install High-speed Apply Engine on a UNIX server” on page 292.
- If you are not logged in as a root user, exit the installation script (choice 99 on the initial installation menu), log on as a root user, and then restart the installation script.

1 On the initial installation menu (Figure 56 on page 293), type 2 in the Choice field, and then press Enter.

2 If the installation script prompts you for the directory where High-speed Apply Engine is installed, enter the directory that you specified in step 8 on page 294.

 The installation script verifies the installation directory that you specified and updates the BMC Software registry.

To create a default restart table

1 On the initial installation menu (Figure 56 on page 293), type 3 in the Choice field, and then press Enter.

 The installation script displays a menu where you can choose the target DBMS.

2 Type 1 (for Oracle) or 2 (for DB2 UDB), and then press Enter.
3 Enter the DB2 UDB database name or the Oracle instance name for the database to which High-speed Apply Engine will apply changes, and then press Enter. If necessary, obtain this information from database administration personnel at your site.

4 Type Y, and then press Enter.

5 If prompted, enter the user ID that High-speed Apply Engine will use to access the DB2 UDB database or Oracle instance, and press Enter.

The user ID and password requirements depend on the authentication settings on the server to which High-speed Apply Engine will connect. User ID is not required if you use Oracle External Credentials (OPS$) in your environment.

6 Type Y, and then press Enter.

7 If prompted, enter the password that High-speed Apply Engine will use to access the DB2 UDB database or Oracle instance, and then press Enter.

8 Type Y, and then press Enter.

As the installation script attempts to create the restart table, it displays progress messages.

9 Examine the summary message at the end of the process to verify that the restart table was created successfully, and then press Enter.

NOTE

If the restart table was not created successfully, ensure that you have the correct privileges and connectivity for the DB2 UDB database or Oracle instance that you entered in step 3. If you cannot resolve the error, contact BMC Software Customer Support.

The installation wizard displays the initial installation menu.

10 Continue with “To verify installation.”

To verify installation

1 On the initial installation menu (Figure 56 on page 293), type 4 in the Choice field, and then press Enter.

The installation script displays a menu where you can choose the target DBMS.

2 Type 1 (for Oracle) or 2 (for DB2 UDB).
3. Enter the DB2 UDB database name or the Oracle instance name for the database to which High-speed Apply Engine will apply changes, and then press Enter. If necessary, obtain this information from database administration personnel at your site.

4. Type Y, and then press Enter.

5. If prompted, enter the user ID that High-speed Apply Engine will use to access the DB2 UDB database or Oracle instance, and press Enter.

 The user ID and password requirements depend on the authentication settings on the server to which High-speed Apply Engine will connect. User ID is not required if you use Oracle External Credentials (OPS$) in your environment.

6. Type Y, and then press Enter.

7. If prompted, enter the password that High-speed Apply Engine will use to access the DB2 UDB database or Oracle instance and press Enter.

8. Type Y, and then press Enter.

 As it attempts to run a sample job, the installation script displays messages.

9. Examine the summary message at the end of the process that indicates whether the sample job completed successfully, and then press Enter.

 NOTE

 If the sample job did not complete successfully, ensure that you have the correct privileges and connectivity for the DB2 UDB database or Oracle instance that you entered in step 3. If you cannot resolve the error, contact BMC Software Customer Support.

 The installation wizard displays the initial installation menu.

10. To view the readme file, type 5 (View Readme File) in the Choice field, and press Enter. Otherwise, proceed to step 11.

 The readme file is displayed in a text editor.

11. Type 99 at the Choice prompt, and press Enter to exit the installation.

Additional procedures

Complete the tasks in this section, if necessary.
Verifying High-speed Apply Engine installation

Use the following procedure to verify installation of the High-speed Apply Engine.

To verify High-speed Apply Engine after installation

12 Set your working directory to the volume and directory to the directory where High-speed Apply Engine was installed:
 \[\text{installationDirectory}/\text{HighSpeedApply}/\text{platform}/v.r.m/\]

For an explanation of the variables in the path names, see Table 23 on page 291.

13 Enter the following command:

 \[\text{install.sh}\]

 The installation script displays a menu.

14 Continue with “To verify installation” on page 296.

15 To exit the installation script, type 99 in the Choice field, and then press Enter.

Dropping an existing restart table

Use this procedure to drop an existing restart table. If you have a previous version of High-speed Apply Engine installed on your system, you must drop the existing default restart table before creating a new one. High-speed Apply Engine does not migrate restart tables from previous versions.

To drop an existing restart table

1 Open a separate shell prompt for your operating system.

2 Locate the appropriate script for your database platform from the directory
 \[\text{installationDirectory}/\text{HighSpeedApply}/\text{platform}/v.r.m/examples/\]:

 - \[oracle/DropOraRestartTable.sql\]
 - \[db2udb/DropUDBRestartTable.sql\]

 For an explanation of the variables in the path names, see Table 23 on page 291.

3 Edit the script to include the name of the existing restart table.
Creating a default restart table after installation

BMC Software recommends that you create a default restart table for the High-speed Apply Engine. The procedures in this section explain how to create the default restart table after installation, either by running a portion of the install script or by entering commands at a command prompt.

To create a default restart table on UNIX (installation script procedure)

1. If a previous version of High-speed Apply Engine is installed, drop the existing restart table. For more information, see “To drop an existing restart table” on page 298.

2. Open a shell prompt for your operating system.

3. Set your working directory to the volume and directory to the directory where High-speed Apply Engine was installed:

 `installationDirectory/HighSpeedApply/platform/v.r.m/`

 For an explanation of the variables in the path names, see Table 23 on page 291.

4. Enter the following command:

 `install.sh`

 The installation script displays a menu.

5. Continue with “To create a default restart table” on page 295.

6. To exit the installation script, type 99 in the Choice field, and then press Enter.
Creating a default restart table after installation

To create a default restart table (command prompt procedure)

1. Locate the sample data definition language (DDL) file for your database platform from the directory `installationDirectory/HighSpeedApply/platform/v.r.m/examples/`

The sample DDL files are named as follows:

- db2udb/CrtUDBDefaultRestartTbl.sql
- oracle)/ CrtOraDefaultRestartTbl.sql

Figure 58 and Figure 59 show sample DDL to create restart tables in different DBMS environments.

Figure 58 Sample DDL to create default restart table on DB2 UDB

```sql
CREATE TABLE APERSCLT
  (  RESTART_ID         CHAR(16)     NOT NULL,
  REQUEST_ID         CHAR(4)      NOT NULL,
  RECORD_TYPE        CHAR         NOT NULL,
  AGENT_ID           SMALLINT     NOT NULL,
  RECORD_SEQUENCE    SMALLINT     NOT NULL,
  REQUEST_TIMESTAMP  TIMESTAMP    NOT NULL,
  RECORD_TIMESTAMP   TIMESTAMP    NOT NULL,
  TOTAL_LENGTH       INTEGER      NOT NULL,
  DATA               LONG VARCHAR NOT NULL
 ));

CREATE UNIQUE INDEX APERSCLX ON APERSCLT
  (  RESTART_ID,
  REQUEST_ID,
  RECORD_TYPE,
  AGENT_ID,
  RECORD_SEQUENCE
 ) ;

GRANT ALL ON TABLE APERSCLT TO PUBLIC;

CREATE ALIAS BMCAPE_APERSCL FOR APERSCLT;

COMMIT;
```

Figure 59 Sample DDL to create default restart table on Oracle (part 1 of 2)

```sql
CREATE TABLE APERSCLT
  (  RESTART_ID         CHAR(16)     NOT NULL,
  REQUEST_ID         CHAR(4)      NOT NULL,
  RECORD_TYPE        CHAR         NOT NULL,
  AGENT_ID           SMALLINT     NOT NULL,
  RECORD_SEQUENCE    SMALLINT     NOT NULL,
  REQUEST_TIMESTAMP  DATE         NOT NULL,
  RECORD_TIMESTAMP   DATE         NOT NULL,
  TOTAL_LENGTH       INTEGER      NOT NULL,
  DATA               LONG VARCHAR NOT NULL
 ) ;
```
Accept the default names and skip to step 3, or if necessary, edit the DDL as appropriate for your site.

NOTE
Do *not* edit the name of the public synonym. This synonym is the default value for the `TableName` parameter in the [Restart] section. If an apply request does not specify a restart table name, High-speed Apply Engine uses the table referenced by the public synonym.

3 Run the DDL file by issuing one of the following commands:

- For DB2 UDB:
  ```
  db2 -t -f CrtUDBDefaultRestartTbl.sql
  ```
 or, from a UNIX command prompt:
  ```
  sqlplus userId/password @CrtUDBRestartTbl tableName
  ```

- For Oracle:
 — from SQL*Plus:
  ```
  @CrtOraDefaultRestartTbl tableName
  ```
Uninstalling High-speed Apply Engine

If you are not already running SQL*Plus, you must supply your user ID and password to start the utility.

—from a UNIX command prompt:

```
sqlplus userID/password @CrtOraRestartTbl tableName
```

Uninstalling High-speed Apply Engine

Use the following procedure to remove a version of the High-speed Apply Engine (for one platform) from your system:

1 Log on to the host as the root user, or with the user ID that was used to install High-speed Apply Engine.

2 Change directories to the installation directory for High-speed Apply Engine by typing the following command:

```
cd installationDirectory
```

The `installationDirectory` is the directory that you specified in step 8 on page 294.

3 Use the following command to remove High-speed Apply Engine from the system:

```
rm -r HighSpeedApply/platform/v.r.mm
```

4 Drop any High-speed Apply Engine objects (for example, restart tables) from the DB2 UDB or Oracle database (for more information, see “Dropping an existing restart table” on page 298).
Installing High-speed Apply Engine on Windows

This appendix contains the following topics:

Overview and prerequisites ... 303
 Installation considerations .. 304
 Controlling access ... 305
Installing High-speed Apply Engine .. 306
Additional procedures ... 309
 Verifying High-speed Apply Engine installation 309
 Viewing logs ... 311
 Verifying server status and response time (Health Check) 313
 Dropping an existing restart table ... 314
 Creating a default restart table after installation 314
 Uninstalling High-speed Apply Engine 316

Overview and prerequisites

This appendix describes the requirements and procedures for installing the High-speed Apply Engine on a Windows system for the following targets:

- DB2 UDB
- Oracle

NOTE
For the most recent and most accurate information about installing High-speed Apply Engine, refer to the High-speed Apply Engine release notes and readme file. The release notes and readme file contain the most current updates to the installation information.
To install and run the High-speed Apply Engine, your software environment must meet the requirements shown in Table 24.

Table 24 High-speed Apply Engine installation requirements for Windows

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>operating system</td>
<td>one of the following operating systems:</td>
</tr>
<tr>
<td></td>
<td>- Windows 2000</td>
</tr>
<tr>
<td></td>
<td>- Windows XP</td>
</tr>
<tr>
<td></td>
<td>- Windows 2003</td>
</tr>
<tr>
<td></td>
<td>- Windows 2008</td>
</tr>
<tr>
<td>database</td>
<td>one of the following versions of Oracle server and client:</td>
</tr>
<tr>
<td></td>
<td>- 10.2</td>
</tr>
<tr>
<td></td>
<td>- 11</td>
</tr>
<tr>
<td></td>
<td>one of the following versions of DB2 Universal Database server and client:</td>
</tr>
<tr>
<td></td>
<td>- 8.1</td>
</tr>
<tr>
<td></td>
<td>- 8.2</td>
</tr>
<tr>
<td></td>
<td>- 9.1</td>
</tr>
<tr>
<td></td>
<td>- 9.5</td>
</tr>
<tr>
<td></td>
<td>- 9.7</td>
</tr>
<tr>
<td>storage</td>
<td>50 MB of available storage for each installed copy of High-speed Apply Engine</td>
</tr>
</tbody>
</table>

Installation considerations

When you install the High-speed Apply Engine on a Windows system, consider the following constraints and recommendations:

- You must have Administrator privileges to install. Before beginning installation, ensure that you are logged on as a user with Administrator privileges.

- To run the Windows Installer, you must have Java version 5 or later installed.

- High-speed Apply Engine must be installed on the same server or client system as the target database server or client.

- The target database must have enough threads available to process the apply request. Ensure that at least two threads are available, or one thread more than the maximum number of agents for the request.

- The restart table must reside in the same database as the target tables.

- The user ID that submits the apply request must have the appropriate authorizations to run the request. For more information, see “Controlling access” on page 305.
Before beginning the High-speed Apply Engine installation, BMC recommends that you take the following actions:

— If you have a previous version of High-speed Apply Engine installed on your system, complete the following procedures before installing the current version:

 ■ uninstall (remove) the previous version (see “Uninstalling High-speed Apply Engine” on page 316)

 ■ drop the existing restart table (see “Dropping an existing restart table” on page 314)

 High-speed Apply Engine does not migrate restart tables from previous versions.

— Close any Windows applications that are running.

— Review the High-speed Apply Engine readme file, which contains the most recent changes and additions to the documentation, including installation procedures. The file is located on the CD with the software, in the root directory. The file name begins with readme and is available in ASCII text and HTML format.

Controlling access

To run the High-speed Apply Engine you must have a valid DB2 UDB or Oracle user ID and a password with the following privileges:

■ appropriate table privileges (INSERT, UPDATE, and DELETE) on the target tables that are changed by the apply request

 The privileges that High-speed Apply Engine requires depend on the transactions that an apply request performs on the target tables.

■ INSERT, UPDATE, SELECT and DELETE privileges on the restart table that an apply request uses
Installing High-speed Apply Engine

The procedures in this section apply to DB2 UDB targets and Oracle targets. Any step that is unique for either target is identified as applying to DB2 UDB only or to Oracle only.

You use the installation wizard to

- install High-speed Apply Engine for the first time
- replace an existing version of High-speed Apply Engine
- create a default restart table, and bind for DB2 UDB
- verify the installation
- view the readme file
- view the log

During installation, the installation wizard copies the program files to the `installationDirectory` that you specify, creates the subdirectories shown in Table 25, and registers High-speed Apply Engine and its components with the Windows registry.

<table>
<thead>
<tr>
<th>Subdirectory</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>\High-speed Apply</td>
<td>program files</td>
</tr>
<tr>
<td>\High-speed Apply\doc</td>
<td>readme file (in text and html formats). This file contains the most recent changes and additions to the documentation, including installation procedures.</td>
</tr>
<tr>
<td></td>
<td>High-speed Apply Engine Reference Manual (in PDF)</td>
</tr>
<tr>
<td>\High-speed Apply\examples\db2udb</td>
<td>sample configuration files</td>
</tr>
<tr>
<td>(For DB2 UDB targets)</td>
<td>sample SQL to create restart tables (and bind files for DB2 UDB)</td>
</tr>
<tr>
<td>\High-speed Apply\examples\oracle</td>
<td>(For Oracle targets)</td>
</tr>
</tbody>
</table>
To start the installation wizard

1. Insert the CD in the CD-ROM drive of the computer where you want to install High-speed Apply Engine.

The installation wizard begins and displays the Welcome window.

--- NOTE ---

If the installation wizard does not begin automatically:

1. In Windows Explorer, open the Windows directory on the CD.
2. Double-click setup.cmd (the Windows Command Script).
3. If prompted, click Run.
2 Click Next.

The installation wizard displays the License Agreement.

3 Read the License Agreement, click **I agree to the terms the license agreement**, and then click **Next**.

The installation wizard displays the Directory Selection dialog box.

4 If necessary, click **Browse** to choose another directory for installation, or click **Next** to accept the destination installation directory.

The installation wizard displays the Installation Preview window showing the destination directory, the features to be installed, and size of the files. **Table 25 on page 306** lists the contents of the installation directory.

5 Click **Install**.

The installation wizard displays the Update PATH Environment Variable dialog box.

6 Select **Yes** to insert the High-speed Apply Engine installation directory at the beginning of the system-level PATH environment variable, and then click **Next**.

The installation wizard displays the Select Options dialog box.

7 Continue with “To create a restart table (Setup Product).”

To create a restart table (Setup Product)

Use this procedure to create the default restart table during the installation process. For information about creating the restart table after installation, see “Creating a default restart table after installation” on page 314.

1 On the Select Options dialog box, select **Setup Product**, and then click **Next**.

The installation wizard displays the Database Type selection window.

2 Select **DB2** or **Oracle** as the database type, and then click **Next**.
3 Enter information about the specific DB2 UDB database or Oracle instance to which High-speed Apply Engine will apply changes, and then click Next.

The user ID and password are not required if

- you use Oracle External Credentials (OPS$) in your environment
- you use DB2 UDB and you are running on the server where the database resides

(If necessary, obtain this information from database administration personnel at your site.)

The installation wizard creates the restart table, and then displays the Setup Output window.

4 Examine the messages to verify that the restart table was created successfully, and then click Next.

NOTE

If the restart table was not created successfully, minimize the installation wizard and resolve the error. Ensure that you have the correct privileges and connectivity for the DB2 UDB database or Oracle instance that you entered in step 3. For more information, see “Viewing logs” on page 311. If you cannot resolve the error, contact BMC Software Customer Support.

The installation wizard displays the ReadMe File Selection dialog box.

5 Select Yes, and then click Next.

The installation wizard opens the readme file (with Notepad as the text editor), and displays the Installation Summary window.

6 Click Done to close the installation wizard.

Additional procedures

Complete the tasks in this section, if necessary.

Verifying High-speed Apply Engine installation

Use the procedure in this section to verify installation of the High-speed Apply Engine.
To verify installation

1 Complete step 1 on page 307 through step 3 on page 308 in “To start the installation wizard” on page 307.

 The installation wizard displays the Installation Preview window, showing no features to be installed.

2 Click Install.

 The installation wizard displays the Select Options dialog box.

3 Select Verify Product, and then click Next.

 The installation wizard displays the Database Type selection window.

4 Select DB2 or Oracle as the database type, and then click Next.

5 Enter information about the specific DB2 UDB database or Oracle instance to which High-speed Apply Engine will apply changes. If necessary, obtain this information from database administration personnel at your site.

 The user ID and password are not required if

 ■ you use Oracle External Credentials (OPSS) in your environment
 ■ you use DB2 UDB and you are running on the server where the database resides

6 Click Next.

 The installation wizard displays the Verify Output window.

7 Examine the messages to verify that the installation completed successfully, and then click Next.

 NOTE

 If the installation did not complete successfully, minimize the installation wizard and resolve the error. Ensure that you have the correct privileges for and connectivity to the DB2 UDB database or Oracle instance that you entered in step 5. For more information, see “Viewing logs” on page 311. If you cannot resolve the error, contact BMC Software Customer Support.

 The installation wizard displays the Installation Summary window.

8 Click Done to complete the installation and exit.
Viewing logs

Each time that you run the High-speed Apply installer or uninstaller, a log file is created. A tab name reflects the date and time when the installer or uninstaller was run.

To view logs

1. From the Installation Summary or Uninstallation Summary window, click View log.

A tab for each installation log or uninstallation log is displayed.

NOTE

You can also use the High-speed Apply Maintenance Tool to view a log (see “To open the High-speed Apply Maintenance Tool”).

2. Click the tab for the log that you want to view.
3. Search for rows highlighted in red (errors) or yellow (warnings).
4. To sort columns, click the column header.
5. To reverse sort a column, press Shift while clicking the column header.

To open the High-speed Apply Maintenance Tool

1. Double-click High-speed ApplyMaintenanceTool.cmd in one of the following locations:

 - installationDirectory\HighSpeedApply\highspeedapply
 - installation CD utility folder

2. Click the Logs tab.
3. To view a log, click Install Log or Uninstall Log, or to browse for a specific log file, click Browse to Log.

A tab for each installation log or uninstallation log is displayed.
Contents of the logs

The general format of all log messages is:

\[(\text{timeOfEvent}),\text{severityOfEvent},\text{sourceOfEvent},\text{eventMessageContent}\]

For example:

\[(\text{Feb 17 2011 01:10:28.123 AM -05:00}),\text{CONFIG},\text{com.bmc.install.builder.installanywhere.InstallationTaskAction},\text{LOG EVENT (Description=[CREATED InstallationTask], Detail=[com.bmc.install.product.arsuitekit.ARSuiteKitProjectInitializationInstallationTask])}\]

This message indicates a LOG EVENT message that occurred on February 17, 2011, at 1:10:28 a.m. with a severity level of CONFIG from a InstallationTaskAction source class.

The severity levels from highest to lowest values are:

- SEVERE (appears in red in the log viewer)
- WARNING (appears in yellow in the log viewer)
- INFO
- CONFIG
- FINE
- FINER
- FINEST

Table 26 describes the main log message types.

<table>
<thead>
<tr>
<th>Message type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG EVENT</td>
<td>Describes the following types of information:</td>
</tr>
<tr>
<td></td>
<td>- The start and end of installation tasks (installer logic and behavior) and installation screens.</td>
</tr>
<tr>
<td></td>
<td>- The setting of installation properties. These properties can be set and controlled by the platform itself, or they can be set based on user input fields.</td>
</tr>
<tr>
<td></td>
<td>- General informative data.</td>
</tr>
<tr>
<td>PROGRESS EVENT</td>
<td>Describes how much of a task is completed.</td>
</tr>
</tbody>
</table>
Zipping logs to send to BMC Customer Support

The Log Zipper function of the High-speed Apply Maintenance Tool provides a collection of log files that are necessary to debug issues. Log Zipper is used to troubleshoot installation issues, as well as application issues that you might face later.

To zip logs

1. In the High-speed Apply Maintenance Tool, click the Logs tab.
2. Click Zip Logs.
3. Send the zip output file from the temp directory to BMC Customer Support.

Verifying server status and response time (Health Check)

The Health Check function of the High-speed Apply Maintenance Tool calls an API to verify the server status, and records the server response time, as well as the results of the Health Check in the highspeedapply_configuration_log.txt file in the temp directory. This log file can be collected by Log Zipper.

To run a Health Check

1. In the High-speed Apply Maintenance Tool, click the Health Check tab.
2. Click Next.
3. Click View Log to view the highspeedapply_configuration_log.txt file in the temp directory, or click Done to end the Health Check.
Dropping an existing restart table

Use this procedure to drop an existing restart table. If you have a previous version of High-speed Apply Engine installed on your system, you must drop the existing default restart table before creating a new one.

1. Open a command prompt.

2. Locate the appropriate script for your database platform from the directory `installationDirectory\HighSpeedApply\highspeedapply\examples\`:
 - oracle\DropOraRestartTable.sql
 - db2udb\DropUDBRestartTable.sql

3. Edit the script to include the name of the existing restart table.

4. Run the script.

Creating a default restart table after installation

Use the procedure in this section to create a default restart table after installation by entering commands at a command prompt.

You can also run the installation wizard again to create the default restart table ("To start the installation wizard" on page 307). Completing this procedure is useful when you have multiple target databases, and are using one High-speed Apply Engine installation.

To create a restart table by using a command prompt

1. Locate the appropriate sample file for your database platform from the directory `installationDirectory\HighSpeedApply\highspeedapply\examples\`:
 - oracle\CrtOraDefaultRestartTbl.sql
 - db2udb\CrtUDBDefaultRestartTbl.sql

Figure 61 shows a sample DDL for a restart table.

Figure 61 Sample DDL to create default restart table on Oracle (part 1 of 2)

```
CREATE TABLE APERSCLT
(   RESTART_ID         CHAR(16)     NOT NULL,
    REQUEST_ID         CHAR(4)      NOT NULL,
    RECORD_TYPE        CHAR         NOT NULL,
    AGENT_ID           SMALLINT     NOT NULL,
```
Accept the default names and skip to step 3, or if necessary, edit the DDL as appropriate for your site.

NOTE
Do not edit the name of the public synonym. This synonym is the default value for the TableName parameter in the [Restart] section. If an apply request does not specify a restart table name, High-speed Apply Engine uses the table referenced by the public synonym.

3 Run the script by issuing one of the following commands:

- For DB2 UDB, from the DB2CMD prompt:

  ```
  @CrtUDBDefaultRestartTbl
  ```

- For Oracle, from SQL*Plus:

  ```
  @CrtOraDefaultRestartTbl
  ```
Uninstalling High-speed Apply Engine

Removing High-speed Apply Engine deletes all of the program files and Windows registry entries. However, it does not remove any DB2 UDB or Oracle objects that are associated with High-speed Apply Engine, such as the restart tables (“Dropping an existing restart table” on page 314).

1. From the Windows Start menu, select Control Panel.

2. Double-click Add/Remove Programs.

3. Highlight High-speed Apply Engine in the list of programs, and then click Change/Remove.
 The installation wizard starts the uninstaller.

4. Click Next.
 The installation wizard displays the Confirm File Deletion window.

5. Select High-speed apply Engine vrmm Uninstallation, and then click Next.
 The installation wizard displays the Uninstallation Preview window.

6. Click Uninstall.
 The installation wizard displays the Uninstallation Summary window.

7. Click Done.

8. Drop any High-speed Apply Engine restart tables from the DB2 UDB or Oracle database. For more information, see “Dropping an existing restart table” on page 314.
LOADPLUS and High-speed Apply Engine

This appendix contains the following topics:

How LOADPLUS uses High-speed Apply Engine .. 317
Requirements for using High-speed Apply Engine with LOADPLUS 318
LOADPLUS options and High-speed Apply Engine parameters 318

How LOADPLUS uses High-speed Apply Engine

This appendix summarizes the relationship between the LOADPLUS® for DB2 product from BMC and the High-speed Apply Engine (which is also distributed with Log Master for DB2). For more information about LOADPLUS, see the LOADPLUS for DB2 Reference Manual.

LOADPLUS calls the High-speed Apply Engine to perform a load action that retains a DB2 object in read/write status and that does not replace data (LOAD RESUME YES SHRLEVEL CHANGE SQLAPPLY). This action is sometimes referred to as a “SQLAPPLY load.” When LOADPLUS calls High-speed Apply Engine, it has access to only the High-speed Apply Engine capabilities required for the load action.

LOADPLUS passes your load data to High-speed Apply Engine, which applies the load records to the DB2 object as if they were SQL INSERT statements. High-speed Apply Engine passes any error conditions that it encounters back to LOAD PLUS, which displays the error information in a LOADPLUS error message.
Requirements for using High-speed Apply Engine with LOADPLUS

To use the High-speed Apply Engine with LOADPLUS, ensure that

- LOADPLUS is installed correctly with a valid LOADPLUS password

 To perform an SQLAPPLY load action, BMC Software does not require a license (or password) for either the Log Master for DB2 product or High-speed Apply Engine.

- High-speed Apply Engine is installed on the same DB2 subsystem as LOADPLUS and is available through the STEPLIB, JOBLIB, or LINKLIST when LOADPLUS is executed. (You have the option to install High-speed Apply Engine when you install LOADPLUS.)

LOADPLUS options and High-speed Apply Engine parameters

LOADPLUS provides several syntax options and passes the values of those options to the High-speed Apply Engine as configuration parameters. For more information about the LOADPLUS options, see the LOADPLUS for DB2 Reference Manual.

Table 27 LOADPLUS options and corresponding High-speed Apply Engine parameters

<table>
<thead>
<tr>
<th>LOADPLUS syntax option</th>
<th>Corresponding High-speed Apply Engine configuration parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>APCOLLECTION</td>
<td>CollectionID: specifies a collection name that High-speed Apply Engine uses in any BIND PACKAGE or FREE PACKAGE commands that it issues to execute SQL statements (“CollectionID” on page 134).</td>
</tr>
<tr>
<td>APOWNER</td>
<td>BindOwner: specifies an authorization ID that High-speed Apply Engine can use to bind the DB2 plan and packages for the apply request (“BindOwner” on page 133).</td>
</tr>
<tr>
<td>APMAXAGENTS</td>
<td>MaxAgents: defines the maximum number of agents that High-speed Apply Engine can start for an apply request (“MaxAgents” on page 124).</td>
</tr>
<tr>
<td>APRETRYLIM</td>
<td>RetryLimit: indicates the measurement type used for the RetryValue parameter (“RetryLimit” on page 161).</td>
</tr>
<tr>
<td>APRETRYVALUE</td>
<td>RetryValue: specifies the retry limit for each unit of recovery (transaction) in the request (“RetryValue” on page 163).</td>
</tr>
</tbody>
</table>
Glossary

A

APF
authorized program facility. An IBM facility that allows you to establish authorization for programs to use certain functions that are otherwise restricted.

apply agent
a High-speed Apply Engine task that updates a target table

apply processing
the process of updating the target tables by using the information provided in the configuration file and apply request

apply request
the batch job or command that is used to start and run High-speed Apply Engine. The apply request can contain job processing information and overriding values for some of the configuration parameters.

C

configuration
information about the database, input files, and processing options used during apply processing. The configuration information can be specified in the configuration file or the apply request.

configuration file
the file that contains configuration information for an apply request

configuration manager
the part of High-speed Apply Engine that validates and processes the configuration information

conflict
the situation that occurs when High-speed Apply Engine attempts to update a target table, but the target database prevents the update. Conflicts can occur if the target table definition does not match the source table definition, if resources are unavailable, or if a time out occurs during apply processing.
conflict manager
the part of High-speed Apply Engine that receives conflict information from the apply agent, and processes conflicts according to the resolution rules defined in the configuration

conflict resolution rule
a set of configuration parameters that describes how High-speed Apply Engine responds to a particular type of conflict. Each rule consists of a conflict type (specified with the Code parameter) and one or more actions (specified with the Action parameter).

data migration
the process of moving data from one database environment (table space or instance) to another

DBCS
double-byte character set

DBRM
database request module (DB2 only). High-speed Apply Engine creates a DBRM that contains all unique SQL statements in an apply request. This DBRM facilitates static SQL processing for DB2 targets.

DDL
data definition language. A subset of SQL statements that define data objects, such as the CREATE statements.

DML
data manipulation language. A subset of SQL statements that manipulate data, such as the INSERT, UPDATE and DELETE statements.

DFSMS
Data Facility Storage Management System. An IBM storage management product that lets you define the characteristics of data sets and storage devices.

distributed system
For purposes of this document, a computer system other than a mainframe. A distributed system can be a minicomputer, a LAN server, or a personal computer. This document assumes that the operating system of a distributed system is UNIX or Windows.

GDG
generation data group
I
input file
the file that contains the updates for the target tables. This file can be a Log Master for DB2 logical log file or an SQL file.

J
JCL
Job Control Language

P
parameter
an element of an High-speed Apply Engine configuration file, also referred to as a configuration parameter. Parameters define processing information for an apply request.

PDS
partitioned data set

R
resolution rule
See conflict resolution rule.

restart processing
the processing that High-speed Apply Engine performs to start an apply request at an appropriate point after an interruption.

restart table
the table that High-speed Apply Engine uses to store restart information about apply requests. You must create one or more restart tables before High-speed Apply Engine can perform restart processing.

S
section name
the label that identifies a group of parameters. Section names are delimited by slash characters (/SectionName/) or square brackets ([SectionName]).

SID
system identifier (Oracle only). A unique name that identifies an Oracle instance.

source table
for data migration or transaction recovery, the table that originally contained the data that will be migrated or recovered.
SPUFI
SQL Processor Using File Input. The IBM utility that lets you execute SQL statements without embedding them in an application program.

SQL
Structured Query Language

SSID
subsystem identifier (DB2 only). A unique name that identifies a DB2 subsystem.

T

target table
any table that High-speed Apply Engine updates during an apply request

template file
a separate file generated by the Log Master for DB2 product that High-speed Apply Engine can use to efficiently process SQL input as static SQL against DB2 for mainframe or DB2 UDB targets. The template file contains one entry for each distinct statement type in the SQL input. If an apply request includes a template file, High-speed Apply Engine processes the template file before it begins processing SQL input.

transaction recovery
the process of recovering database transactions that have occurred since the last image copy was taken. This process can require undo processing, redo processing, or both.
Index

A

Abort action 90, 91
Action parameter
 in [AnyConflict] section 128
 in [DDLConflict] section 177
 in [DeleteConflict] section 178
 in [InsertConflict] section 192
 in [UpdateConflict] section 275
 processing condition 90
 valid values 91
actions, conflict resolution
 Abort 91
 Continue 91
 DeferStatement 91
 DeferUR 91
 Display 91
 Retry 91
 Rollback 92
 RollbackStatement 92
 Skip 92
 SkipUR 92
 Terminate 92
 Warn 92
[Agent] parameters
 APMAXAGENTS 318
 InitialAgents 122
 MaxAgents 124
 MaxPrepares 125
agents, distribution of work between. See distribution of work
[AnyConflict] parameters
 Action 128
 Code 129
APCOLLECTION parameter 318
APCOMMIT parameter 318
apebmain command 68, 70
APF authorization 31
APMAXAGENTS parameter 318
APOWNER parameter 286, 318
application recovery, overview 29
apply requests
 adding Restart parameters 79
 comments 105
 data flow 26
 distributing by partition 184
 distributing by RI settings 186, 187, 189, 197, 200
 file format 59
 including DDL 195, 202
 including LOBs in 196
 including XML in 199
 information needed 51, 52
 request ID, generated 139, 141
 restarting 81
 running 65, 66, 68
 samples 64, 69
 specifying configuration parameters 99
 APRETRYLIM parameter 318
 APRETRYVALUE parameter 318
 APTBMAIN command 64
 APTDIAG DD statement 62
 APTDUMP DD statement 62
 APTERR DD statement 62
 APTPRINT DD statement 62
 APTREST sample DDL member 73
 AuthID parameter [Bind] 130, 151, 284, 286
 authorizations, DB2. See DB2 authorization

B

balancing the workload 38
batch jobs
 creating 64
 running apply requests 65
[Bind] parameters
 APCOLLECTION 318
 APOWNER 286, 318
 AuthID 130, 284, 286
 BindAction 131, 283
 BindOwner 133, 283, 286
 CollectionID 134, 283
 DBPROTOCOL 135
 DISP 136
 FreeOption 137
 Library 138
 PackagePrefix 139
 PlanName 140
 PlanPrefix 141
bind privileges
 DB2 280
 DB2 UDB 35
 BindAction parameter [Bind] 131, 283
 BINDADD authority, DB2 282
 BindOwner parameter [Bind] 133, 283, 286
 BindQualifier parameter [StartUp] 250
[BindTuning] parameters
MaxFailedBinds 145
MaxPackages 146
MaxRetries 147
PackageUsage 148
StatementCount 149
StatementUsage 150
Synchronous 151

BMC Software, contacting 2
BMC Software, registry 67, 69
brackets in section names 103

C
CAF (call attach facility) 33
calculating partitions in logical log input 202

CCSID
 CCSIDCompatible parameter 194
 overriding translation 194
 SYSSTRING info and
 translation using
 UseLLogSysStrings parameter
CCSIDCompatible parameter [LogicalLog] 194
CFN parameter [Configuration] (synonym for FileName)
 157

checkpoint processing
 parameters for 154, 155, 238
 with restart 80, 238
CheckpointFrequency parameter [Restart] 238
Cluster parameter [ObjectCluster] 221

Code parameter
 in [AnyConflict] section 129
 in [DDLConflict] section 177
 in [DeleteConflict] section 178
 in [InsertConflict] section 192
 in [UpdateConflict] section 275
 interaction 89
 processing order 90
 valid values 87
coded character set identifier. See CCSID
codes, conflict resolution
 MultipleRows 88
 MultiRowConflict 88
 Negative 88
 nnnn (specific SQL code) 88
 NoRows 88
 Positive 88
 RIConflict 89
 SQLWarn 89
 TimeOut 89

CollectionID parameter [Bind] 134, 283
column names, wildcard patterns 108
Column parameter [ObjectPartition] 232
command line, specifying configuration parameters 59

comments
 description 104
 in an apply request 105
 including in a configuration file 49
 supported characters 104

CommitOnDemand parameter [CommitTriggers] 153
CommitTrigger parameter [MonitorTuning] 212
[CommitTriggers] parameters
 APCOMMIT 318
 CommitOnDemand 153
 StatementCount 154
 Time 155
CommitValue parameter [MonitorTuning] 213

collection files
 quick reference by name 113
 quick reference by section 117
 saving 51, 52
 specifing in an apply request 51, 52
 tip for formatting 51, 52
 using multiple files 48
 wrapping lines in 100
configuration parameters, by name
 Action [AnyConflict] 128
 Action [DDLConflict] 177
 Action [DeleteConflict] 178
 Action [InsertConflict] 192
 Action [UpdateConflict] 275
 APCOLLECTION 318
 APCOMMIT 318
 APMAXAGENTS 318
 APOWER 286, 318
 APRETRYLIM 318
 APRETRYVALUE 318
 AuthID [Bind] 130, 284, 286
 BindAction [Bind] 131, 283
 BindOwner [Bind] 133, 283, 286
 BindQualifier[StartUp] 250
 CCSIDCompatible [LogicalLog] 194
 CFN [Configuration] 157
 CheckpointFrequency [Restart] 238
 Cluster [ObjectCluster] 221
 Code [AnyConflict] 129
Index 325

configuration parameters, by name (continued)

Code [DDLConflict] 177
Code [DeleteConflict] 178
Code [InsertConflict] 192
Code [UpdateConflict] 192
CollectionID [Bind] 134, 283
Column [ObjectPartition] 232
CommitOnDemand [CommitTriggers] 153
CommitTrigger [MonitorTuning] 212
CommitValue [MonitorTuning] 213
ConnectionVersion [StartUp] 251
Database [StartUp] 252
DATACLAS [ConflictFile] 165
DATACLAS [TemporaryFiles] 269
DataType [Conflict] 159
DateFormat [StartUp] 252
DBMSType [StartUp] 253
DBPROTOCOL [Bind] 135
DecimalPoint [SQL] 246
DefaultOpts [StartUp] 254
DFN [DisplayOutput] 180
DIR [TemporaryFiles] 270
Directory [TemporaryFiles] 270
DISP [Bind] 136
DISP [ConflictFile] 165
DistributionType [StartUp] 255
DOPT [StartUp] 254
EFN [ErrorOutput] 191
FileName [Configuration] 157
FileName [DiagnosticOutput] 179
FileName [DisplayOutput] 180
FileName [ErrorOutput] 191
FileName [LogOutput] 208
FileName [StartUp] 256
FileNameModel [ConflictFile] 166
Format [SQL] 247
FreeOption [Bind] 137
IFN [StartUp] 256
IncludeDDL [LogicalLog] 195
IncludeHistory [LogicalLog] 200
IncludeLOB [LogicalLog] 196
IncludeRI [LogicalLog] 197
IncludeTrigger [LogicalLog] 198
IncludeXML [LogicalLog] 199
InitialAgents [Agent] 122
InputMediaType [StartUp] 258
InputTrigger [MonitorTuning] 214
InputType [StartUp] 258
InputValue [MonitorTuning] 215
IT [StartUp] 258
LargeStatementSupport [StartUp] 259
LFN [LogOutput] 208
Library [Bind] 138
Like [ConflictFiles] 169
Like [TemporaryFiles] 270
LimitKey [ObjectPartition] 233
Login [StartUp] 260

configuration parameters, by name (continued)

LogType [LogOutput] 209
MaxAgents [Agent] 124
MaxConflicts [MultiRowInsert] 217
MaxExecuteImmediateDML [DistributionTuning] 183
MaxFailedBinds [BindTuning] 145
MaxPackages [BindTuning] 146
MaxPrepares [Agent] 125
MaxRetries [BindTuning] 147
MaxRows [MultiRowInsert] 218
MaxVol [ConflictFile] 170
MediaType [ConflictFiles] 169
MGMTCLAS [ConflictFile] 171
MGMTCLAS [TemporaryFiles] 271
MultiRowInsert [MultiRowInsert] 219
Order [ObjectPartition] 234
Overlap [LogOutput] 210
PackagePrefix [Bind] 139
PackageUsage [Bind] 208
Partition [ObjectPartition] 235
PartitionClustering [DistributionTuning] 184
PartitionDistribution [LogicalLog] 202
PLAN [StartUp] 262
PlanName [Bind] 140
PlanName [StartUp] 262
PlanPrefix [Bind] 141
PublicPlan [StartUp] 263
Qualify [LogicalLog] 201
Release [ConflictFile] 171
RestartID [Restart] 240
RestartType [Restart] 241
RetainTime [Restart] 242
Retry [Restart] 243
RetryDelay [Conflict] 160
RetryFail [Conflict] 161
RetryLimit [Conflict] 161
RetryValue [Conflict] 163
RIClustering [DistributionTuning] 186
RIRecursionLimit [DistributionTuning] 187
SC [ObjectMap] 226
ScanInterval [MonitorTuning] 216
SimpleTSClustering [DistributionTuning] 188
SingleFile [ConflictFile] 172
Sort [LogicalLog] 203
SourceColumn [ObjectMap] 226
SourceTable [ObjectMap] 226
SPACE [ConflictFile] 173
SPACE [TemporaryFiles] 272
SpacePri [ConflictFile] 174
SpacePri [TemporaryFiles] 272
SpaceSec [ConflictFile] 174
SpaceSec [TemporaryFiles] 273
SQLTerminator [StartUp] 264
SQLType [LogicalLog] 204
SSID [StartUp] 265
ST [ObjectMap] 226
StatementCount [BindTuning] 149
configuration parameters, by name (continued)
StatementCount [CommitTriggers] 154
StatementUsage [BindTuning] 150
STORCLAS [ConflictFile] 175
STORCLAS [TemporaryFiles] 273
Synchronous [BindTuning] 151
Table [ObjectCluster] 222
Table [ObjectPartition] 235
TableName [Restart] 244
TargetColumn [ObjectMap] 227
TargetTable [ObjectMap] 228
TC [ObjectMap] 227
Threshold [LogOutput] 210
Time [CommitTriggers] 155
TimestampFormat [StartUp] 265
TimestampTzFormat [StartUp] 266
TT [ObjectMap] 228
UNIT [ConflictFile] 176
UNIT [TemporaryFiles] 274
UpdateColumns [LogicalLog] 205
URCheckRI [DistributionTuning] 189
UseLogSysStrings [LogicalLog] 205
Value [ObjectPartition] 236
VOLSER [ConflictFile] 176
VOLSER [TemporaryFiles] 275
WORKNUM [LogicalLog] 206
configuration parameters, by section
[Agent] section 121
[AnyConflict] section 127
[Bind] section 129
[CommitTriggers] section 152
[Configuration] section 156
[Conflict] section 158
[ConflictFile] section 164
[DDLConflict] section 177
[DeleteConflict] section 178
[DiagnosticOutput] section 179
[DisplayOutput] section 180
[DistributionTuning] section 182
[ErrorOutput] section 191
[InsertConflict] section 192
[LogicalLog] section 193
[LogOutput] section 207
[MonitorTuning] section 211
[ObjectCluster] section 220
[ObjectMap] section 223
[ObjectPartition] section 230
[Restart section] 237
[SQL section] 246
[StartUp section] 249
[TemporaryFiles] section 268
[UpdateConflict] section 275
configuration parameters, general (continued)
in EXEC statements 59
multiple lines of 100
overview 47, 112
quick reference by name 113
quick reference by section 117
section names 99
[Configuration] parameters, FileName (CFN) 157
configuring conflict resolution 93
conflict files, defining 96, 164
Conflict log type 209
[Conflict] parameters
APRETRYLIM 318
APRETRYVALUE 318
DataType 159
defining 95
RetryDelay 160
RetryFail 161
RetryLimit 161
RetryValue 163
collision resolution
actions 91
configuring conflict resolution 93
overview 42
processing 90
rule format 86
rule interaction 89
SQL codes 87
collision types
adding rules to the configuration 94
descriptions 88
[ConflictFile] parameters
DATACLAS 165
DISP 165
FileNameModel 166
Like 169
MaxVol 170
MediaType 169
MGMTCLAS 171
Release 171
SingleFile 172
SPACE 173
SpacePri 174
SpaceSec 174
STORCLAS 175
UNIT 176
VOLSER 176
collision-resolution rules
defining 93
interaction 89
processing order 90
ConnectionVersion parameter [StartUp] 251
continuation character in configuration file 100
Continue action 91
control file, logical log 277
to controlling conflicts 93, 158
conventions
 configuration file names 49
 document 19
 naming batch jobs 63
 syntax statements 20
 typographical 19
converting data types 34, 38
creating a configuration file 49
creating a conflict file 96
creator name, DB2 installation option 287
CrtOraRestartTable.sql sample DDL 75, 77
customer support 3

D

data file, logical log 277
data flow of an apply request 26
data migration 29
data set names
 APTDIAG 62
 APTDUMP 62
 APTERR 62
 APTPRINT 62
 DD names and 61
 list of DD names 62
 See also file names
 sort work data sets 34, 206
 SYSIN 62
 SYSDUMP 63
 SYSPROC 62
 SYSTEM 63
 SYSUDUMP 62
data type conversion 34, 38
data type support
 DB2 34
 DB2 UDB 36
 Oracle 38
database authorization
 DB2 280
 DB2 UDB 35
 Oracle 291, 305
 STOGROUP 288
Database parameter [StartUp] 252
databases
 access considerations 33, 37
 database name, DB2 installation option 287
 supported versions 280, 290, 304
 updates, by object 38
 updates, by unit of recovery (UR) 41
DATACLAS parameter
 in [ConflictFile] section 165
 in [TemporaryFiles] section 269
DataType parameter [Conflict] 159
DateFormat parameter [StartUp] 252
DB2 authorization. See DB2 authorization call attach facility 33
 creating a configuration file 50
DB2 (continued)
 installation options 287
 object name length 108
 partition key length 56
 SQLCA 89
 supported versions 280
DB2 authorization
 bind privileges 280
 BINDADD authority 282
 methods of granting 280
 PACKADM authority 280
 parameters related to 130, 131, 133, 134, 140
 table privileges 33
DB2 installation options
 bind qualifier 287
 creator name 287
 database name 287
 plan name 287
 public plan 287
 restart table name 288
 restart table space name 287
 STOGROUP 288
DB2 UDB
 authorization 35
 considerations for target databases 34
 creating a configuration file 51
 DELETE privilege 35
 INSERT privilege 35
 partition key lengths 56
 template file with SQL 36
 UPDATE privilege 35
DBMSType parameter [StartUp] 253
DBPROTOCOL parameter [Bind] 135
DD names
 APTDIAG 62
 APTDUMP 62
 APTERR 62
 APTPRINT 62
 default for input file 257
 list of valid 62
 specifying in configuration files 61
 SYSIN 62
 SYSDUMP 63
 SYSPROC 62
 SYSTEM 63
 SYSUDUMP 62
DDL (data definition language), in logical log input 195, 202
 [DDLConflict] parameters
 Action 177
 Code 177
DecimalPoint parameter [SQL] 246
DefaultOpts parameter [StartUp] (DOPT) 254
defer file. See conflict files
derStatement action 91
derUR action 91
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

defining
 conflict resolution actions 91
 conflict resolution codes 87
 logical partitions for source tables 55
 object clusters 220
 restart table 244
DELETE privilege 33, 38, 291, 305
[DeleteConflict] parameters
 Action 178
 Code 178
delimiters in table names 107
DFN parameter [DisplayOutput] (synonym for FileName) 180
DFSMS storage class
 conflict file 175
 temporary files 273
diagnostic information, display of output 179
 [DiagnosticOutput] parameters, FileName 179
DIR parameter [TemporaryFiles] (synonym for Directory) 270
 Directory parameter [TemporaryFiles] 270
disk requirements
 UNIX 290
 Windows 304
DISP parameter
 in [Bind] section 136
 in [ConflictFile] section 165
Display action 91
Display log type 209
display output messages 180
[DisplayOutput] parameters, FileName 180
distribution of work between agents
 by object 38, 255
 by UR (unit of recovery) 41, 255
 overview 38
 partitions 184, 229
 RI (referential integrity) 186, 187, 189
 table space, simple 188
 [DistributionTuning] parameters
 MaxExecuteImmediateDML 183
 PartitionClustering 184
 RIClustering 186
 RIRecursionLimit 187
 SimpleTSClustering 188
 URCheckRI 189
DistributionType parameter [StartUp] 255
document conventions 19
documentation
 installation 18
 readme file 305
DOPT parameter [StartUp] (synonym for DefaultOpts) 254
dynamic SQL
 balancing with static SQL 144
 fallback to 32, 146
 MaxPrepares parameter 125
 preparing 125
 problems with 183
E
 Editing a configuration file 49
 EFN parameter [ErrorOutput] (synonym for FileName) 191
electronic documentation 18
 [ErrorOutput] parameters, FileName (EFN) 191
elements of DB2 authorizations 280
examples subdirectory 50, 67, 69, 73
excluding changes from LOBs 196
excluding changes from RI 197
excluding changes from triggers 198
excluding changes from XML columns 199
EXEC statement
 APTBMAIN 64
 PARM parameter 59
 specifying configuration parameters 59
executable files, apebmain 68, 70
EXECUTE IMMEDIATE
 balancing with static SQL 146
 log type 209
 maximum for an apply request 183
F
 file formats
 configuration files 99
 logical log input 28, 277
 SQL input 28
file management
 apply requests DB2 63
 configuration files 49
file names
 configuration files 61
 conventions 61
 defaults 106, 257
 diagnostic output file 179
 display output file 180
 error file 191
 input file 256
 log file 208
 specifying in configuration files 106
FileName parameter
 in [Configuration] section (CFN) 157
 in [DiagnosticOutput] section 179
 in [DisplayOutput] section (DFN) 180
 in [ErrorOutput] section (EFN) 191
 in [LogOutput] section (LFN) 208
 in [StartUp] section (IFN) 256
FileNameModel parameter [ConflictFile] 166
 fixes, verifying product maintenance 65
Format parameter [SQL] 247
 formats
 comments 117
 configuration files 99
 configuration parameters 104
 conflict resolution rules 86
 data set names 106
formats (continued)
 DB2 object names 106
 file names 106
 section names 103
 table names 106
Free-Option parameter [Bind] 137
functions, overview 24

G
 generated package names 139
 generated request ID 139, 141
 granting DB2 authorizations 280
 grouping target tables 38, 220

H
 Help, online 18
 High-speed Apply Maintenance Tool 311
 HLQ.DBSAMP library 50, 64, 73
 host_vars log type 210

I
 IFN parameter [StartUp] (synonym for FileName) 256
 ignoring changes from LOBs 196
 ignoring changes from RI 197
 ignoring changes from triggers 198
 ignoring changes from XML columns 199
 IncludeDDL parameter [LogicalLog] 195
 IncludeHistory parameter [LogicalLog] 200
 IncludeLOB parameter [LogicalLog] 196
 IncludeRI parameter [LogicalLog] 197
 IncludeTrigger parameter [LogicalLog] 198
 IncludeXML parameter [LogicalLog] 199
 InitialAgents parameter [Agent] 122
 input files
 considerations 32
 IFN parameter [StartUp] 256
 logical log 28
 maximum length of statements/records 259
 naming 256
 overview 27
 specifying type 258, 263
 SQL 28
 template file for SQL 28, 36
 InputMediaType parameter [StartUp] 258
 InputTrigger parameter [MonitorTuning] 214
 InputType parameter [StartUp] 258
 InputValue parameter [MonitorTuning] 215
 INSERT
 multiple row insert actions. See multiple row insert
 privilege 33, 38, 291, 305
 statement, identifying conflicts 192
 [InsertConflict] parameters 192
 Action 192
 Code 192
 with MultipleRows code type 88
 install.sh script 292
 installation
 default directories for Unix 294
 installing multiple packages on Unix 294
 options for DB2 287
 prerequisites 280, 304
 restart table 290, 304
 supported operating systems 280, 290, 304
 Unix considerations 290
 Windows considerations 304
 Windows environment 304
 installing the product
 mainframe targets 280
 Unix 292
 interaction between Code parameters 89
 IT parameter [StartUp] (synonym for InputType) 258

J
 JCL (job control language)
 data set names in 106
 procedure for running apply request 64
 sample DB2 apply request 61
 specifying configuration file 64

L
 large volume columns
 LOB columns 196
 longer statement lengths 260
 VSAM files for 196, 199, 277
 XML columns 199
 LargeStatementSupport parameter [StartUp] 259
 LFN parameter [LogOutput] (synonym for FileName) 208
 Library parameter [Bind] 138
 Like parameter
 in [ConflictFiles] section 169
 in [TemporaryFiles] section 270
 limit on EXECUTE IMMEDIATE statements 183
 LimitKey parameter [ObjectPartition] 233
 line length in configuration file 100
 LLOGIN DD name 256
 LOADPLUS for DB2 (BMC Software product) 317
 LOBs (large objects)
 including or excluding changes from 196
 longer statement lengths 260
 log entry types
 Conflict 209
 Display 209
 Exec_immed 209
log entry types (continued)

Host vars 210
Work_item 210

log files
entry types 209
LFN parameter [LogOutput] 208
overwriting 210

Log Master for DB2
 supported versions (mainframe targets) 280
 with High-speed Apply 24

logical logs
 format 277
 input to High-speed Apply 24, 28
 overview 28, 277
 parameters for 193
 partitions within 202
 parts of 28, 277
 records 277
 SQL type 204
 VSAM files, large volume columns 196, 199, 277
 XMLSTRING control file 199, 277

logical partitions, creating 55
[LogicalLog] parameters
 CCSIDCompatible 194
 IncludeDDL 195
 IncludeHistory 200
 IncludeLOB 196
 IncludeRI 197
 IncludeTrigger 198
 IncludeXML 199
 including 50
 PartitionDistribution 202
 Qualify 201
 Sort 203
 SQLType 204
 UpdateColumn 205
 UseLLogSysStrings 205
 WORKNUM 206

Login parameter [StartUp] (Oracle only) 260
[LogOutput] parameters
 FileName 208
 LogType 209
 Overlap 210
 Threshold 210
 LogType parameter [LogOutput] 209

mapping
 source objects to target objects 52, 224
 with wildcards 224

MaxAgents parameter [Agent] 124
MaxConflicts parameter [MultiRowInsert] 217
MaxExecuteImmediateDML parameter [DistributionTuning] 183
MaxFailedBinds parameter [BindTuning] 145
MaxPackages parameter [BindTuning]
 description 146
 forcing static SQL 149
MaxPrepares parameter [Agent] 125
MaxRetries parameter [BindTuning] 147
MaxRows parameter [MultiRowInsert] 218
MaxVol parameter [ConflictFile] 170
MediaType parameter [ConflictFiles] 169
messages
 display of output 180
 progress messages 211
 verifying maintenance with 65
MGMTCLAS parameter
 in [ConflictFile] section 171
 in [TemporaryFiles] section 271

Microsoft Windows. See Windows operating system
monitoring High-speed Apply 211
[MonitorTuning] parameters
 CommitTrigger 212
 CommitValue 213
 InputTrigger 214
 InputValue 215
 ScanInterval 216

multiple agents for execution See distribution of work
multiple line configuration parameters 100
multiple row insert processing
 Action parameter 91
 Code parameter 88
 conflict resolution 88, 217
 enabling and disabling 219
 MaxConflicts parameter 217
 MaxRows parameter 218
 MultiRowConflict code value 88
 MultiRowInsert parameter 219
 performance and 218
 Retry action value 91
 summary 217

MultipleRows code type 88, 90
MultiRowConflict code type 88
MultiRowInsert parameter [MultiRowInsert] 219
[MultiRowInsert] parameters
 MaxConflicts 217
 MaxRows 218
 MultiRowInsert 219

mainframe operating systems
executable command (APTBMAIN) 64
supported versions 280
MAINT parameter, verifying maintenance 65
maintenance, verifying 65
managing apply requests, DB2 63

M
names of DB2 objects, length of 108
naming convention, configuration files 49
Negative code type 88, 90
NoRows code type 88, 90

object names
length of 108
mapping from source to target 52

[ObjectCluster] parameters
Cluster 221
including 50, 51
Table 222

[ObjectMap] parameters
defining 52
including 50, 51
positional requirements 224
SourceColumn 226
SourceTable 226
TargetColumn 227
TargetTable 228
troubleshooting 55
wildcards 224

[ObjectPartition] parameters
Column 232
including 51
LimitKey 233
Order 234
Partition 235
positional requirements 230
Table 235
troubleshooting 57
Value 236

objects, distributing work based on 38
OCI (Oracle Call Interface) 37
online Help 18
operating High-speed Apply, considerations 31, 35, 37
operating systems, supported
mainframe targets 280
Unix 290
Windows 304

Oracle
authorization 38
call interface 37
ConnectionVersion parameter [StartUp] 251
creating a configuration file 51
database authorizations 291, 305
date/time formats 252, 265, 266
DELETE privilege 38, 291, 305
INSERT privilege 38, 291, 305
installation requirements 304
Login parameter [StartUp] 260
MaxPrepares restriction 37
Oracle (continued)
partition key length 56
supported versions 290, 304
table privileges 38
UPDATE privilege 38, 291, 305
Order parameter [ObjectPartition] 234
output messages
diagnostic information 179
display of 180
Overlap parameter [LogOutput] 210
owner, table 106

PACKADM authority, DB2 135, 280
package name, generated by High-speed Apply 139
PackagePrefix parameter [Bind] 139
PackageUsage parameter [BindTuning] 148
parameters, configuration See configuration parameters
PARM parameter, specifying configuration parameters 59
PARM parameter, verifying maintenance 65
partition keys
DB2 56
Oracle 56
Partition parameter [ObjectPartition] 235
PartitionClustering parameter [DistributionTuning] 184
PartitionDistribution parameter [LogicalLog] 202
partitions
distributing the workload 183, 184
labelling 235
logical log input 202
specifying logical partitions for target tables 230
performance tuning
bind performance (DB2) 143
parameters for statistics messages 211
plan name, DB2 installation option 287
PLAN parameter [StartUp] (synonym for PlanName) 262
plan, pre-bound 132, 282
PlanName parameter
in [Bind] section (DB2 only) 140
in [StartUp] section (DB2 only) 262
PlanPrefix parameter [Bind] (DB2 only) 141
Positive code type 88, 90
pre-bound plan 132, 282
product requirements
DB2 31
DB2 UDB 34
Oracle 31
product support 3
progress messages, [MonitorTuning] parameters 211
PTFs, verifying 65
PublicPlan parameter [StartUp] 263

qualified name, restart table 250
Qualify parameter [LogicalLog] 201
quick reference, configuration parameters
by name 113
by section 117

R
readme file 305
referred integrity (RI). See RI (Referential Integrity)
registry, BMC Software 67, 69
related documentation 18
Release parameter [ConflictFile] 171
request ID, generated 139, 141
required parameters 50, 99
resolving conflicts 93, 158
[Restart] parameters 237
 CheckpointFrequency 238
 RestartID 240
 RestartType 241
 RetainTime 242
 Retry 243
 TableName 107, 244
restart table
 for DB2 mainframe targets 73
 for Oracle targets 75, 77
 installation considerations 290, 304
 name format 244
 synonym 245
 unqualified name for 250
restart table name, DB2 installation option 288
restart table space name, DB2 installation option 287
RestartID parameter [Restart] 240
restarting High-speed Apply
 adding configuration parameters 79
 apply requests 81
 checkpoint processing 238
 CheckpointFrequency parameter 238
 configuration parameters 237
 creating a restart table 72
 overview 42, 71
 restart table 244
 RestartID parameter 240
 RestartType parameter 241
 techniques for 83
RestartType parameter [Restart] 241
RetainTime parameter [Restart] 242
Retry action 91
Retry parameter [Restart] 243
RetryDelay parameter [Conflict] 160
RetryFail parameter [Conflict] 161
RetryLimit parameter [Conflict] 161
RetryValue parameter [Conflict] 163
RI (referential integrity)
 controlling scope of 187, 189
 including or excluding changes from 197
 RIClustering parameter [DistributionTuning] 186
 RIClustering parameter [DistributionTuning] 187
 specifying in a configuration file 186
 URCcheckRI parameter [DistributionTuning] 189
 with object clusters 221
 RIClustering parameter [DistributionTuning] 186
 RIClustering parameter [DistributionTuning] 187
 Rollback action 92
 RollbackStatement action 92
 rows, inserting multiple rows in one insert action. See
 multiple row insert processing
running
 DB2 apply request 65
 DB2 UDB apply request 66
 High-speed Apply 30
 installation script for Unix 292
 Oracle apply request 68
samples
 apply request for Oracle 69
 commands 69
 DB2 apply request 61
 examples subdirectory 50, 73
 HLQ.DBSAMP 50, 64, 73
 saving the configuration file 51, 52
 SC parameter [ObjectMap] (synonym for SourceColumn) 226
 ScanInterval parameter [MonitorTuning] 216
 section names
 brackets 103
 delimiters 103
 in apply requests 103
 SimpleTSclustering parameter [DistributionTuning] 188
 SingleFile parameter [ConflictFile] 172
 Skip action 92
 SkipUR action 92
 SourceColumn parameter [ObjectMap] 226
 SourceTable parameter [ObjectMap] 50, 51, 226
 SourceTable parameter [ObjectMap] 50, 51, 226
 SPACE parameter
 in [ConflictFile] section 173
 in [TemporaryFiles] section 272
 SpacePri parameter
 in [ConflictFile] section 174
 in [TemporaryFiles] section 272
SpaceSec parameter
in [ConflictFile] section 174
in [TemporaryFiles] section 273
special characters, configuration file 103
splitting lines in configuration file 100
SQL
batch processing 30
code types 88
data types 34, 38
dynamic. See dynamic SQL
input file 24
specifying codes for conflict resolution 87
statements, as input 28
static. See static SQL
template file for input. See template file
SQL codes
order of conflict resolution 90
specifying for conflict resolution 89
[SQL] parameters
Format 247
DecimalPoint 246
SQL*Plus
called from High-speed Apply 37
including in path 37
SQLAPPLY load action 317
SQLCA 89
SCLIN DD name 256
SQLTerminator parameter [StartUp] 264
SQLType parameter [LogicalLog]
affects of 50, 202
description 204
SQLWarn code type 89, 90
SSID parameter [StartUp] 50, 265
ST parameter [ObjectMap] (synonym for SourceTable) 226
[StartUp] parameters
BindQualifier 250
ConnectionVersion (Oracle only) 251
Database 252
DateFormat 252
DBMSType 253
DefaultOpts 254
DistributionType 255
FileName 256
InputMediaTyp 258
InputType 258, 263
LargeStatementSupport 259
Login, Oracle 260
Password 261
PlanName (DB2 only) 262
required section 99
SQL Terminator 264
SSID (DB2 only) 265
TimestampFormat 265
TimestampTzFormat 266
UserID 267
StatementCount parameter
in [BindTuning] section 149
in [CommitTriggers] section 154
StatementUsage parameter [BindTuning] 150
static SQL
balancing with dynamic SQL 144
balancing with EXEC IMMEDIATE 146
efficiency of 28
forcing 149
overview 32, 142
performance of 143
processing 32
related parameters 125, 146, 147, 151
template with 28
triggers for binding 148, 149, 150
statistics messages, [MonitorTuning] parameters 211
STOGROUP, DB2 installation option 288
storage requirements
UNIX 290
Windows 304
STORCLAS parameter
in [ConflictFile] section 175
in [TemporaryFiles] section 273
support, customer 3
verifying maintenance 65
symbolic variables (substitutions) 167
Synchronous parameter [BindTuning] 131, 151
synonym, for the restart table 245
tax, statement conventions 20
SYSIN DD statement 62
SYSMDUMP DD statement 63
SYSOUT DD statement 62
SYSTERM DD statement 63
SYSUDUMP DD statement 62
T

Table parameter
in [ObjectCluster] section 222
in [ObjectPartition] section 235
table privileges
DB2 33
Oracle 38, 291, 305
TableName parameter [Restart]
description 244
limitation for restart table 107
tables
grouping targets 38, 220
restart 72
TargetColumn parameter [ObjectMap] 227
TargetTable parameter [ObjectMap] 50, 51, 228
task summary 30
TC [ObjectMap] parameter (synonym for TargetColumn) 227

technical support 3

template file, for SQL input
overview 28
related parameters 143, 147, 149
under DB2 UDB 36

[TemporaryFiles] parameters
 DATACLAS 269
 DIR 270
 Directory 270
 Like 270
 MGMTCLAS 271
 SPACE 272
 SpacePri 272
 SpaceSec 273
 STORCLAS 273
 UNIT 274
 VOLSER 275

Terminate action 90, 92
Threshold parameter [LogOutput] 210
Time parameter [CommitTriggers] 155
TimeOut code type 89, 90
TimestampFormat parameter [StartUp] 265
TimestampTzFormat parameter [StartUp] 266

transaction recovery 29
triggers, including or excluding changes from 198

troubleshooting
 ObjectMap section 55
 ObjectPartition parameters 57

TT [ObjectMap] parameter (synonym for TargetTable) 228
typographical conventions 19

V

V10.1 (QM001646391) INLINE LOBs
 added value Inline to Attributes section. 196
Value parameter [ObjectPartition] 236
variables, symbolic 167
verifying product maintenance 65
viewing installation logs 311

VOLSER parameter
 in [ConflictFile] section 176
 in [TemporaryFiles] section 275

VSAM files, large volume columns 196, 199, 277

W

Warn action 92
wildcard patterns
 in object mapping 224
 in object names 108
Windows operating system
 installation considerations 304
 installation procedure 305

PATH setting 37

work, distribution of. See distribution of work
Work_item log type 210
workload balancing 38

WORKNUM parameter [LogicalLog] 206
wrapping lines in configuration file 100

X

XML columns
 including or excluding changes from 199
 longer statement lengths 260
VSAM files for 199, 277
XMLSTRING control file 199, 277

unit of recovery (UR), distributing work by 41
UNIT parameter [ConflictFile] 176
UNIT parameter [TemporaryFiles] 274
UNIX
 executable command 68, 70
 installation considerations 290
 installation procedure 292
 PATH variable 37
unqualified name, restart table 250
UPDATE privilege 33, 38, 291, 305
UpdateColumns parameter [LogicalLog] 205
[UpdateConflict] parameters
 Action 275
 Code 275
URCheckRI parameter [DistributionTuning] 189
UseLLogSysStrings parameter [LogicalLog] 205